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Fig. 1: View of the apple orchard (top row) recorded with a terrestrial laser scanner (TLS), and used for training our network for hierarchical
panoptic segmentation. The test set is composed of different splits corresponding to different sensors and robots. The two examples shown
in the image are a UAV equipped with a PhaseOne iXM-100 camera, and a UGV equipped with a RealSense d435i camera.

Abstract— Crop yield estimation is a relevant problem in
agriculture, because an accurate yield estimate can support
farmers’ decisions on harvesting or precision intervention.
Robots can help to automate this process. To do so, they
need to be able to perceive the surrounding environment to
identify target objects such as trees and plants. In this paper,
we introduce a novel approach to address the problem of
hierarchical panoptic segmentation of apple orchards on 3D
data from different sensors. Our approach is able to simulta-
neously provide semantic segmentation, instance segmentation
of trunks and fruits, and instance segmentation of trees (a trunk
with its fruits). This allows us to identify relevant information
such as individual plants, fruits, and trunks, and capture the
relationship among them, such as precisely estimate the number
of fruits associated to each tree in an orchard. To efficiently
evaluate our approach for hierarchical panoptic segmentation,
we provide a dataset designed specifically for this task. Our
dataset is recorded in Bonn, Germany, in a real apple orchard
with a variety of sensors, spanning from a terrestrial laser
scanner to a RGB-D camera mounted on different robots
platforms. The experiments show that our approach surpasses
state-of-the-art approaches in 3D panoptic segmentation in
the agricultural domain, while also providing full hierar-
chical panoptic segmentation. Our dataset is publicly avail-
able at https://www.ipb.uni-bonn.de/data/hops/.
The open-source implementation of our approach is available
at https://github.com/PRBonn/hapt3D.

I. INTRODUCTION

Crop yield estimation is an important task in agriculture.
An accurate yield estimate can help farmers making man-
agement decisions to increase crop production and optimize
key factors such as harvest time and fertilizer use [16], [41],
[44], as well as enable precision interventions [2]. Robots
can automatize or support many of these interventions, but
to do so reliably and robustly, they need to understand
their surroundings through the interpretation of sensor data.
Tasks such as segmenting, counting, and localizing fruits in
orchards are crucial in horticulture, as they are required for
replacing human fruit picking, which is an extremely labor-
intensive process [3].

Recently, many approaches targeted perception tasks in
agriculture. Semantic segmentation [20], [29] and panoptic
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segmentation [26], [34], [43] are especially common. This
also motivated the publication of datasets for agricultural
perception tasks [12], [13], [42]. However, 3D datasets of
real agricultural environments are not common [7], [36].

The main contributions of this paper are twofold. First,
we propose an approach based on a convolutional neu-
ral network (CNN) for hierarchical panoptic segmentation,
which is able to address multiple instance segmentation
tasks at once while exploiting their underlying hierarchical
relationship by means of a novel skip connections scheme.
Second, we introduce a 3D point cloud dataset of real
apple orchards, called HOPS (hierarchical orchard panoptic
segmentation) recorded with various sensors, such as terres-
trial laser scanner, RGB-D cameras, or RGB cameras with
subsequent bundle adjustment. Additionally, we release high-
quality annotations for hierarchical panoptic segmentation.
We recorded data of the apple orchard at different growth
stages across several crop rows in the span of two years, and
labeled the resulting point clouds in order to obtain semantic
segmentation, tree instance segmentation, as well as fruit and
trunk instance segmentation. Specifically, in the tree instance
segmentation each trunk has a label that is shared with all
fruits belonging to it. Thus, in this instance-level task, fruits
are not individually labeled. The fruit and trunk instance
segmentation yields a different instance for each individual
trunk and fruit. We show a portion of the dataset and an
exemplary image of the approach we propose in Fig. 1.

Our experiments suggest that (i) our approach can jointly
perform semantic, tree instance, and standard instance seg-
mentation on real-world 3D data acquired with different sen-
sors; and (ii) our skip connection scheme allows the CNN to
exploit the underlying hierarchical relationship between the
individual segmentation tasks, leading to better segmentation
performance. Our claims are backed up by the paper and our
experimental evaluation.

