
Handbook of Robotics, 2nd Edition
Simultaneous Localization and Mapping

Cyrill Stachniss
Albert-Ludwigs-University

Institute of Computer Science
Georges-Koehler-Allee 079
79110 Freiburg, Germany

John J. Leonard
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
Cambridge, MA 02139

Sebastian Thrun
Stanford Artificial Intelligence Laboratory

Stanford University
Stanford, California 94305

Draft: July 17, 2013

1



Contents

1 Introduction 3

2 SLAM: Problem Definition 3
2.1 Mathematical Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Example: SLAM in Landmark Worlds . . . . . . . . . . . . . . . . . . . . . 5
2.3 Taxonomy of the SLAM Problem . . . . . . . . . . . . . . . . . . . . . . . . 6

3 The Three Main SLAM Paradigms 8
3.1 Extended Kalman Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Particle Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Graph-Based Optimization Techniques . . . . . . . . . . . . . . . . . . . . . 14
3.4 Relation of Paradigms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Visual and RGB-D SLAM 17

5 Conclusion and Future Challenges 21

2



1 Introduction

This chapter provides a comprehensive introduction into one of the key enabling technologies
of mobile robot navigation: simultaneous localization and mapping, or in short SLAM. SLAM
addresses the problem of acquiring a spatial map of an environment while simultaneously
localizing the robot relative to this model. The SLAM problem is generally regarded as one
of the most important problems in the pursuit of building truly autonomous mobile robots.
It is of great practical importance; if a robust, general-purpose solution to SLAM can be
found, then many new applications of mobile robotics will become possible.

While the problem is deceptively easy to state, it presents many challenges, despite
significant progress made in this area. At present, we have robust methods for mapping
environments that are mainly static, structured, and of limited size. Robustly mapping
unstructured, dynamic, and large-scale environments in an online fashion remains largely an
open research problem.

The historical roots of methods that can be applied to address the SLAM problem can be
traced back to Gauss [39], who is largely credited for inventing the least squares method. In
the Twentieth Century, a number of fields outside robotics have studied the making of envi-
ronment models from a moving sensor platform, most notably in photogrammetry [10, 69, 138]
and computer vision [53]. Strongly related problems in these fields are bundle adjustment
and structure from motion. SLAM builds on this work, often extending the basic paradigms
into more scalable algorithms. Modern SLAM systems often view the estimation problem
as solving a sparse graph of constraints and applying nonlinear optimization to compute the
map and the trajectory of the robot. As we strive to enable long-lived autonomous robots,
an emerging challenge is to handle massive sensor data streams.

This chapter begins with a definition of the SLAM problem, which shall include a brief
taxonomy of different versions of the problem. The centerpiece of this chapter is a layman
introduction into the three major paradigms in this field, and the various extensions that
exist. As the reader will quickly recognize, there is no single best solution to the SLAM
method. The method chosen by the practitioner will depend on a number of factors, such as
the desired map resolution, the update time, and the nature of the features in the map, and
so on. Nevertheless, the three methods discussed in this chapter cover the major paradigms
in this field.

For more a detailed treatment of SLAM, we refer the reader to Durrant-Whyte and
Bailey [5, 26], who provide an in-depth tutorial for SLAM, Grisetti et al. for a tutorial on
graph-based SLAM [46], and Thrun et al., which dedicates a number of chapters to the topic
of SLAM [134].

2 SLAM: Problem Definition

2.1 Mathematical Basis

The SLAM problem is defined as follows: A mobile robot roams an unknown environment,
starting at an initial location x0. Its motion is uncertain, making it gradually more difficult
to determine its current pose in global coordinates. As it roams, the robot can sense its
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environment with a noisy sensor. The SLAM problem is the problem of building a map of
the environment while simultaneously determining the robot’s position relative to this map
given noisy data.

Formally, SLAM is best described in probabilistic terminology. Let us denote time by t,
and the robot location by xt. For mobile robots on a flat ground, xt is usually a three-
dimensional vector, comprising its 2-dimensional coordinate in the plane plus a single rota-
tional value for its orientation. The sequence of locations, or path, is then given as

XT = {x0, x1, x2, . . . , xT}. (1)

Here T is some terminal time (T might be∞). The initial location x0 often serves as a point
of reference for the estimation algorithm; other positions cannot be sensed.

Odometry provides relative information between two consecutive locations. Let ut denote
the odometry that characterized the motion between time t− 1 and time t; such data might
be obtained from the robot’s wheel encoders or from the controls given to those motors.
Then the sequence

UT = {u1, u2, u3 . . . , uT} (2)

characterizes the relative motion of the robot. For noise-free motion, UT would be sufficient
to recover the poses from the initial location x0. However, odometry measurements are noisy,
and path integration techniques inevitably diverge from the truth.

Finally, the robot senses objects in the environment. Let m denote the “true” map of the
environment. The environment may be comprised of landmarks, objects, surfaces, etc., and
m describes their locations. The environment map m is often assumed to be time-invariant,
i.e., static.

The robot measurements establish information between features in m and the robot
location xt. If we, without loss of generality, assume that the robot takes exactly one
measurement at each point in time, the sequence of measurements is given as

ZT = {z1, z2, z3, . . . , zT}. (3)

Fig. 1 illustrates the variables involved in the SLAM problem. It shows the sequence
of locations and sensor measurements, and the causal relationships between these variables.
This diagram represents a graphical model for SLAM. It is useful in understanding the de-
pendencies in the problem at hand.

The SLAM problem is now the problem of recovering a model of the world m and the
sequence of robot locations XT from the odometry and measurement data. The literature
distinguishes two main forms of the SLAM problem, which are both of equal practical im-
portance. One is known as the full SLAM problem: it involves estimating the posterior over
the entire robot path together with the map:

p(XT ,m | ZT , UT ). (4)

Written in this way, the full SLAM problem is the problem of calculating the joint posterior
probability over XT and m from the available data. Notice that the variables right of the
conditioning bar are all directly observable to the robot, whereas those on the left are the
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Figure 1: Graphical model of the SLAM problem. Arcs indicate causal relationships, and
shaded nodes are directly observable to the robot. In SLAM, the robot seeks to recover the
unobservable variables.

ones that we want. As we shall see, algorithms for the full SLAM problem are often batch,
that is, they process all data at the same time.

The second, equally important SLAM problem is the online SLAM problem. This problem
is defined via

p(xt,m | Zt, Ut). (5)

Online SLAM seeks to recover the present robot location, instead of the entire path. Algo-
rithms that address the online problem are usually incremental and can process one data
item at a time. In the literature, such algorithms are typically called filters.

To “solve” either SLAM problem, the robot needs to be endowed with two more models:
a mathematical model that relates odometry measurements ut to robot locations xt−1 and
xt; and a model that relates measurements zt to the environment m and the robot location
xt. These models correspond to the arcs in Fig. 1.

