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PAg-NeRF: Towards fast and efficient end-to-end panoptic
3D representations for agricultural robotics

Claus Smitt†, Michael Halstead†, Patrick Zimmer†, Thomas Läbe‡, Esra Guclu†,
Cyrill Stachniss‡, Chris McCool†

Abstract—Precise scene understanding is key for most robot
monitoring and intervention tasks in agriculture. In this work
we present PAg-NeRF which is a novel NeRF-based system that
enables 3D panoptic scene understanding. Our representation
is trained using an image sequence with noisy robot odometry
poses and automatic panoptic predictions with inconsistent IDs
between frames. Despite this noisy input, our system is able to
output scene geometry, photo-realistic renders and 3D consis-
tent panoptic representations with consistent instance IDs. We
evaluate this novel system in a very challenging horticultural
scenario and in doing so demonstrate an end-to-end trainable
system that can make use of noisy robot poses rather than
precise poses that have to be pre-calculated. Compared to a
baseline approach the peak signal to noise ratio is improved
from 21.34dB to 23.37dB while the panoptic quality improves
from 56.65% to 70.08%. Furthermore, our approach is faster
and can be tuned to improve inference time by more than a
factor of 2 while being memory efficient with approximately 12
times fewer parameters. Code, data and interactive results are
available at https://claussmitt.com/pagnerf

I. INTRODUCTION

In recent years the agricultural sector has rapidly incor-
porated multiple robotic systems to perform monitoring and
intervention tasks [1]–[7]. This is due to emerging needs of
a more efficient and sustainable production, driven by factors
such as climate change, scarcity of skilled labour, customer
requirements, and increasing production costs. The successful
adoption of robotic systems in agriculture is largely due to
recent advancements in vision based deep learning (DL) [5],
[6], [8]. In particular, the ability to perform vision based
semantic and spatial reasoning in the robot’s environment.

In horticulture, detecting [5], measuring size [4], estimating
ripeness [6] and counting fruit [9] are some key monitoring
tasks that provide growers detailed information to make better
decisions, improving sustainability, and increasing production
efficiency. Current state-of-the-art vision systems for detection
and ripeness estimation use DL to perform instance-based
semantic segmentation [4]. A set of recent work show that
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Fig. 1: PAg-NeRF is a fast and efficient model that renders
novel-view photo-realistic images and ID consistent panoptic
3D maps from images, panoptic detections and noisy poses.

incorporating 3D information can greatly improve fruit count-
ing and size estimation [4], [8]–[10].

Recently, neural radiance fields (NeRF) have shown great
potential to implicitly represent 3D information from just
posed images. NeRF has been used to predict multiple prop-
erties of 3D scenes such as geometry [11], photo-realistic
appearance [12], and more recently semantics [13] that are
consistent across novel views. Furthermore, recent contribu-
tions have considerably improved their performance and mem-
ory efficiency [11], [14], [15], turning them into a promising
representation for robotics applications.

In this work, we present a novel system PAg-NeRF (Fig.1)
which performs online pose optimization [16] using state-
of-the-art accelerated NeRFs [11] to produce 3D consistent
panoptic representations. These representations enable us to
resolve identity associations across image sequences using
only the implicit geometry of NeRF. We deploy this novel
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system in a very challenging horticultural scenario and in
doing so make the following contributions, we:

• propose a novel panoptic delta grid architecture that
outperforms previous state-of-the-art [17] and is ∼2x
faster with ∼12x fewer parameters;

• propose a modified instance assignment loss targeted
for planar side-facing camera motions which improves
panoptic quality (PQ) by 1.56 points;

• and present an end-to-end trainable NeRF-based panoptic
3D representation targeted for agriculture.

II. RELATED WORK

A diverse range of techniques have been employed in
agriculture to provide robotic systems with geometric and se-
mantic scene understanding. More recently, NeRF approaches
have also been used to enhance monitoring systems in the
agriculture sector. Below we provide a brief review of the
relevant monitoring systems and recent advancements in fast
and efficient NeRFs that allowed the development of this work.

A. Crop Monitoring

Crop monitoring is an important component of any agricul-
tural robotic platform, from arable farmland to glasshouses.
Without accurate monitoring, these platforms would be unable
to accurately perform intervention activities such as weed-
ing [1], harvesting [3], or yield estimation [4].