II. RELATED WORK

Semantic scene interpretation is often required for realiz-
ing robotic automation in agriculture, since it identifies task-
relevant objects in the scene that enables applications such as
monitoring [19], [32], [38] and intervention [1], [15], [22].

Panoptic segmentation [14] unifies semantic and instance
segmentation provides semantics of background classes, so-
called “stuff”, and object-level instances of so-called “things”
at the same time. While often images are used for panoptic
segmentation in the agricultural domain [43], 3D point
clouds generated by RGB-D cameras, LiDARs, or pho-
togrammetric structure-from-motion approaches received in-
creasing research interest [46] due to the capability to extract
precise geometric information required for high-precision
fruit grasping [15], [22], plant segmentation [30], and fine-
grained trait estimation [26]. 3D panoptic segmentation has
been actively investigated in the domain of autonomous
driving [28], [37], [45], where most approaches use dedi-
cated branches for semantic and instance segmentation using
features of a shared encoder. For plant phenotyping, we
can exploit the hierarchical structure of plants that can be

decomposed in individual parts [11], such as plant, leaf
and even more fine-grained leaf structure. This hierarchical
structure has been exploited in the literature, leveraging skip
connections between decoders for hierarchical bottom-up
instance prediction tasks using images [34], which is the
foundation of our approach to 3D panoptic segmentation.

In contrast to prior approaches for 3D panoptic segmenta-
tion, we also explicitly consider the hierarchical structure of
the prediction task by means of our novel skip connections
scheme, which allows us to predict a hierarchical semantic
scene interpretation consisting of plant instances as well as
fruit instances that can be used for plant monitoring and yield
estimation in the agricultural domain. While our approach
is applied to orchard scenes, the hierarchical panoptic seg-
mentation framework is general and can be applied to other
domains, such as body part segmentation [17].

While most agricultural datasets for semantic interpreta-
tion provide only RGB images [21], recently 3D datasets
became available. In particular, BUP20 [38] provides an
RGB-D dataset for instance segmentation of sweet peppers
in a glasshouse [39]. For 3D plant phenotyping in real
agricultural fields, BonnBeetClouds [25] provides annotated
structure-from-motion point clouds consisting of plant and
leaf instance of sugar beet plants. Other datasets provide
organ-level annotations of plants using point clouds acquired
with high-precision LiDAR scanners [36] or x-ray imag-
ing [7] in the lab. The Crops3D dataset [46] provides organ-
level annotations of different crop varieties for point cloud
data acquired with a terrestrial laser scanner (TLS) in the
field and single plant point clouds using structure-from-
motion of RGB images or using structured light cameras.

In contrast to existing agricultural datasets for semantic
scene interpretation, we provide a domain-specific agricul-
tural dataset of orchards recorded with different sensors
that is annotated with plant and fruit instances. We provide
high-resolution point clouds recorded with a TLS, but also
structure-from-motion point cloud data acquired with robotic
platforms equipped with a high-resolution RGB camera or a
consumer-grade RGB-D sensor commonly used in robotics.

III. OUR APPROACH
TO HIERARCHICAL PANOPTIC SEGMENTATION

We propose an approach for hierarchical panoptic segmen-
tation, i.e., the task of simultaneously performing semantic
segmentation and multiple instance segmentation tasks with
underlying hierarchical relationships. The network we use is
an encoder-decoder architecture, and the decoders address
semantic segmentation and two-levels of instance segmenta-
tion, as illustrated in Fig. 2. The first instance segmentation
aims to identify “tree” instances, where a tree is defined by
a trunk and all fruits belonging to it. The second instance
segmentation looks for all individual instances (i.e., both
trunks and fruits) in the point cloud.

A. Architecture

We use a MinkUNet-based neural network [6] for our
approach. This kind of neural networks are inspired by the
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Fig. 2: The encoder takes the colored point cloud as input, and the resulting features are processed by the decoders. We use hierarchical
skip connections after each downsampling and upsampling block of the encoder and decoders. We use HDBSCAN to obtain instances.

UNet [35] design, where encoder and decoder are connected
by skip connections. To process 3D data, MinkUnet networks
use sparse 3D convolutions to process the input data. Specifi-
cally, we use the MinkUNet14A model, that allows us to have
a lightweight network. In fact, MinkUNet14A is a modifi-
cation of the standard MinkUNet14 model, and has fewer
feature channels per layer, allowing faster computation. We
keep the original structure of the network, and replicate the
original decoder two additional times. This allows us to have
three identical decoders addressing the three segmentation
tasks we aim to tackle, which is a convenient solution for
exploiting the underlying hierarchy among them.