In SLAM, it is common to think of those mathematical models as probability distribu-
tions: p(xt | xt−1, ut) characterizes the probability distribution of the location xt assuming
that a robot started at a known location xt−1 and measured the odometry data ut. And
likewise, p(zt | xt,m) is the probability for measuring zt if this measurement is taken at a
known location xt in a known environment m. Of course, in the SLAM problem we do not
know the robot location, and neither do we know the environment. As we shall see, Bayes
rule takes care of this, by transforming these mathematical relationships into a form where
we can ‘recover’ probability distributions over those latent variables from the measured data.

2.2 Example: SLAM in Landmark Worlds

One common setting of SLAM involves an assumption that the environment is populated by
point-landmarks. When building 2-D maps, point-landmarks may correspond to door posts
and corners of rooms, which, when projected into a 2-D map are characterized by a point
coordinate. In a 2-D world, each point-landmark is characterized by two coordinate values.
Hence the world is a vector of size 2N , where N is the number of point-landmarks in the

5



world. In a commonly studied setting, the robot can sense three things: the relative range
to nearby landmarks, their relative bearing, and the identity of these landmarks. The range
and bearing may be noisy, but in the most simple case the identity of the sensed landmarks
is known perfectly. Determining the identity of the sensed landmarks is also known as the
data association problem. In practice, it is one of the most difficult problems in SLAM.

To model the above described setup, one begins with defining the exact, noise-free mea-
surement function. The measurement function h describes the workings of the sensors: it
accepts as input a description of the environment m and a robot location xt, and it computes
the measurement:

h(xt,m). (6)

Computing h is straightforward in our simplified landmark setting; it is a simple exercise
in trigonometry. The probabilistic measurement model is derived from this measurement
function by adding a noise term. It is a probability distribution that peaks at the noise-free
value h(xt,m) but allows for measurement noise:

p(zt | xt,m) ∼ N (h(xt,m), Qt). (7)

Here N denotes the 2-dimensional normal distribution, which is centered at h(xt,m). The
2-by-2 matrix Qt is the noise covariance, indexed by time.

The motion model is derived from a kinematic model of robot motion. Given the location
vector xt−1 and the motion ut, textbook kinematics tells us how to calculate xt. Let this
function be denoted by g:

g(xt−1, ut). (8)

The motion model is then defined by a normal distribution centered at g(xt−1, ut) but subject
to Gaussian noise:

p(xt | xt−1, ut) = N (g(xt−1, ut), Rt). (9)

Here Rt is a covariance. It is of size 3-by-3, since the location is a three-dimensional vector.
With these definitions, we have all we need to develop a SLAM algorithm. While in

the literature, point-landmark problems with range-bearing sensing are by far the most
studied, SLAM algorithms are not confined to landmark worlds. But no matter what the
map representation and the sensor modality, any SLAM algorithm needs a similarly crisp
definition of the features in m, the measurement model p(zt | xt,m), and the motion model
p(xt | xt−1, ut).

2.3 Taxonomy of the SLAM Problem

SLAM problems are distinguished along a number of different dimensions. Most impor-
tant research papers identify the type of problems addressed by making the underlying as-
sumptions explicit. We already encountered one such distinction: full versus online. Other
common distinctions are as follows:
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• Volumetric versus feature-based. In volumetric SLAM, the map is sampled at a
resolution high enough to allow for photo-realistic reconstruction of the environment.
The map m in volumetric SLAM is usually quite high-dimensional, with the result
that the computation can be quite involved. Feature-based SLAM extracts sparse
features from the sensor stream. The map is then only comprised of features. Our
point-landmark example is an instance of feature-based SLAM. Feature-based SLAM
techniques tend to be more efficient, but their results may be inferior to volumetric
SLAM due to the fact that the extraction of features discards information in the sensor
measurements.

• Topological versus metric. Some mapping techniques recover only a qualitative
description of the environment, which characterizes the relation of basic locations.
Such methods are known as topological. A topological map might be defined over
a set of distinct places and a set of qualitative relations between these places (e.g.,
place A is adjacent to place B). Metric SLAM methods provide metric information
between the relation of such places. In recent years, topological methods have fallen
out of fashion, despite ample evidence that humans often use topological information
for navigation.

• Known versus unknown correspondence. The correspondence problem is the
problem of relating the identity of sensed things to other sensed things. In the land-
mark example above, we assumed that the identity of landmarks is known. Some
SLAM algorithms make such an assumption, others do not. The ones that do not
provide special mechanisms for estimating the correspondence of measured features to
previously observed landmarks in the map. The problem of estimating the correspon-
dence is known as data association problem. It is one of the most difficult problems in
SLAM.

• Static versus dynamic. Static SLAM algorithms assume that the environment
does not change over time. Dynamic methods allow for changes in the environment.
The vast literature on SLAM assumes static environments. Dynamic effects are of-
ten treated just as measurement outliers. Methods that reason about motion in the
environment are more involved, but they tend to be more robust in most applications.

• Small versus large uncertainty. SLAM problems are distinguished by the degree
of location uncertainty that they can handle. The most simple SLAM algorithms allow
only for small errors in the location estimate. They are good for situations in which a
robot goes down a path that does not intersect itself, and then returns along the same
path. In many environments it is possible to reach the same location from multiple
directions. Here the robot may accrue a large amount of uncertainty. This problem is
known as the loop closing problem. When closing a loop, the uncertainty may be large.
The ability to close loops is a key characteristic of modern-day SLAM algorithms. The
uncertainty can be reduced if the robot can sense information about its position in some
absolute coordinate frame, e.g., through the use of a satellite-based global positioning
system (GPS) receiver.
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• Active versus passive. In passive SLAM algorithms, some other entity controls the
robot, and the SLAM algorithm is purely observing. The vast majority of algorithms
are of this type; they give the robot designer the freedom to implement arbitrary motion
controllers, and pursue arbitrary motion objectives. In active SLAM, the robot actively
explores its environment in the pursuit of an accurate map. Active SLAM methods
tend to yield more accurate maps in less time, but they constrain the robot motion.
There exist hybrid techniques in which the SLAM algorithm controls only the pointing
direction of the robot’s sensors, but not the motion direction.

• Single-robot versus multi-robot. Most SLAM problems are defined for a single
robot platform, although recently the problem of multi-robot exploration has gained in
popularity. Multi-robot SLAM problems come in many flavors. In some, robots get to
observe each other, in others, robots are told their relative initial locations. Multi-robot
SLAM problems are also distinguished by the type of communication allowed between
the different robots. In some, the robots can communicate with no latency and infinite
bandwidth. More realistic are setups in which only nearby robots can communicate,
and the communication is subject to latency and bandwidth limitations.