In recent years DL, in particular deep neural networks
(DNNs), has dominated state-of-the-art techniques for agri-
cultural monitoring. Sa et al. [5] showed how DNN object
detectors could be fine-tuned for accurate sweet pepper de-
tection. This was extended in [6] to include subclass-based
(fruit ripeness) classification, integrated into a fruit tracking
approach to count fruit. Turning grape detection into a three-
class problem (background, grapes, edges) Zabawa et al. [7]
improved the detection of grapes in an orchard by creating
better distinction between the individual grapes. Once again
using a top-down approach to instance-based semantic seg-
mentation, [4] showed that crop monitoring could use a
similar approach in both arable farmland and glasshouses.
In general, the majority of these approaches are still-image
based and do not consider spatial-temporal information. Smitt
et al. [8] showed how integrating robot trajectory and 3D
scene information into DNNs could improve state-of-the-art
results. More recently [10] tracked fruit instance detections and
mapped them into a multi-resolution occupancy grid. Finally,
fruit 3D models predicted with a CNN were registered to the
grid, generating a panoptic 3D map of the crops.

B. Panoptic Segmentation

Panoptic segmentation jointly solves the tasks of semantic
and instance segmentation and combines them in a single pre-
diction. A semantic label is predicted for each pixel of “stuff”
segments, as well as an instance ID for “things” segments,
yielding detailed and effective scene understanding [18]. In
early works, semantic and instance outputs of CNNs were
combined to obtain panoptic predictions [19], [20].

Fig. 2: Still-image panoptic detector producing inconsistent
instance IDs and false positives in a sequence of frames

More recently, vision-based transformers have gained
popularity with their strong performance [21] such as
Mask2Former [22]. This model was proposed as a transformer-
based universal segmentation model, which uses masked-
attention to extract localized features. Another recent method
by Jain et al. [23] applies task-guided queries to obtain mask
predictions, achieving state-of-the-art performance.

These techniques are an obvious option for crop monitoring
purposes. However, they are still-image detectors and do not
produce consistent instance ID predictions between frames (as
depicted in Fig. 2). The flickering instance ids can be tackled
separately by solving instance tracking [4], [9], [10]. By
contrast, in this work we use frame-based instance predictions
to train a NeRF 3D scene representation which then implicitly
ensures there is inter-frame ID consistency.

C. Neural Randiance Fields

Since their original introduction [12], NeRFs have become
a very popular method to implicitly represent 3D scenes
from posed views. Some applications include photo-realistic
novel-view synthesis [12], localization and mapping [16],
detailed 3D reconstruction [11] and semantic 3D mapping
among others [17], [24], [25]. However, the original NeRF
architecture is very memory and compute intensive since it is
based on deep multi layer perceptrons (MLPs) and uses offline
structure from motion (SFM) to compute camera poses.

1) Learning efficient geometric encodings: Seeking to im-
prove training and inference speed of NeRFs [14] bookkeep
an occupancy grid to sample only occupied space, maintaining
however a large MLP network. Sun et al. [26] employed
3D grids with learnable features at their vertices and a very
shallow MLP decoder on top. This allowed the gradients to
only be propagated through the interpolated features when
queried by ray-tracing. Müller et al. [15] embedded sparse
hash tables in multi-resolution grids, with less parameters
than keys. Hash collisions were resolved through the training
process, yielding implicitly sparse grids to learn fast and
memory efficient neural graphic models.

More recently, Rosu et al. [11] tackle fast estimation of
high-detailed sign distance functions (SDF). They employed
permutoedral hash-grids, instead of cubic ones, since they
interpolate less points per queried 3D coordinate resulting in
faster training and inference. This method also incorporates
hash-grids making it memory efficient as well.

2) 3D semantic NeRFs: The continuous differentiable na-
ture of NeRFs allows encoding of any continuous properties
into 3D space. Recently Zhi et al. [13] presented an approach
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to encode semantics into an MLP based NeRF with noisy 2D
predictions of synthetic environments as input. This yielded
cleaner and 3D consistent novel-view semantic predictions.

In the field of horticulture monitoring, Kelly et al [27]
trained a MLP NeRF model with strawberries and sweet
pepper images captured by field robots. Semantic detections
were used to refine the render quality of fruits, and inspired
by [16] they jointly optimize camera poses, using odometry as
initial guess, avoiding the need for offline SFM. Later works
encoded instance prediction from 2D images into NeRFs in
the context of autonomous cars [24], [25], handling inter-
frame ID inconsistencies with a separate 3D tracking phase.
Very recently, a tracking free panoptic NeRF model was intro-
duced [17], which matches instance ID detections and model
outputs by solving a linear assignment problem optimally.
This model uses a TensoRF [28] feature encoding grid and
is evaluated in indoor environments.

All these panoptic approaches require off-line pose opti-
mization to produce accurate results. To the best knowledge
of the authors, there are no panoptic NeRF end-to-end models
that jointly optimize poses and the 3D representation.