The first decoder targets semantic segmentation, and has
a single output head with depth equal to the number of
semantic classes that appear in the dataset. It is optimized
using the standard weighted cross-entropy loss:

Lsem = − 1

|S|
∑
p∈S

ωk t
>
p log(σ(fp)), (1)

where |S| is the number of points in the point cloud, p
indicates the individual point, ωk is a class-wise weight
computed via the inverse frequency of each class in the
dataset, where k ∈ {1, . . . , K} indicates the semantic class,
tp ∈ RK is the one-hot encoded ground truth annotation at
point location p, σ(·) denotes the softmax operation, and fp

denotes the pre-softmax feature predicted at point p.
The second decoder targets tree instance segmentation,

i.e., the task of finding tree instances where a tree is defined
as a trunk and all apples belonging to it. This decoder also
has a single output head for offset prediction. Thus, each
point predicts a 3D displacement towards a location in the
3D space that facilitates instance separation via clustering.
We predict an offset op ∈ R3 for each point p, so that
ep = p+op is the 3D location where the point is displaced.
To obtain 3D points belonging to the same instance displaced
to the same 3D location in space, and points belonging to

different instances displaced to different locations, we adapt
the Lovász Hinge loss [31] to 3D as:

Ltree =
1

|C|

|C|∑
j=1

Lovász(F Cj , GCj ), (2)

where C is the set of object instances, GCj ∈ {0, 1}|S|
denotes the binary ground truth mask of the j-th instance,
and F Cj is a soft-mask obtained by the offset prediction. The
soft-mask F Cj for instance Cj is obtained from the offset
prediction: each point in the point cloud gets a score that
depends on how far from the instance centroid cj its offset
points to. The score is formalized as

fCj = exp

(
− ||ep − cj ||2

2η2

)
, (3)

where ep indicates the 3D location pointed by the predicted
offset at point p, and η is a hyperparameter that defines an
isotropic clustering region around the centroid.

Finally, the third decoder targets standard instance seg-
mentation, where we aim to individually segment each trunk
and fruit in the scene. Similarly to the previous decoder, here
also we have a single output head for 3D offset prediction,
and optimize with the Lovász Hinge loss Lins, as in Eq. (2).

Thus, the final loss function L is given by a weighted sum
of the individual losses:

L = w1 Lsem + w2 Ltree + w3 Lins. (4)

B. Skip Connections

Skip connections are crucial to ensure feature reusability
and address the gradient degradation problem of CNNs. They
skip one or more layers, providing a direct gradient flow
from the late stages of the decoder to the early stages of
the encoder, which is usually hindered by the downsampling
operation of the encoder. We aim to extend our previous work
on hierarchical panoptic segmentation on RGB images [34]
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Fig. 3: An example of the colored point clouds of HOPS. The point clouds from the train and validation sets are obtained using a TLS.
We have four test sets recorded with different sensors. The one called “SfM” contains point clouds from the Fuji-SfM dataset [9], [10].

to the 3D point cloud domain, and thus we propose to
adopt a hierarchical skip connections scheme to address the
underlying hierarchy of segmentation tasks. We propose to
connect different decoders directly as shown in Fig. 2, instead
of encoder and decoders only.

Semantic segmentation. For semantic segmentation, we
keep the skip connection from the encoder to the decoder.
The spatial information contained in the high-resolution fea-
ture maps of the encoder help the decoder for segmentation.

Tree instance segmentation. For tree instance segmen-
tation, we fuse the high-resolution maps coming from the
encoder with the feature coming from the same level of the
semantic decoder. In this way, the tree instance segmentation
decoder will process an enriched feature map, containing also
information about semantic segmentation.

Instance segmentation. For instance segmentation, we
fuse the high-resolution maps coming from the encoder with
the feature coming from the same level of the tree instance
segmentation decoder. Notice that, in this way, the skip
features include semantic segmentation features as well, that
come from the tree instance segmentation branch.