• Any-time and any-space. Robots that do all computations onboard have limited
resources in memory and computation power. Any-time and any-space SLAM systems
are an alternative to traditional methods. They enable the robot to compute a solution
given the resource constraints of the system. The more resources available, the better
the solution.

As this taxonomy suggests, there exists a flurry of SLAM algorithms. Most modern-day
conferences dedicate multiple sessions to SLAM. This chapter focuses on the very basic
SLAM setup. In particular it assumes a static environment with a single robot. Extensions
are discussed towards the end of this chapter, in which the relevant literature is discussed.

3 The Three Main SLAM Paradigms

This section reviews three basic SLAM paradigms, from which most others are derived. The
first, known as EKF SLAM, is historically the earliest but has become less popular due to its
limiting computational properties and issues resulting from performing single linearizations
only. The second approach uses non-parametric statistical filtering techniques known as
particle filters. It is a popular method for online SLAM and provides a perspective on
addressing the data association problem in SLAM. The third paradigm is based on graphical
representations and successfully applies sparse nonlinear optimization methods to the SLAM
problem. It is the main paradigm for solving the full SLAM problem and recently also
incremental techniques are available.

3.1 Extended Kalman Filters

Historically, the EKF formulation of SLAM is the earliest, and perhaps the most influential,
SLAM algorithm. EKF SLAM was introduced in [124, 125] and [90, 91], which were the first
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papers to propose the use of a single state vector to estimate the locations of the robot and
a set of features in the environment, with an associated error covariance matrix representing
the uncertainty in these estimates, including the correlations between the vehicle and feature
state estimates. As the robot moves through its environment taking measurements, the
system state vector and covariance matrix are updated using the extended Kalman filter [67,
61]. As new features are observed, new states are added to the system state vector; the size
of the system covariance matrix grows quadratically.

This approach assumes a metrical, feature-based environmental representation, in which
objects can be effectively represented as points in an appropriate parameter space. The
position of the robot and the locations of features form a network of uncertain spatial rela-
tionships. The development of appropriate representations is a critical issue in SLAM, and
intimately related to the topics of sensing and world modeling discussed in Chapter 36 and
in Part C.

The EKF algorithm represents the robot estimate by a multivariate Gaussian:

p(xt,m | Zt, Ut) ∼ N (µt,Σt). (10)

The high-dimensional vector µt contains the robot’s best estimate of its own current location
xt and the location of the features in the environment. In our point-landmark example, the
dimension of µt would be 3+2N , since we need three variables to represent the robot location
and 2N variables for the N landmarks in the map.

The matrix Σt is the covariance of the robot’s assessment of its expected error in the
guess µt. The matrix Σt is of size (3 + 2N) × (3 + 2N) and it is positive semi-definite. In
SLAM, this matrix is usually dense. The off-diagonal elements capture the correlations in
the estimates of different variables. Non-zero correlations come along because the robot’s
location is uncertain, and as a result the locations of the landmarks in the maps are uncertain.

The EKF SLAM algorithm is easily derived for our point-landmark example. Suppose,
for a moment, the motion function g and the measurement function h were linear in their
arguments. Then, the vanilla Kalman filter, as described in any textbook on Kalman filter-
ing, would be applicable. EKF SLAM linearizes the functions g and h using Taylor series
expansion. In its most basic form and in the absence of any data association problems, EKF
SLAM is basically the application of the EKF to the online SLAM problem.

Fig. 2 illustrates the EKF SLAM algorithm for an artificial example. The robot navigates
from a start pose that serves as the origin of its coordinate system. As it moves, its own
pose uncertainty increases, as indicated by uncertainty ellipses of growing diameter. It
also senses nearby landmarks and maps them with an uncertainty that combines the fixed
measurement uncertainty with the increasing pose uncertainty. As a result, the uncertainty
in the landmark locations grows over time. The interesting transition happens in Fig. 2d:
Here the robot observes the landmark it saw in the very beginning of mapping, and whose
location is relatively well known. Through this observation, the robot’s pose error is reduced,
as indicated in Fig. 2d—notice the very small error ellipse for the final robot pose. This
observation also reduces the uncertainty for other landmarks in the map. This phenomenon
arises from a correlation that is expressed in the covariance matrix of the Gaussian posterior.
Since most of the uncertainty in earlier landmark estimates is caused by the robot pose, and
since this very uncertainty persists over time, the location estimates of those landmarks
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are correlated. When gaining information on the robot’s pose, this information spreads to
previously observed landmarks. This effect is probably the most important characteristic of
the SLAM posterior [23]. Information that helps localize the robot is propagated through
the map, and as a result improves the localization of other landmarks in the map.

With a few adaptations, EKF SLAM can also be applied in the presence of uncertain
data association. If the identity of observed features is unknown, the basic EKF idea be-
comes inapplicable. The solution here is to reason about the most likely data association
when a landmark is observed. This is usually done based on proximity: which of the land-
marks in the map corresponds most likely to the landmark just observed? The proximity
calculation considers the measurement noise and the actual uncertainty in the poster esti-
mate, and the metric used in this calculation is known as a Mahalanobis distance, which is a
weighted quadratic distance. To minimize the chances of false data associations, many imple-
mentations use visible features to distinguish individual landmarks and associate groups of
landmarks observed simultaneously [94, 95], although distinct features can also be computed
from laser data [136, 137]. Typical implementations also maintain a provisional landmark
list and only add landmarks to the internal map when they have been observed sufficiently
frequently [4, 23]. With an appropriate landmark definition and careful implementation
of the data association step, EKF SLAM has been applied successfully in a wide range of
environments, using airborne, underwater, indoor, and various other platforms.

The basic formulation of EKF SLAM assumes that the location of features in the map
is fully observable from a single position of the robot. The method has been extended to
situations with partial observability, with range-only [79] or angle-only [19, 88] measure-
ments. The technique has also been utilized using a feature-less representation, in which
the state consists of current and past robot poses, and measurements take the form of con-
straints between the poses (derived for example from laser scan matching or from camera
measurements) [8, 102].

A key concern of the EKF approach to SLAM lies in the quadratic nature of the covariance
matrix. A number of researchers have proposed extensions to the EKF SLAM algorithms
that achieve scalability, for example through submap decomposition [49, 78, 133, 143]. A
related family of approaches [33, 59, 135, 140] employs the Extended Information Filter,
which operates on the inverse of the covariance matrix. A key insight is that whereas the
EKF covariance is densely populated, the information matrix is sparse when the full robot
trajectory is maintained, leading to the development of efficient algorithms and providing a
conceptual link to the pose graph optimization methods described below in Section 3.3.

The issues of consistency and convergence in EKF SLAM have been investigated in [6,
58]. Observability-based rules for designing consistent EKF SLAM estimators are presented
in [57].