III. PROPOSED APPROACH

Our method generates implicit 3D representations of static
environments with color, depth and panoptic segmentation
modalities. We achieve this by training a NeRF model from
color frames with automatic (per-frame) panoptic detections
and noisy robot poses. In addition to a regular color grid, we
propose a novel delta grid for panoptic decoding. The resultant
model can then be used to perform novel-view synthesis with
consistent label IDs for the instances present in a scene. We
target our approach to challenging agricultural scenarios.

We represent 3D scenes as volumetric panoptic radiance
fields. These map 3D points p ∈ R3 and view directions
d ∈ S2 to volumetric fields with density σ̂ ∈ R[0,∞], color
ĉ ∈ R3

[0,1] and distributions of ŝ over D semantic classes as
well as unique instance ID of objects k̂ over N instances.
We approximate this continuous representation with an NN
FΘ : (p,d) → (σ̂, ĉ, ŝ, k̂) by optimizing parameters Θ.

As shown in Fig. 3, in order to render color images, each
point p sampled along each pixel ray is first encoded by a
color grid into a feature vector gc. Then these are decoded
into density features and the last element is interpreted as the
scene volumetric density σ̂. Since color is view dependent, we
encode the view direction d and concatenate it to the density
features before decoding them into the final color prediction ĉ.

On the other hand, panoptic features gp are obtained by
correcting the appearance features with ∆gp. Semantic ŝ and
instance id k̂ magnitudes are then directly decoded by shallow
NNs as they are view-independent magnitudes. Finally, we
use the estimated σ̂ to perform volumetric rendering of all
magnitudes by ray-marching all sampled rays.

A. Learnable grid encodings

With the aim of reproducing fine-grain detail while main-
taining low running time and memory footprint, we choose
to use 3D multi-resolution permutoedral hash-encodings [11].

This encoding partitions 3D space into tetrahedral lattices and
the queried grid features are interpolated between 4 values
(instead of 8 for cubic grids) making them faster. Furthermore,
we book-keep a 3D occtree to further accelerate inference by
ray-sampling coordinates in high-density voxels only. Similar
to [11], we encode each queried ray sample by interpolating
feature vectors at each grid resolution and concatenating
them. Then, we decode them with shallow NNs to obtain the
estimated scene properties as shown in Fig. 3.

1) Delta grid architecture: As shown by [17], despite the
underlying scene geometry being the same, features required
for panoptic decoding (ŝ, k̂) might be slightly different than
the ones needed for appearance decoding (ĉ, σ̂). Thus, similar
to other works [11], [28], we choose to have a separate
grid encoder for specific outputs, in our case for panoptic
quantities. Our panoptic grid architecture (Fig. 3) leverages
the similarity between modalities by computing panoptic grid
features as gp = gc+∆gp. Where ∆gp is a feature vector out-
put of the panoptic grid Gp. Thanks to the implicit sparseness
of hash-grids, we are able to reduce the capacity Gp w.r.t.
Gc, to only have valid values where corrections are needed
to have a good panoptic representation. In addition, we avoid
propagating gradients from the panoptic to the color branch to
ensure Gp only learns corrections on top of Gc. See Sec. V-C
for the corresponding ablations exploring this design choice.

B. Volumetric rendering

To predict a pixel color from a given camera with center
of projection at o ∈ R3 and direction to the pixel d ∈ S2 ,
NeRF [12] leverages volumetric rendering [29], integrating the
values of field F along a ray r(t) = o+ td.

1) Appearance rendering: The observed color C depends
on viewing direction d, due to illumination and translucence
phenomena and so the predicted color Ĉ can be computed as:

Ĉ(r,d) =

∫ tf

ti

T (t)σ̂(r(t))ĉ(r(t),d))dt , (1)

T (t) = exp
(∫ t

ti

−σ̂(r(m))dm

)
, (2)

where T (t) represents the transmittance probability at t.
2) Panoptic rendering: Our model combines semantic and

instance predictions at each rendered pixel to produce panoptic
predictions. Unlike color, panoptic fields are independent of
view direction, thus semantic and instance predictions can
be expressed as continuous functions conditioned only on
3D points S(p) and I(p). In order to treat samples along
rays as samples of a distribution, similar to [17], we apply
softmax before ray integration. Using X̂ as a notation proxy
for panoptic predicted quantities and x̂sm = softmax(x̂), X̂
can be rendered with the following equation:

X̂(r) =

∫ tf

ti

T (t)σ̂(r(t))x̂sm(r(t))dt . (3)

C. Training losses

1) Color loss: For Lcolor we minimize the average photo-
metric loss ∥Cr− Ĉr∥2 over a batch of rays r ∈ R, randomly
sampled rays across camera frames.