To better illustrate the information flow in our hierarchical
panoptic segmentation architecture, consider the process as
assembling segmentation in layers. The encoder provides a
basic high-resolution spatial guide. The semantic decoder
adds labels to it. The tree instance segmentation decoder
builds upon this enriched map, identifying individual trees
as landmarks. Finally, the instance segmentation decoder
refines this by adding finer distinctions, such as fruits and
trunks, using all previously gathered information. At each
stage, skip connections act like reference notes, ensuring that
each level benefits from both low-level detail and high-level
context, progressively enriching the representation. This skip
connection scheme allows us to exploit the hierarchy among
tasks, enriching the features propagated to each decoder.
In Sec. V-C, we provide extensive experiments on different
skip connection schemes to show that this design choice
yields superior performance.

C. Post-Processing

As mentioned, the instance segmentation decoders predict
an offset vector for each point. The goal is to have offsets of
points belonging to the same instance indicating the same 3D

location in space, and offsets of points belonging to different
instances indicating different 3D locations. To obtain the final
instance masks, we cluster the offsets with HDBSCAN [27].
Additionally, we use the semantic prediction to enforce con-
sistency among instances in the third decoder, for example
to avoid the case in which two points with two different
semantic predictions end up in the same instance. This cannot
be applied to the second decoder, as there instances are
composed of one trunk and all apples attached to it, so a
single instance actually includes multiple semantic classes.

IV. OUR DATASET FOR
HIERARCHICAL PANOPTIC SEGMENTATION

Our dataset, called HOPS, is composed of point clouds
collected with three different sensors at Campus Klein-
Altendorf near Bonn, Germany. First, we collected point
clouds using a TLS placed at multiple locations in the
orchard row. Our training and validation set entirely contains
point clouds collected with this sensor. Furthermore, we
use a few TLS point clouds in the test set, collected in a
different year and orchard location compared to the training
and validation set. Second, we use point clouds obtained with
a bundle adjustment procedure [40] using as input images
collected with a UAV equipped with a PhaseOne iXM-100
camera. We flew three missions on the same orchard with a
camera angle of 45◦, 90◦, and 135◦ from the ground plane
at a height of approximately 20 m. This setup allows us to
obtain good coverage of the trees including the lower part
of the canopy. The photogrammetric point clouds obtained
in this way from the UAV are only included in the test
set. Third, we use a RealSense d435i mounted on a mobile
robot driving through the orchard rows to collect another
part of our test set. Again, to obtain photogrammetric point
clouds we use a bundle adjustment pipeline. Furthermore,
we label a few point clouds from the Fuji-SfM dataset [9],
[10] to obtain a fourth test set from a different setup. This
dataset is collected in Agramunt in Catalunia, Spain with
a Canon EOS 60D DSLR camera, followed by a bundle
adjustment procedure to generate point clouds. In contrast
to existing datasets in the agricultural domain [12] [33] [42],
we specifically designed HOPS to have a remarkable domain
shift between train and test sets, to more closely resemble
real-world deployments. For this reason, we only included



high-quality point clouds recorded with the TLS in the
training set, while the test set includes a variety of sensors.

We report statistics about the different splits of our dataset
in Tab. I and we show exemplary point clouds in Fig. 3
to visualize the difference between training and test point
clouds. To summarize, our dataset consists of a training set
and a validation set obtained with a TLS and four different
test set obtained with different sensors (TLS, PhaseOne iXM-
100, RealSense d435i, and EOS 60D) in different locations.

For our dataset, we define 5 semantic classes, namely
ground, trunk, canopy, apple, and pole. To formalize the
panoptic segmentation task, we define the set of “things”
classes (trunk, apple) and “stuff” classes (ground, canopy,
pole). Additionally, we define the tree thing class which puts
together apples and trunk belonging to the same tree.

To label the data, we split the aggregated point cloud
of each orchard row in individual tiles with an average of
1 million points each. We manually label each tile in three
stages using the online tool provided by segments.ai. One
annotator labels each tile for semantic and two-level instance
segmentation, ensuring consistency between instance levels.
A second annotator then verifies label quality. Unlike image
annotation, point cloud labeling requires frequent viewpoint
changes, making it more time-consuming. The average effort
consists of 4 h per tile, totaling 525 h for labeling and 175
h for verification.