3.2 Particle Methods

The second principal SLAM paradigm is based on particle filters. Particle filters can be
traced back to [84], but they have become popular only in the last two decades. Particle
filters represent a posterior through a set of particles. For the novice in SLAM, each particle
is best thought as a concrete guess as to what the true value of the state may be. By
collecting many such guesses into a set of guesses, or set of particles, the particle filter
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approximates the posterior distribution. Under mild conditions, the particle filter has been
shown to approach the true posterior as the particle set size goes to infinity. It is also a
non-parametric representation that represents multimodal distributions with ease.

The key problem with the particle filter in the context of SLAM is that the space of maps
and robot paths is huge. Suppose we have a map with 100 features. How many particles
would it take to populate that space? In fact, particle filters scale exponentially with the
dimension of the underlying state space. Three or four dimensions are thus acceptable, but
100 dimensions are generally not.

The trick to make particle filters amenable to the SLAM problem goes back to [7, 113] and
is known as Rao-Blackwellization. It has been introduced into the SLAM literature in [92],
followed by [86], who coined the name FastSLAM. Let us first explain the basic FastSLAM
algorithm on the simplified point-landmark example, and then discuss the justification for
this approach.

At any point in time, FastSLAM maintains K particles of the type:

X
[k]
t , µ

[k]
t,1, . . . , µ

[k]
t,N , Σ

[k]
t,1, . . . ,Σ

[k]
t,N (11)

Here [k] is the index of the sample. This expression states that a particle contains

• a sample path X
[k]
t , and

• a set of N 2-dimensional Gaussians with means µ
[k]
t,n and variances Σ

[k]
t,n), one for each

landmark in the environment.

Here n is the index of the landmark (with 1 ≤ n ≤ N). From that it follows that K particles
possess K path samples. It also possesses KN Gaussians, each of which models exactly one
landmark for one of the particles.

Initializing FastSLAM is simple: just set each particle’s robot location to the starting
coordinates, typically (0, 0, 0)T , and zero the map. The particle update then proceeds as
follows.

• When an odometry reading is received, new location variables are generated stochas-
tically, one for each of the particles. The distribution for generating those location
particles is based on the motion model:

x
[k]
t ∼ p(xt | x[k]t−1, ut). (12)

Here x
[k]
t−1 is the previous location, which is part of the particle. This probabilistic

sampling step is easily implemented for any robot whose kinematics can be computed.

• When a measurement zt is received, two things happen: first, FastSLAM computes for
each particle the probability of the new measurement zt. Let the index of the sensed
landmark be n. Then the desired probability is defined as follows:

w
[k]
t = N (zt | x[k]t , µ

[k]
t,n,Σ

[k]
t,n). (13)

The factor w
[k]
t is called the importance weight, since it measures how “important”

the particle is in the light of the new sensor measurement. As before, N denotes
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the normal distribution, but this time it is calculated for a specific value, zt. The
importance weights of all particles are then normalized so that they sum to 1.

Next, FastSLAM draws with replacement from the set of existing particles a set of
new particles. The probability of drawing a particle is its normalized importance
weight. This step is called resampling. The intuition behind resampling is that particles
for which the measurement is more plausible have a higher chance of surviving the
resampling process.

Finally, FastSLAM updates for the new particle set the mean µ
[k]
t,n and covariance Σ

[k]
t,n,

based on the measurement zt. This update follows the standard EKF update rules—
note that the extended Kalman filters maintained in FastSLAM are, in contrast to
EKF SLAM, all low-dimensional (typically 2-dimensional).

This all may sound complex, but FastSLAM is quite easy to implement. Sampling from the
motion model usually involves simple kinematic calculations. Computing the importance
of a measurement is often straightforward too, especially for Gaussian measurement noise.
And updating a low-dimensional particle filter is also not complicated.

FastSLAM has been shown to approximate the full SLAM posterior. The derivation of
FastSLAM exploits three techniques: Rao-Blackwellization, conditional independence, and
resampling. Rao-Blackwellization is the following concept. Suppose we would like to compute
a probability distribution p(a, b), where a and b are arbitrary random variables. The vanilla
particle filter would draw particles from the joint distributions, that is, each particle would
have a value for a and one for b. However, if the conditional p(b | a) can be described in closed
form, it is equally legitimate to just draw particles from p(a), and attach to each particle
a closed-form description of p(b | a). This trick is known as Rao-Blackwellization, and it
yields better results than sampling from the joint. FastSLAM applies this technique, in that
it samples from the path posterior p(X

[k]
t | Ut, Zt) and represents the map p(m | X [k]

t , Ut, Zt)
in Gaussian form.

FastSLAM also breaks down the posterior over maps (conditioned on paths) into se-
quences of low-dimensional Gaussians. The justification for this decomposition is subtle. It
arises from a specific conditional independence assumption that is native to SLAM. Fig. 3
illustrates the concept graphically. In SLAM, knowledge of the robot path renders all land-
mark estimates independent. This is easily shown for the graphical network in Fig. 3: we
find that if we remove the path variables from Fig. 3, then the landmark variables are all
disconnected [111]. Thus, in SLAM any dependence between multiple landmark estimates is
mediated through the robot path. This subtle but important observation implies that even if
we used a large, monolithic Gaussian for the entire map (one per particle, of course), the
off-diagonal element between different landmarks would simply remain zero. It is therefore
legitimate to implement the map more efficiently, using N small Gaussians, one for each
landmark. This explains the efficient map representation in FastSLAM.

Fig. 4 shows results for a point-feature problem; here the point features are the centers of
tree trunks as observed by an outdoor robot. The dataset used here is known as the Victoria
Park dataset [50]. Fig. 4a shows the path of the vehicle obtained by integrating the vehicle
controls, without perception. As can be seen, controls are a poor predictor of location for
this vehicle; after 30 minutes of driving, the estimated position of the vehicle is well over 100
meters away from its GPS position.

12



The FastSLAM algorithm has a number of interesting properties. First, it solves both
full and online SLAM problems. Each particle has a sample of an entire path but the
actual update equation only uses the most recent pose. This makes FastSLAM a filter.
Second, FastSLAM can maintain multiple data association hypotheses. It is straightforward
to make data association decisions on a per-particle basis, instead of having to adopt the same
hypothesis for the entire filter. While we will not give any mathematical justification, we
note that the resulting FastSLAM algorithm can even deal with unknown data association—
something that the extended Kalman filter cannot claim. And third, FastSLAM can be
implemented very efficiently using advanced tree methods to represent the map estimates,
the update can be performed in time logarithmic in the size of the map N , and linear in the
number of particles M .

FastSLAM has been extended in several ways. One set of variants are grid-based versions
of FastSLAM, in which the Gaussians used to model point landmarks are replaced by an
occupancy grid map [45, 52, 127]. The variant of [52] is illustrated in Fig. 5.