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED NOVEMBER, 2023

Fig. 3: Our 3D neural representation uses 2 separate grids to represent color and panoptic quantities. It learns the panoptic
representation from automatic detections and the camera poses are jointly optimized with only the color loss.

2) Semantic loss: To predict semantic labels from frame-
wise detections of a still-image segmentation model, as pro-
posed by [13], we compute the cross entropy loss between the
rendered semantic multi-variate distribution Ŝr over D classes
and the detected semantic class Sr for a batch of rays R,

Lsem =
1

|R|
∑
r∈R

wrSr log Ŝr , (4)

where wr is the confidence of the semantic detector [17].
3) Instance ID Linear assignment: To train our model on

frame-wise panoptic segmentation predictions, we need to
tackle the inter-frame inconsistency of “things” IDs. Similar
to [17], for the i-th frame we perform an optimal linear
assignment of sampled rays from the n-th predicted thing
mask ID Ki

n to the m-th most similar rendered one K̂i
m. The

assignment cost can be expressed as:

Ci
nm =

−1

|Ri
n|

∑
r∈Ri

n

K̂i
rm , (5)

We employ the Hungarian algorithm [30] to optimally
solve the assignment, obtaining frame-wise pseudo-label vec-
tors K ′i. This is then used to compute a frame-wise cross
entropy loss to train our instance ID head

Lthings =
1

|I|
∑
i∈I

1

|Ri|
∑
r∈Ri

wrK
′i
r log K̂i

r , (6)

where I is a batch of training frames. We also minimize the
following loss for all rays Rs corresponding to detected stuff
classes over all images for their predicted ID to be 0.

Lstuff =
1

|Rs|
∑
r∈Rs

wre1 log K̂
i
r , (7)

where e1 is the first canonical versor. This yields the following
instance ID loss Lid = Lthings + Lstuff .

4) Repeated ID rejection: In the glasshouse scenario, target
fruits are arranged in a quasi-planar fashion and the camera
moves parallel to them [9]. This means that each fruit is
always measured at the same distance from the image plane.
Thus, targets at opposite ends of the camera frustum will
always appear in several frames on their own, but only in
a few frames together. This does not encourage the optimal
assignment to assign different IDs to targets at the edge of

images and can lead to multiple objects having the same ID.
This can lead to poor panoptic detection results, see Panoptic
Lifting in Fig. 6. This issue also arises in domains such as
warehouse monitoring, factory inspection, etc. However, the
linear assignment loss has only been employed in target-centric
or free camera motions [17], where this phenomenon does not
occur.

We address this issue with a simple sliding window of
assignable IDs, linearly dependent of each target’s 3D position
along the robot trajectory. This gets incorporated to the optimal
ID association by setting the assignment costs (eq. 5) of
predicted IDs outside of the window to a prohibitively high
value. Additionally, we design the window such that targets
at a spatial distance close to the frustum length (e.g. at
opposite ends of the camera frustrum) won’t have overlapping
assignable IDs. Finally, the fruit’s position is computed by un-
projecting their mask pixels with our model’s predicted depth.

5) Post-processing and total loss: Inspired by [17], we
apply a very weak segment consistency loss LK to instances
instead of semantic segments. A single erosion dilation stage
with a 3x3 kernel is applied as post-processing step of the
panoptic output. Finally, our total loss can be written as:

L = λcLcolor + λsLsem + λidLid + λregLK . (8)

D. Camera extrinsics optimization

As we aim to represent 3D scenes from images with
noisy robot odometry poses, these need to be refined to
ensure proper multi-view consistency. Most NeRF approaches
perform offline bundle adjustment on the data as a pre-
processing step. This is reasonable when camera extrinisics
are unknown. In our case we have good initial guesses from
odometry which allows us to perform online optimization
within our training process, similar to [16], [27]. To achieve
this we add the camera pose parameters to the optimizer and
propagate gradients through the color branch and the ray-
tracing operation. Thus, rays r in eq. 1 are made dependent
on their corresponding camera extrinsics E∈SE3

r(t, E) = o(E) + td(E) = tE + tREdc , (9)

where tE and RE are the camera translation and rotation in the
world coordinate frame respectively, and dc is the direction of
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a pixel in the camera coordinate frame. During optimization
we use the 6DOF representation proposed by [31] which is
suitable for NN optimization. We do not employ a coarse-to-
fine modulation approach [16] as our robot odometry provides
a close enough initial estimate of the poses.