V. EXPERIMENTAL EVALUATION

We present our experiments to show the capabilities of
our method for hierarchical panoptic segmentation on real-
world 3D point clouds. The results of our experiments
also support our key claims, which are: (i) our approach
can jointly perform semantic, tree instance, and standard
instance segmentation on real-world 3D data acquired with
different sensors; and (ii) our skip connection scheme allows
the CNN to exploit the underlying hierarchical relationship
between the individual segmentation tasks, leading to better
segmentation performance.

A. Experimental Setup

Metrics. For semantic segmentation, we compute the
intersection over union (IoU) [8] over all five classes of
our dataset, which we discussed in Sec. IV, and report
the mean IoU (mIoU) in the following tables. For the tree
instance segmentation, we compute the single-class panoptic
quality over the “tree” class, that we report as PQT. For
the standard instance segmentation, we compute the panoptic
quality over all classes, and report the mean panoptic quality
as PQ in the tables. We also report the overall mean panoptic
quality (mPQ) as the average between PQ and PQT.

Training details and parameters. In all experiments, we
use AdamW [18] with weight decay of 0.99 with an initial
learning rate of 5 · 10−3. We set the weights of the loss
function to w1 = w2 = w3 = 1. We train our approach for
500 epochs. We set batch size of 1. We use voxel downsam-
pling to 3 mm. Due to practical constraints, the training set

TABLE I: Dataset statistics: number of samples per split, average
number of points, fruits, and trunks per sample, and fruits per tree.

Train Val Test

TLS TLS UGV UAV SfM TLS

Samples 90 18 12 22 6 27

Points 0.8M 1M 0.6M 1.5M 1.8M 1M
Fruits 90.2 99.2 71.8 99.1 232.3 39.9
Trunks 3.1 3.2 2.9 1.9 2.7 2.9

Fruits/tree 19.2 19.3 17.8 31.7 62.1 9.8

is limited to TLS-acquired data. However, to mitigate poten-
tial overfitting to TLS-specific characteristics and improve
generalization to non-TLS domains, we apply extensive data
augmentation techniques including scale, rotation around all
axes, shear, color jittering, and elastic deformation [4]. We
tuned all hyperparameters on the validation set.

All baselines can only address one instance segmentation
task at a time and, thus, need to be trained twice to solve both
instance-level tasks. Our method addresses both instance
segmentation tasks with a single training run.

B. Experiments on Hierarchical Panoptic Segmentation

While our PQ is inferior to ForestPS, our approach also
yields good performance on tree instance segmentation, on
which the dedicated training of ForestPS fails completely,
achieving results below 3% on four out of five splits. The
first experiment evaluates the performance of our approach
and its outcomes support the claim that our approach can
jointly perform semantic, tree instance, and standard in-
stance segmentation on real-world 3D data. For this ex-
periment, we compare our approach to existing baselines
for panoptic segmentation: MaskPLS [24] is a transformer-
based approach that extends Mask2Former [5] to 3D point
clouds, while ForestPS [23] is a convolutional neural network
approach based on MinkUNet [6], originally designed for
tree segmentation in a forest environment. The baselines are
trained for only one of the two instance segmentation tasks
at a time, as they do not support hierarchical multi-level
instance segmentation. As shown in Tab. II for the test set,
and Tab. III for the validation set, our approach outperforms
the baselines on both splits in terms of mIoU and on most
PQT, while ForestPS achieves the best PQ on most splits.
However, our approach performs better than the baselines
on mPQ.

We show qualitative results in Fig. 4. As explained
in Sec. IV, only the validation set is recorded in the same
time period and with the same sensor as the training set. The
test sets, in contrast, are recorded either 2 years later also
using a TLS, or with different sensors (UGV and UAV), or
belong to entirely different datasets (SfM). This motivates
the performance gap between the validation and the test
set. We believe that this aspect pushes researchers to build
models that yield good generalization performance and can
be used in different conditions. In Tab. II, we also report
average scores for mIoU and PQ across all four splits and
both instance segmentation tasks, to show how different
approaches deal with both tasks at the same time.

https://segments.ai/
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Fig. 4: Qualitative results of our approach for hierarchical panoptic segmentation. The first row shows validation set results, the other
rows show test set result. We report the input point cloud with all three segmentation predictions, and one result for each sensor. In the
semantic prediction, different colors indicate different categories. In the instance predictions, different colors indicate different instances.