Fig. 6 illustrates a simplified situation with three particles just before closing a large
loop. The three different particles each stand for different paths, and they also posses their
own local maps. When the loop is closed importance resampling selects those particles
whose maps are most consistent with the measurement. A resulting large-scale map is
shown in Fig. 5. Further extensions can be found in [29, 30], whose methods DP-SLAM and
ancestry trees provide efficient tree update methods for grid-based maps. Related to that,
approximations to FastSLAM in which particles share their maps have been proposed [48].

The works in [45, 87, 127] provide ways to incorporate new observations into the location
sampling process for landmarks and grid maps, based on prior work in [139]. This leads to
an improved sampling process

x
[k]
t ∼ p(zt | m[k]

t−1, xt) p(xt | x
[k]
t−1, ut)

p(zt | m[k]
t−1, x

[k]
t−1, ut)

. (14)

which incorporates the odometry and the observation at the same time. Using an improved
proposal distribution leads to more accurately sampled locations. This in turn leads to more
accurate maps and requires a smaller number of particles compared to approaches using
the sampling process given in Eq. 12. This extension makes FastSLAM and especially its
grid-based variants robust tools for addressing the SLAM problem.

Finally, there are approaches that aim to overcome the assumption that the observations
show Gaussian characteristics. As shown in [127], there are several situations in which the
model is non-Gaussian and also multi-modal. A sum of Gaussians model on a per-particle
bases, however, can be efficiently considered in the particle filter and it eliminates this
problem in practice without introducing additional computational demands.

The so-far developed particle filters-based SLAM systems suffer from two problems. First,
the number of samples that are required to compute consistent maps is often set manually
by making an ’educated guess’. The larger the uncertainty that the filter needs to represent
during mapping, the more critical becomes this parameter. Second, nested loops combined
with extensive re-visits of previously mapped areas can lead to particle depletion, which
in turn may prevent the system from estimating a consistent map. Adaptive resampling
strategies [45], particles sharing maps [48], or filter backup approaches [126] improve the
situation but cannot eliminate this problem in general.
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3.3 Graph-Based Optimization Techniques

A third family of algorithms solves the SLAM problem through nonlinear sparse optimiza-
tion. They draw their intuition from a graphical representation of the SLAM problem and
the first working solution was proposed in [81]. The graph-based representation used here
is closely related to a series of papers [21, 24, 25, 34, 37, 40, 51, 42, 70, 85]. We note that
most of the earlier techniques are offline and address the full SLAM problem. In more recent
years, new incremental versions that effectively re-use the previously computed solution have
been proposed such as [43, 64, 66].

The basic intuition of graph-based SLAM is a follows. Landmarks and robot locations
can be thought of as nodes in a graph. Every consecutive pair of locations xt−1, xt is tied
together by an edge that represents the information conveyed by the odometry reading ut.
Further edges exist between the nodes that correspond to locations xt and landmarks mi,
assuming that at time t the robot sensed landmark i. Edges in this graph are soft constraints.
Relaxing these constraints yields the robot’s best estimate for the map and the full path.

The construction of the graph is illustrated in Fig. 7. Suppose at time t = 1, the robot
senses landmark m1. This adds an arc in the (yet highly incomplete) graph between x1 and
m1. When caching the edges in a matrix format (which happens to correspond to a quadratic
equation defining the resulting constraints), a value is added to the elements between x1 and
m1, as shown on the right hand side of Fig. 7a.

Now suppose the robot moves. The odometry reading u2 leads to an arc between nodes
x1 and x2, as shown in Fig. 7b. Consecutive application of these two basic steps leads to
an graph of increasing size, as illustrated in Fig. 7c. Nevertheless this graph is sparse, in
that each node is only connected to a small number of other nodes (assuming a sensor with
limited sensing range). The number of constraints in the graph is (at worst) linear in the
time elapsed and in the number of nodes in the graph.

If we think of the graph as a spring-mass model [40], computing the SLAM solution is
equivalent to computing the state of minimal energy of this model. To see, we note that the
graph corresponds to the log-posterior of the full SLAM problem (c.f. Eq. 4):

log p(XT ,m | ZT , UT ). (15)

Without derivation, we state that this logarithm is of the form:

log p(XT ,m | ZT , UT ) (16)

= const +
∑
t

log p(xt | xt−1, ut) +
∑
t

log p(zt | xt,m),

assuming independence between the individual observations and odometry readings. Each
constraint of the form log p(xt | xt−1, ut) is the result of exactly one robot motion event, and
it corresponds to an edge in the graph. Likewise, each constraint of the form log p(zt | xt,m)
is the result of one sensor measurement, to which we can also find a corresponding edge in
the graph. The SLAM problem is then simply to find the mode of this equation, i.e.,

X∗
T ,m

∗ = argmax
XT ,m

log p(XT ,m | ZT , UT ). (17)
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Without derivation, we note that under the Gaussian noise assumptions, which was made
in the point-landmark example, this expression resolves to the following quadratic form:

log p(XT ,m | ZT , UT ) (18)

= const +
∑
t

[xt − g(xt−1, ut)]
T R−1

t [xt − g(xt−1, ut)]︸ ︷︷ ︸
odometry reading

+
∑
t

[zt − h(xt,m)]T Q−1
t [zt − h(xt,m)]︸ ︷︷ ︸

feature observation

This quadratic form yields a sparse system of equations and a number of efficient optimization
techniques can be applied. Common choices include direct methods such as sparse Cholesky
and QR decomposition, or iterative ones such as gradient descent, conjugate gradient, and
others. Most SLAM implementations rely on iteratively linearizing the functions g and h,
in which case the objective in Eq. 18 becomes quadratic in all of its variables.

Extensions to support an effective correction of large-scale graphs are hierarchical meth-
ods. One of the first is the ATLAS framework [8], which constructs a two-level hierarchy
combining a Kalman filter that operates in the lower level and a global optimization at the
higher level. Similar to that, Hierarchical SLAM [32] is a technique for using independent
local maps, which are merged in case of re-visiting a place. A fully hierarchical approach has
been presented in [43]. It builds a multi-level pose-graph and employs an incremental, lazy
optimization scheme that allows for optimizing large graphs and at the same time can be
executed at each step during mapping. An alternative hierarchical approach is [100], which
recursively partitions the graph into multiple-level submaps using the nested dissection al-
gorithm.

When it comes to computing highly accurate environment reconstructions, approaches
that do not only optimize the poses of the robot but also each individual measurement of a
dense sensor often provide better results. In the spirit of bundle adjustment [138], approaches
for laser scanners [116] and Kinect cameras [117] have been proposed.