IV. EXPERIMENTAL SETUP

We evaluate our models in a very challenging agricul-
tural dataset of commercial glasshouse sweet pepper cropping
(BUP20) that we introduced previously in [9]. The dataset
was captured by a robot driving at 0.2m/s in a glasshouse
parallel to the crops and consists of 10 sequences with wheel
odometry and RGB-D images recorded using Intel RealSense
D435i of 6 crop rows. It presents two sweet pepper cultivar
Mavera (yellow) and Allrounder (red), each cultivar matured
from green, to mixed, to their primary color. Data was captured
twice, two months apart, to show different growth stages.
Moreover, the dataset presents a rich data variety including
different illumination conditions, noisy odometry, high level
of fruit occlusions, green on green detection scenarios and
camera shake. Furthermore, the dataset comes with panoptic
semantic segmentation labels. For this work, we also pre-
computed panoptic predictions using an instance segmentation
model [22] trained on this domain. The dataset has sparse
non-overlapping instance segmentation annotations, and we
generate short sequences around the labeled frames for train-
ing and validation. In order to assess panoptic segmentation
performance in the plant row closest to the robot we filter
out masks with depth larger than 1.5m, ignoring masks from
further crop rows, similar to [9].

A. Implementation details

PyTorch is used to implement our models and we leverage
the Kaolin-Wisp framework [32] which provides rendering
infrastructure, state-of-the-art NeRF building blocks and al-
lows for rapid-ptotyping. For the permutohedral grids, we
integrate the implementation provided in [11] to Kaolin-Wisp.
Both our color and panoptic grids have 21 LODs linearly
spanning from 1m to 0.0001m, vertex features of dimension
2 and a maximum capacity of 218. We encode ray directions
with a regular positional encoder for color prediction. Our
density and color decoders are single layer NNs of width
64, with ReLU and sigmoid activations respectively. Our
density feature vector has width 16. The semantic and instance
decoders are shallow and narrow NNs of 2 and 3 hidden
layers respectively and both of width 64. Such small NNs are
effective enough as most of the scene representation is already
encoded in the feature grids.

1) Training scheme: Since we only have sparse panoptic
labeled frames in each video sequence, we train our scene rep-
resentations in windows of frames around each labeled frame.
Every second frame in the window is used for training, and
validation appearance metrics are computed in the remaining
frames. For panoptic metrics, we only compute them for the
middle labeled frame. Finally, we average all the windowed
results to obtain our final performance metrics.

We train each scene window for 800 epochs, sampling 4096
rays per image with 512 samples along each for the first 200
epochs. After that we prune the occupancy grid every 200
epochs and change from ray-tracing to voxel-tracing, taking 2
samples at each of the first few occupied voxels along the rays.
This way we refine the scene geometry close to the surface of
objects [11], [12]. For the first 600 epochs we only train the
color head, later adding the panoptic head for the remaining
ones. We use Adam [33] as the training optimizer with a
momentum of 0.9 and a fixed global learning rate of 0.01.
Grid encodings have a learning rate of 1.0 in order for them
to converge faster. For all extrinsic parameters we set their
learning rate to 0.0001. From an early parameter search, we
set the loss weights to λcolor = 1, λsem = 0.1, λid = 10 and
λreg = 0.1 for all our experiments. We train with a batch size
of 6 with images at full resolution (1280x720). All models for
each validation sample were trained on a single A6000 GPU.

2) Validation extrinsics optimization: Since we jointly op-
timize camera extrinsics along with the scene representation,
validation extrinsics can get slightly miss-aligned to the scene.
Thus, every 10 epochs we optimize the camera extrinsics
of all validation frames while freezing all grid and decoder
parameters. This way the validation extrinsics get registered
to the scene representation allowing for a direct comparison.

B. Evaluated models
In order to evaluate the novel-view rendering quality of

the evaluated models, we employ peak signal to noise ratio
(PSNR). The panoptic quality mentric (PQ) is used to measure
the instance and semantic outputs. Semantic quality alone is
also presented using the intersection over union (IoU).

We compare PAg-NeRF with similar state-of-the-art ap-
proaches that also employ different radiance fields at their
core. Performance compared to the still-image panoptic seg-
mentation model used to generate the training pseudo-labels
is also provided; note that the pseudo-labels do not provide
consistent IDs across frames.

Mask2Former [22]: the instance-based semantic segmen-
tation model trained fully-supervised on BUP20.

Semantic NeRF [13]: the first approach incorporating a
semantic head to an NN based NeRF model. We train this
models using poses obtained through SFM. Results for this
model are presented using only render quality (PSNR) and
segmentation (IoU).