TABLE II: Results on the four different test sets of HOPS, and the average score across all sets and all tasks.

Approach
TLS UAV UGV SfM Average

mIoU PQ PQT mIoU PQ PQT mIoU PQ PQT mIoU PQ PQT mIoU mPQ

MaskPLS [24] 23.3 36.0 - 20.0 36.0 - 18.7 35.1 - 14.7 41.4 - 23.3 42.3MaskPLS [24] - - 48.9 - - 48.4 - - 47.1 - - 45.3

ForestPS [23] 52.0 49.4 - 64.3 62.8 - 40.2 37.7 - 47.0 46.2 - 50.9 27.5ForestPS [23] - - 21.5 - - 2.1 - - 0 - - 0

Ours 57.7 49.5 55.4 65.2 51.9 48.9 42.6 35.2 42.1 47.7 34.5 39.1 53.3 44.6

TABLE III: Results on the validation set. We report the average
iteration time (s/it) on a GPU NVIDIA RTX A5000.

Approach
TLS

Param s/it
mIoU PQ PQT mPQ

MaskPLS [24] 28.2 42.8 - 45.6 1.8M 4.0MaskPLS [24] - - 48.9

ForestPS [23] 58.9 62.2 - 32.3 1.5M 1.8ForestPS [23] - - 2.3

Ours 70.9 60.8 52.1 56.5 19.4M 2.0

C. Ablation Studies

In the ablation study, we aim to validate our claim that
the proposed skip connection scheme allows the CNN to
exploit the underlying hierarchical relationship between the
segmentation tasks, leading to better segmentation perfor-
mance. We perform this experiment on the validation set.
We compared to other skip connection schemes, and report
results in Tab. IV. The simplest approach does not use skip
connections (denoted as A in Tab. IV), which leads to poor
performance. This is expected, since the decoders do not get
any high-level information from features coming from earlier
stages, which harms gradient flow. The second approach uses
skip connections only from decoder to decoder, excluding the
contributions from the encoder (denoted as B in Tab. IV).
This approach, despite exploiting the hierarchy among tasks
with decoder-based skip connections, does not yield good
performance. The third approach is the standard UNet-like
skip connections from the encoder to all decoders (denoted
as C in Tab. IV). In this case, all decoders obtain the same
information from the encoder. This proves more effective
than the decoder-only skip connections. This is probably due
to the fact that restoring high-level information is important,
and using decoder-only skip connections does not help gra-
dient propagation. Thus, our method using skip connections
from the encoder and from decoder to decoder (denoted as
D in Tab. IV) performs better than all others, as on one
hand it benefits from the high-level features coming from
the encoder, and on the other hand it exploits the underlying
hierarchy among segmentation tasks. Interestingly, it also
provides better results on semantic segmentation, despite
there is no difference in the skip connection scheme for the
semantic decoder, as the hierarchy affects only the instance
decoders. This suggests that having information coming from
the instance decoders indirectly affecting the encoder and the
semantic decoder via backpropagation is useful for semantic
segmentation performance.

TABLE IV: Ablation study on the validation set. Comparison
between different skip connections schemes.

Skip Connections mIoU PQ PQT mPQ

A None 55.8 42.8 47.7 45.3
B Decoder 64.4 53.4 51.3 52.4
C Encoder 69.8 58.8 50.9 54.9

D Encoder+Decoder 70.9 60.8 52.1 56.5

VI. CONCLUSION

In this paper, we presented a novel approach for hierarchi-
cal 3D panoptic segmentation on point cloud data. By means
of a novel skip connections scheme, our method exploits
the underlying hierarchy among different segmentation tasks,
and is able to yield semantic segmentation, tree instance
segmentation, where a tree is defined as a trunk and all the
apples belonging to it, and standard instance segmentation
at the same time. Thanks to the proposed skip connection
scheme in our architecture, our approach achieves state-of-
the-art results, surpassing or being comparable to existing
task-specific baselines, despite that they can deal with only
one instance segmentation task at a time. Additionally, we
introduce a novel point cloud dataset of real apple orchards,
called HOPS, labeled for hierarchical panoptic segmentation.
Our dataset includes data recorded with different sensors over
the course of two years. In our experimental evaluation, we
supported all claims made in this paper and showed that our
proposed dataset is challenging.
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