The graphical paradigm can be extended to handle the data association problems as we
can integrate additional knowledge on data association into Eq. 18. Suppose some oracle
informed us that landmarks mi and mj in the map corresponded to one and the same
physical landmark in the world. Then, we can either remove mj from the graph and attach
all adjacent edges to mi, or we can add a soft correspondence constraint [80] of the form:

[mj −mi]
T Γ [mj −mi]. (19)

Here Γ is 2-by-2 diagonal matrix whose coefficients determine the penalty for not assigning
identical locations to two landmarks (hence we want Γ to be large). Since graphical methods
are usually used for the full SLAM problem, the optimization can be interleaved with the
search for the optimal data association.

Data association errors typically have a strong impact in the resulting map estimate. Even
a small number of wrong data associations is likely to result in inconsistent map estimates.
Recently, novel approaches have been proposed that are robust under a certain number
of false associations. For example, [131, 132] propose an iterative procedure that allows for
disabling constraints, an action that is associated with a cost. A generalization of this method
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introduced in [2] formulates [132] as a robust cost function also reducing the computational
requirements. Such approaches can deal with a significant number of false associations and
still provide high-quality maps. Consistency checks for loop closure hypotheses can be found
in other approaches as well, both in the front-end [106] and in the optimizer [77]. There has
also been an extension that can deal with multi-modal constraints [107], proposing a max-
mixture representation for maintaining efficiency of the log likelihood optimizing in Eq. 16.
As a result of that, the multi-modal extension has only little impact on the runtime and can
easily be incorporated in most optimizers. Also robust cost function are used for SLAM, for
example pseudo Huber and several alternatives [2, 22, 76, 114].

Graphical SLAM methods have the advantage that they scale to much higher-dimensional
maps than EKF SLAM, exploiting the sparsity of the graph. The key limiting factor in EKF
SLAM is the covariance matrix, which takes space (and update time) quadratic in the size
of the map. No such constraint exists in graphical methods. The update time of the graph
is constant, and the amount of memory required is linear (under some mild assumptions).
A further advantage of graph-based methods over the EKF is their ability to constantly re-
linearize the error function which often leads to better results. Performing the optimization
can be expensive, however. Technically, finding the optimal data association is suspected
to be an NP-hard problem, although in practice the number of plausible assignments is
usually small. The continuous optimization of the log likelihood function in Eq. 18 depends
among other things on the number and size of loops in the map. Also the initialization can
have a strong impact on the result and a good initial guess can simplify the optimization
substantially [13, 46, 41].

We note that the graph-based paradigm is very closely linked to information theory,
in that the soft constraints constitute the information the robot has on the world (in an
information-theoretic sense [15]). Most methods in the field are offline and they optimize for
the entire robot path. If the robot path is long, the optimization may become cumbersome.
Over the last five years, however, incremental optimization techniques have been proposed
that aim at providing a sufficient but not necessarily perfect model of the environment at
every point in time. This allows a robot to make decisions based on the current model, for
example, to determine exploration goals. In this context, incremental variants [109, 44] of
stochastic gradient descent techniques [108, 46] have been proposed that estimate which part
of the graph requires re-optimization given new sensor data. Incremental methods [65, 64, 22]
in the smoothing and mapping framework can be execute at each step of the mapping
process and achieve the performance by variable ordering and selective relinearization. As
also evaluated in [1] for the SLAM problem, variable ordering impacts the performance of the
optimization. Others use hierarchical data structures [36] and pose-graphs [101] combined
with a lazy optimization for on-the-fly mapping [43]. As an alternative to global methods,
relative optimization approaches [119] aim at computing locally consistent geometric maps
but only topological maps on the global scale. Hybrid approaches [129] seek to combine the
best of both worlds.

There also exists a number of cross-overs that manipulate the graph online so as to factor
out past robot location variables. The resulting algorithms are filters, see [8, 98, 110, 135],
and they tend to be intimately related to information filter methods. Many of the original
attempts to decompose EKF SLAM representations into smaller submaps to scale up are
based on motivations that are not dissimilar to the graphical approach, see [49, 78, 142].
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Recently, researchers addressed the problem of long-term operation and frequent revisits
of already mapped terrain. To avoid densely connected pose-graphs that lead to slow con-
vergence behavior, the robot can switch between SLAM and localization, can merge nodes
to avoid a growth of the graph [47, 62], or can discard nodes or edges [12, 59, 63, 74].

Graphical and optimization-based SLAM algorithm are still subject of intense research
and the paradigm scales to maps large numbers of nodes [8, 21, 25, 36, 37, 38, 43, 47,
70, 83, 85]. Arguably, the graph-based paradigm has generated some the largest SLAM
maps ever built. Furthermore, the SLAM community started to release flexible optimization
frameworks and SLAM implementations under open source licenses to support further de-
velopments and to allow for efficient comparisons, see Table 1. Especially the optimization
frameworks [76, 22, 64] are flexible and powerful state of the art tools for developing graph-
based SLAM systems. They can be either used as a “black box” or can be easily extended
though plugins.

3.4 Relation of Paradigms

The three paradigms just discussed cover the vast majority of work in the field of SLAM. As
discussed, EKF SLAM comes with a computational hurdle that poses serious scaling limita-
tions and the linearization may lead to inconsistent maps. The most promising extensions
of EKF SLAM are based on building local submaps; however, in many ways the resulting
algorithms resemble the graph-based approach.

Particle filter methods sidestep some of the issues arising from the natural inter-feature
correlations in the map—which hindered the EKF. By sampling from robot poses, the indi-
vidual landmarks in the map become independent, and hence are decorrelated. As a result,
FastSLAM can represent the posterior by a sampled robot pose, and many local, indepen-
dent Gaussians for its landmarks. The particle representation offers advantages for SLAM
as it allows for computationally efficient updates and for sampling over data associations.
On the negative side, the number of necessary particles can grow very large, especially for
robots seeking to map multiple nested loops.

Graph-based methods address the full SLAM problem, hence are in the standard formu-
lation not online. They draw their intuition form the fact that SLAM can be modeled by a
sparse graph of soft constraints, where each constraint either corresponds to a motion or a
measurement event. Due to the availability of highly efficient optimization methods for sparse
nonlinear optimization problems, graph-based SLAM has become the method of choice for
building large-scale maps. Recent developments have brought up several graph-based meth-
ods for incremental map building that can be executed at every time step during navigation.
Data association search can be incorporated into the basic mathematical framework and
different approaches that are even robust under wrong data associations are available today.