Panoptic Lifting [17]: is a state-of-the-art panoptic 3D
scene representation, leveraging [28] as its feature grid. This
models is trained with pre-calculated poses and panoptic
predictions from Mask2Former.

PAg-NeRF(L): our large panoptic 3D scene representation
model using the proposed panoptic grid architecture. All
variants are trained with online optimized poses and panoptic
predictions from Mask2Former. Three versions of this model
are evaluated: a baseline one, another adding repeated ID
rejection (sec. III-C4), and a third one using Mask2Former
confidence to re-weight all panoptic losses.

PAg-NeRF(S): A faster version of our model with reduced
number of parameters (see sec. V-C) that still outperforms the
state-of-the-art.
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V. RESULTS

We start by presenting three quantitative experiments. First
we compare our best model with other semantic novel-view
synthesis methods, and the NN still-image detector used for
training. Second, we assess the effect of performing online
pose optimization compared to other trajectory sources. Third,
to better understand the benefits and limitations of our panoptic
grid architecture we perform an ablation study. Finally, we
showcase qualitative results of novel-view panoptic predictions
of our model compared to other systems. When we present
inference time, this is based on how long each model takes to
render all outputs per image at full resolution.

A. Overall performance

In Tab. I we present the results of our model, Mask2Former,
and other relevant NeRF models (SemanticNerf and Panopti-
cLifting). It can be seen that the best results are obtained for
our model when using uncertainty predictions, the proposed
repeated ID rejection loss and pose optimization. In particular,
our large version of PAg-NeRF outperforms panoptic lifting by
2dB in render quality and an absolute improvement of 13.43
and 6.37 for panoptic and semantics respectively. Moreover,
our system is 1.34 times faster at training and 1.54 times
at inference, despite having 3.4 times more parameters than
Panoptic Lifting. This is due to the fast interpolation of
permuto grids and shallow NN decoders. It can also be seen
that our modified repeated ID rejections loss improves PQ by
1.56 while the use of uncertainty loss re-weighting gives an
improvement of another 1.69.

It can also be seen that our large model outperforms
semantic NeRF by an absolute IoU margin of 4.84. Further-
more, as our model is grid-based, we are 4.5 and 11 times
faster at training and inference respectively. We attribute this
performance gap to our online pose optimization scheme (see
sec. V-B) and the dedicated panoptic delta feature grid to
improve the panoptic representation (see sec. V-C).

It is also worth noting that PAg-NeRF achieves these results
with very shallow NN decoders with only a few hidden layers
of width 64, whereas both panoptic lifting and semantic NeRF
use more and wider layers of width 256.

B. Pose estimation ablation

Our approach provides an end-to-end system that relies only
on initial estimates of pose. To evaluate the impact of this
approach we compare against offline optimized poses with
a bundle-adjusted software, and odometry only in terms of
render and panoptic quality. This is because the dataset we
use lacks a precise ground-truth trajectory.

Fig. 4: Render comparison for different camera pose sources.

In Tab. II it can be seen that our online pose optimiza-
tion method produces the best performance. Compared to
bundle-adjusted poses we improve the absolute performance
by 1.45dB, 8.54 and 5.21 for render quality, panoptic and
semantic metrics respectively.

Qualitative results in Fig. 4 highlight the advantages of our
system (Ours) over offline optimized poses with a bundle-
adjusted software (Bundle adj.) and odometry only (Odom-
etry). It can be seen qualitatively that our system (Ours) is
able to reproduce fine details of the scene and well estimate
instance mask predictions. In comparison, poses estimated
using bundle adjustment (Bundle adj.) can generate good re-
sults, however, the resultant renders are noisier with noticeable
artifacts for the plant leaves. Finally, it can be seen that using
noisy odometry (Odometry) leads to incorrect estimates of the
scene geometry presenting smeared panoptic predictions and
degraded performance.
TABLE II: Performance for different camera extrinsic sources.

PSNR[dB] PQ [%] IoU [%]
Robot odometry 20.27 60.15 79.80
Bundle Adjustment 21.92 61.54 77.44
Online optimization (Ours) 23.37 70.08 82.65

C. Speed and efficiency ablation study

Seeking to better understand how to tune our model’s speed
and efficiency, we progressively vary its grid parameters and
obtain PAg-NeRF(S), a small yet competitive version of our
model. In Fig. 5 we show the render and panoptic performance
of our model on 3 successive parameter ablations, where we
choose a suitable configuration from one experiment and apply
this to the subsequent experiment. For each experiment, we

TABLE I: Comparison of PAg-NeRF with other relevant panoptic and semantic NeRF methods trained on the BUP20 dataset.
ID Rej. Uncert. PSNR [dB] ↑ PQ [%] ↑ IoU [%] ↑ Training [min/seq] ↓ Inference[s/img] ↓ #Params. ↓

Mask2Former [22] - - - 71.16 80.52 - - -
SemanticNerf [13] ✗ ✗ 19.01 - 77.81 123.2 61.3 0.63M

PanopticLifting [17] ✗ ✓ 21.34 56.65 76.28 36.5 8.6 7.42M
✗ ✗ 23.24 66.83 81.41 26.3

PAg-NeRF(L) ✓ ✗ 23.34 68.39 81.45 26.6 5.6 25.21M
✓ ✓ 23.37 70.08 82.65 27.2

PAg-NeRF(S) (sec. V-C) ✓ ✓ 21.37 66.10 79.86 16.7 3.9 0.62M
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Fig. 5: Ablation study of feature grid parameters.

present the number of parameters and inference time per image
to show how we can progressively improve both.

First, in Fig. 5.a, we take PAg-NeRF(L) (see Tab. I) and
reduce the LODs of both grids simultaneously. We choose
to set the number of LODs to 9 as it still maintains good
performance while reducing the number of parameters and
inference time by a factor of 2.65 and 1.2 respectively.

Second, we start from a model with 9 LODs and pro-
gressively reduce the color grid capacity. As can be seen in
Fig. 5.b, this has a large impact on performance and so we
choose to keep a high value of (215) for the color capacity.
Despite retaining a relatively high number, we still reduce the
number of parameters and improve the inference speed.

Third, the effect of reducing the panoptic delta grid capacity
is shown in Fig. 5.c. As expected, this change has no impact
on render quality, since the panoptic branch is detached from
the color one. However, it does have a modest impact on PQ
performance. We chose a panoptic capacity value of 29 to
further reduce parameter count, trading off some performance.

These optimizations lead to our efficient PAg-NeRF(S)

model. This model has approximately 39 times fewer param-
eters than PAg-NeRF(L) and is 1.5 times faster at inference
time. Furthermore, it still has competitive performance beating
the baseline methods (Tab.I).

D. Qualitative results

In Fig. 6 we compare the output of PAg-NeRF to Panop-
tic Lifting, Semantic NeRF and the Mask2Former detector
in a cluttered scene. In this figure we concentrate on the
render (RGB), instance and semantic segmentation quality
against the ground truth (GT) frames. Further qualitative
results for multiple frames and for 3D panoptic maps are
available in the supplementary video and the project website
http://claussmitt.com/pagnerf.

In terms of render quality, PAg-NeRF is able to reproduce
very fine details of the fruits and leaf textures as well as high
frequency edges and thin structures that get smoothed out by
Panoptic Lifting. Moreover, Panoptic Lifting fails to reproduce
fine details of masks and misses several fruits. In the case of
Semantic NeRF, it can be seen that some of the fruit and leaves
get blended together completely blurring their edges.

The panoptic mask quality (both instance and semantics)
for PAg-NeRF is heavily influenced by the detection system,
which in this case is Mask2Former. In Fig. 6 Mask2Former
merges the large yellow pepper with the one behind it, and our
model reproduces the same mistake. On the other hand, even
though Mask2Former does not detect the pepper at the bottom
left of the image, because it is detected in other images PAg-
NeRF is able to recover from this error through its implicit
modelling of 3D scene geometry.

Additionally, thanks to our repeated ID rejection loss, our
model is able to properly distinguish between instances at
the far ends of the frame, whereas Panoptic Lifting merges

Fig. 6: PAg-NeRF results compared with Panoptic Lifting, Semantic NeRF, the input detections from Mask2Former and the
ground truth (GT). We compare the results for the RGB images (first row), Instance results (second row), and Semantic results
(third row). For the Instances, each mask color represents the ID assigned to them along with their bounding boxes. The long
Instance bounding boxes of Panoptic Lifting are example failure cases of the plain linear assignment loss (Sec.III-C4). Our
model renders fine details of the scene, which can be seen in the RGB image, and also produce sharp panoptic predictions
with unique IDs for fruits close to image edges, which can be seen in the Instance and Semantic images.
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them into a single detection with long bounding boxes since it
uses a plain linear assignment loss. Overall, PAg-NeRF is able
to achieve accurate scene reconstruction, panoptic segmenta-
tion, and sequential ID assignment while being considerably
quicker and more memory efficient than Panoptic Lifting.