4 Visual and RGB-D SLAM

A popular and important topic in recent years has been Visual SLAM – the challenge of
building maps and tracking the robot pose in full 6-DOF using data from cameras [130] or
RGB-D (Kinect) sensors [31, 54]. Visual sensors offer a wealth of information that enables
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Table 1: Recent open-source graph-based SLAM implementations
Name Comment

DCS [2] Optimization with a robust cost function for dealing with outliers
Integrated into g2o

g2o [76] Flexible and easily extendable optimization framework for SLAM
Comes with different optimization approaches and error functions
Supports external plugins

GTSAM2.1 [22] Flexible optimization framework for SLAM and SFM
Implements direct and iterative optimization techniques
Implements SAM, iSAM, and iSAM2
Implements bundle adjustment for Visual SLAM and SFM

HOG-Man [43] Incremental optimization approach via hierarchical pose graphs and lazy
optimization
Requires pose-graphs with full rank constraints

iSAM2 [64] General incremental nonlinear optimization with variable elimination
Variable re-ordering to retain sparsity
On-demand re-linearization of selected variables

KinFu (Kinect-
Fusion reimple-
mented)

Open source reimplementation of KinectFusion [60] within the PCL
Dense and highly accurate reconstruction using a Kinect camera
Currently limited to medium sized rooms

MaxMixture [107] Optimization for multi-modal constraints and outliers
Robust to outliers
Plugin for g2o

PTAM [68] System for tracking a hand-held monocular camera and observed fea-
tures
Operates on comparably small workspaces

RGBDSLAM [31] Kinect-frontend for HOG-Man and g2o
Fairly standard combination of SURF matching and RANSAC

ScaViSLAM [129] SLAM system for stereo and Kinect-style cameras
Combines local bundle adjustment with sparse global optimization for
on-the-fly processing

SLAM6D [105] SLAM system that operates on point clouds from 3D laser data
Applies ICP and global relaxation

SSA [116, 117] Optimizes robot poses and proximity sensor data jointly
Provides smooth surface estimates
Assumes a range sensor (e.g. laser scanner, Kinect, or similar)

TreeMap [36] Incremental optimization approach
Update in O(logN) time
Provides only a mean estimate

TORO [47] Optimization approach that extends SGD [108]
Robust under bad initial guesses
Recovers quickly from large errors but slow convergence at minimum
Assumes that constraints have roughly spherical covariance matrices
Provides only a mean estimate

Vertigo [132] Switchable constraints for robust optimization
Plugin for g2o
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the construction of rich 3D models of the world. They also enable difficult issues such as
loop-closing to be addressed in novel ways using appearance information [104]. Visual SLAM
is anticipated to be a critical area for future research in perception for robotics, as we seek to
develop low-cost systems that are capably of intelligent physical interaction with the world.

Attempting SLAM with monocular, stereo, omnidirectional, or RGB-D cameras raises
the level-of-difficulty of many of the SLAM components, such as data association and com-
putational efficiency, described above. A key challenge is robustness. Many visual SLAM
applications of interest, such as augmented reality [68], entail handheld camera motions,
which present greater difficulties for state estimation, in comparison to the motion of a
wheeled robot across a flat floor.

Visual navigation and mapping was a key early goal in the mobile robotics commu-
nity [9, 89], but early approaches were hampered by the lack of sufficient computational
resources to handle massive video data streams. Early approaches were typically based on
extended Kalman filters [3, 75, 82, 112], but did not compute the full covariance for the fea-
ture poses and camera trajectory, resulting in a loss of consistency. Visual SLAM is closely
related to the Structure from Motion (SfM) problem in computer vision [53, 138]. Histori-
cally, SfM was primarily concerned with off-line batch processing, whereas SLAM seeks to
achieve a solution for online operation, suitable for closed-loop interaction of a robot or user
with its environment. In comparison to laser scanners, cameras provide a fire hydrant of in-
formation, making online processing nearly impossible until recent increases in computation
have become available.

Davison was an early pioneer in developing complete visual SLAM systems, initially
using a real-time active stereo head [18] that tracked distinctive visual features with a full
covariance EKF approach. Subsequent work developed the first real-time SLAM system
that operated with a single freely moving camera as the only data source [19, 20]. This
system could build sparse, room-size maps of indoor scenes at 30 Hz frame-rate in real-time,
a notable historical achievement in visual SLAM research. A difficulty encountered with
initial monocular SLAM [19] was coping with the initialization of points that were far away
from the camera, due to non-Gaussian distributions of such feature locations resulting from
poor depth information. This limitation was overcome in [88], introducing an inverse depth
parameterization for monocular SLAM, a key development for enabling a unified treatment
of initialization and tracking of visual features in real-time.

A milestone in creating robust visual SLAM systems was the introduction of keyframes
in parallel tracking and mapping (PTAM) [68], which separated the tasks of keyframe map-
ping and localization into parallel threads, improving robustness and performance for online
processing. Keyframes are now a mainstream concept for complexity reduction in visual
SLAM systems. Related approaches using keyframes include [14, 27, 28, 71, 129]. The work
in [130] analyzes the tradeoffs between filtering and keyframe-based bundle adjustment in
visual SLAM, and concluded that keyframe bundle adjustment outperforms filtering, as it
provides the most accuracy per unit of computing time.

As pointed out by Davison and other researchers, an appealing aspect of visual SLAM is
that camera measurements can provide odometry information, and indeed visual odometry is
a key component of modern SLAM systems [103]. Here, [118] and [35] provide an extensive
tutorial of techniques for visual odometry, including feature detection, feature matching,
outlier rejection, and constraint estimation, and trajectory optimization. Finally, a pub-
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licly available visual odometry library [56] that is optimized for efficient operation on small
unmanned aerial vehicles is available today.

Visual information offers a tremendous source of information for loop closing, not present
in the canonical 2D laser SLAM systems developed in the early 2000’s. The work in [104]
was one of the first to employ techniques for visual object recognition [122] to location
recognition. More recently. feature-based appearance mapping (FAB-MAP) [16, 17] has
demonstrated appearance-only place recognition at large scale, mapping trajectories with a
length of 1000 km. Combining a bag-of-features approach with a probabilistic place model
and Chow-Liu tree inference leads to place recognition that is robust against perceptual
aliasing while remaining computationally efficient. Other work on place recognition includes
[11], which combines bag-of-words loop closing with tests of geometrical consistency based
on conditional random fields.

The techniques described above have formed the basis for a number of notable large-scale
SLAM systems developed in recent years. A 2008 special issue of the IEEE Transaction on
Robotics provides a good snapshot of recent state-of-the-art SLAM techniques [93]. Other
notable recent examples include [71, 72, 73, 99, 119, 120]. The idea of employing relative
bundle adjustment [119] to compute a full maximum likelihood solution in an online fashion,
even for loop closures, by employing a manifold representation that does not attempt to
enforce Euclidean constraints results in maps that can be computed at high frame rate.
Finally, view-based mapping systems [71, 72, 73] aim at large-scale and/or life-long visual
mapping based on the pose graph optimization techniques described above in Section 3.3.

Several compelling 3D mapping and localization have been created in recent years with
RGB-D (Kinect) sensors. The combination of direct range measurements with dense visual
imagery can enable dramatic improvements in mapping and navigation systems for indoor
environments. State-of-the-art RGB-D SLAM systems include [55] and [31]. Figure 9 shows
examples of the output of these systems.