VI. SUMMARY & FUTURE WORK

We have presented a novel end-to-end 3D panoptic implicit
representation that we validated in a challenging agricultural
scenario. Our architecture is able to distinguish individual fruit
instances, being trained only from RGB images with noisy
robot poses and still-image panoptic segmentation detections
with inconsistent fruit IDs. By leveraging online pose op-
timization, our modified instance ID linear assignment loss
and hash-permutoedral grid encodings we are able to beat a
state-of-the-art 3D panoptic NeRF approach. Moreover, our
panoptic delta-grid architecture allowed us to trade off per-
formance and efficiency, producing fast and efficient models
that outperform the state-of-the-art. As future work, we plan
to improve the 3D geometry of our representation and map
entire cropping chambers to produce global phenotypic metrics
suitable for crop phenotyping.

REFERENCES

[1] A. Ahmadi, M. Halstead, and C. McCool, “Towards autonomous visual
navigation in arable fields,” in 2022 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2022, pp. 6585–6592.

[2] A. You, C. Grimm, A. Silwal, and J. R. Davidson, “Semantics-guided
skeletonization of upright fruiting offshoot trees for robotic pruning,”
Computers and Electronics in Agriculture, vol. 192, p. 106622, 2022.

[3] C. Lehnert, C. McCool, I. Sa, and T. Perez, “Performance improvements
of a sweet pepper harvesting robot in protected cropping environments,”
Journal of Field Robotics, vol. 37, pp. 1197–1223, 2020.

[4] M. Halstead, A. Ahmadi, C. Smitt, O. Schmittmann, and C. McCool,
“Crop agnostic monitoring driven by deep learning,” Frontiers in plant
science, vol. 12, 2021.

[5] I. Sa, Z. Ge, F. Dayoub, B. Upcroft, T. Perez, and C. McCool,
“Deepfruits: A fruit detection system using deep neural networks,”
Sensors, vol. 16, no. 8, p. 1222, 2016.

[6] M. Halstead, C. McCool, S. Denman, T. Perez, and C. Fookes, “Fruit
quantity and ripeness estimation using a robotic vision system,” IEEE
Robotics and Automation Letters, vol. 3, no. 4, pp. 2995–3002, 2018.

[7] L. Zabawa, A. Kicherer, L. Klingbeil, A. Milioto, R. Topfer,
H. Kuhlmann, and R. Roscher, “Detection of single grapevine berries
in images using fully convolutional neural networks,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, 2019, pp. 0–0.

[8] C. Smitt, M. Halstead, A. Ahmadi, and C. McCool, “Explicitly incorpo-
rating spatial information to recurrent networks for agriculture,” IEEE
Robotics and Automation Letters, vol. 7, no. 4, pp. 10 017–10 024, 2022.

[9] C. Smitt, M. Halstead, T. Zaenker, M. Bennewitz, and C. McCool,
“Pathobot: A robot for glasshouse crop phenotyping and intervention,”
in 2021 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2021, pp. 2324–2330.

[10] Y. Pan, F. Magistri, T. Läbe, E. Marks, C. Smitt, C. McCool, J. Behley,
and C. Stachniss, “Panoptic mapping with fruit completion and pose
estimation for horticultural robots,” To be presented at IROS 2023, 2023.

[11] R. A. Rosu and S. Behnke, “Permutosdf: Fast multi-view reconstruction
with implicit surfaces using permutohedral lattices,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2023, pp. 8466–8475.

[12] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi,
and R. Ng, “Nerf: Representing scenes as neural radiance fields for view
synthesis,” Communications of the ACM, vol. 65, no. 1, pp. 99–106,
2021.

[13] S. Zhi, T. Laidlow, S. Leutenegger, and A. J. Davison, “In-place
scene labelling and understanding with implicit scene representation,”
in Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2021, pp. 15 838–15 847.

[14] L. Liu, J. Gu, K. Zaw Lin, T.-S. Chua, and C. Theobalt, “Neural sparse
voxel fields,” Advances in Neural Information Processing Systems,
vol. 33, pp. 15 651–15 663, 2020.

[15] T. Müller, A. Evans, C. Schied, and A. Keller, “Instant neural graphics
primitives with a multiresolution hash encoding,” ACM Transactions on
Graphics (ToG), vol. 41, no. 4, pp. 1–15, 2022.

[16] C.-H. Lin, W.-C. Ma, A. Torralba, and S. Lucey, “Barf: Bundle-adjusting
neural radiance fields,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2021, pp. 5741–5751.

[17] Y. Siddiqui, L. Porzi, S. R. Bulò, N. Müller, M. Nießner, A. Dai, and
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