Other researchers aim at exploiting the surface properties of scanned environments to
correct for sensor noise of range sensors such as the Kinect [117]. They jointly optimize the
poses of the sensor and the positions of the surface points measured and iteratively refine the
structure of the error function by recomputing the data associations after each optimization,
resulting in accurate smooth models of the environment.

An emerging area for future research is the development of fully dense processing meth-
ods that exploit recent advances in commodity graphical processing unit (GPU) technology.
Kinect-based dense tracking and mapping, a fully-dense method for small-scale visual track-
ing and reconstruction is described in [97]. Dense modeling and tracking are achieved via
highly parallelized operations on commodity GPU hardware to yield a system that outper-
forms previous methods such as PTAM for challenging camera trajectories. Dense methods
offer an interesting perspective from which to address long-standing problems, such as vi-
sual odometry, from a fresh perspective, without requiring explicit feature detection and
matching [128]. KinectFusion [60, 96] is a dense modeling system that tracks the 3D pose
of a handheld Kinect while concurrently reconstructing high-quality scene 3D models in
real-time. See Fig. 10 for an example. KinectFusion has been applied to spatially extended
environments in [115, 141]. An example is shown in Fig. 11.
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5 Conclusion and Future Challenges

This chapter has provided an introduction into SLAM, which is defined as the problem
faced by a mobile platform roaming an unknown environment, and seeking to localize it-
self while concurrently building a map of the environment. The chapter discussed three
main paradigms in SLAM, which are based on the extended Kalman filter, particle filters,
and graph-based sparse optimization techniques, and then described recent progress in Vi-
sual/Kinect SLAM.

The following references provide an in-depth tutorial on SLAM and much greater depth of
coverage on the details of popular SLAM algorithms. Furthermore, several implementations
of popular SLAM systems, including most of the approaches listed in Table 1, can be found
in online resources such as http://www.openslam.org.

• H. Durrant-Whyte and T. Bailey. Simultaneous localization and mapping: Part I.
IEEE Robotics and Automation Magazine, pages 99–108, June 2006.

• T. Bailey and H. Durrant-Whyte. Simultaneous localization and mapping: Part II.
IEEE Robotics and Automation Magazine, pages 108–117, June 2006.

• S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, Cambridge,
MA, 2005.

• G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard. A Tutorial on Graph-based
SLAM. IEEE Transactions on Intelligent Transportation Systems Magazine. Volume
2(4), pages 31–43, 2010.

The considerable progress in SLAM in the past decade is beyond doubt. The core state
estimation at the heart of SLAM is now quite well understood, and a number of impressive
implementations have been developed, including several widely used open source software
implementations and some commercial projects. None-the-less, a number of open research
challenges remain for the general problem of robotic mapping in complex and dynamic en-
vironments over extended periods of time, including robots sharing, extending, and revising
previously built models, efficient failure recovery, zero user intervention, and operation on
resource-constrained systems. Another exciting area for the future is the further develop-
ment of fully dense visual mapping systems exploiting the latest advances in GPU hardware
development.

An ultimate goal is to realize the challenge of persistent navigation and mapping—the
capability for a robot to perform SLAM robustly for days, weeks, or months at a time with
minimal human supervision, in complex and dynamic environments. Taking the limit as
t → ∞ poses difficult challenges to most current algorithms; in fact, most robot mapping
and navigation algorithms are doomed to fail with the passage of time, as errors inevitably
accrue. Despite recent encouraging solutions [62, 74], more research is needed for techniques
that can recover from mistakes and enable robots to deal with changes in the environment
and enabling a long-term autonomous existence.
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(a) (b)

(c) (d)

Figure 2: EKF applied to the online SLAM problem. The robot’s path is a dotted line,
and its estimates of its own position are shaded ellipses. Eight distinguishable landmarks
of unknown location are shown as small dots, and their location estimates are shown as
white ellipses. In (a)–(c) the robot’s positional uncertainty is increasing, as is its uncertainty
about the landmarks it encounters. In (d) the robot senses the first landmark again, and the
uncertainty of all landmarks decreases, as does the uncertainty of its current pose. Image
courtesy of Michael Montemerlo, Stanford University.
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Figure 3: The SLAM problem depicted as Bayes network graph. The robot moves from
location xt−1 to location xt+2, driven by a sequence of controls. At each location xt it
observes a nearby feature in the map m = {m1,m2,m3}. This graphical network illustrates
that the location variables “separate” the individual features in the map from each other. If
the locations are known, there remains no other path involving variables whose value is not
known, between any two features in the map. This lack of a path renders the posterior of
any two features in the map conditionally independent (given the locations).

(a) Raw vehicle path (b) FastSLAM (solid), (c) Path and map

GPS path (dashed) with aerial image

Figure 4: (a) Vehicle path predicted by the odometry; (b) True path (dashed line) and
FastSLAM 1.0 path (solid line); (c) Victoria Park results overlaid on aerial imagery with
the GPS path in blue (dashed), average FastSLAM 1.0 path in yellow (solid), and estimated
features as yellow circles. Data and aerial image courtesy of José Guivant and Eduardo
Nebot, Australian Centre for Field Robotics.
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Figure 5: Occupancy grid map generated from laser range data and based on pure odometry.
Image courtesy of Dirk Hähnel, University of Freiburg.

3 particles and their trajectories

map of particle 2 map of particle 3map of particle 1

Figure 6: Application of the grid-based variant of the FastSLAM algorithm. Each particle
carries its own map and the importance weights of the particles are computed based on the
likelihood of the measurements given the particle’s own map.
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(a) Observation ls landmark m1

(b) Robot motion from x1 to x2

(c) Several steps later

Figure 7: Illustration of the graph construction. The left diagram shows the graph, the right
the constraints in matrix form.
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Figure 8: Left: A 2-km path and 50,000 frames estimated for the New College Dataset [123]
using Relative Bundle Adjustment [119]. Right: the RBA solution is easily improved by
taking FAB-MAP [17] loop-closures into account – this is achieved without global optimiza-
tion [99]. Sibley et al. advocate that relative metric accuracy and topological consistency are
the requirements for autonomous navigation, and these are better achieved using a relative
manifold representation instead of using a conventional single Euclidean representation [121].

Figure 9: 3D Model and close-up view of a corridor environment in the Paul G. Allen building
at University of Washington built from Kinect data [55]. Image Courtesy of Peter Henry,
University of Washington.
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Figure 10: Results obtained with KinectFusion [96]. The top images depict a local scene as
a normal map (left) and as a Phong-shaded rendering (right). The lower image depicts a
larger scene. Image Courtesy of Richard Newcombe, Imperial College London.
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Figure 11: Spatially extended KinectFusion output produced in real-time with Kintinu-
ous [141].
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