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Keypoint Matching for Point Cloud Registration
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Abstract—The registration of point clouds is a key ingredi-
ent of LiDAR-based SLAM systems and mapping approaches.
A challenging task in this context is finding the right data
association between 3D points. This paper proposes a novel
and flexible graph network architecture to tackle the keypoint
matching problem in an end-to-end fashion. Each layer of our
multiplex dynamic graph attention network (MDGAT) utilizes an
attention mechanism to dynamically construct a multiplex graph
and reasons about the contextual information based on the point
cloud data. It enriches the feature representation by recovering
local information and by aggregating information along with the
connections. We also design a scan matcher called MDGAT-
matcher, which treats the registration problem as an optimal
transport problem and uses the predictions of MDGAT as the
cost. It builds upon sparse keypoints extracted from pairs of
LiDAR scans. Eventually, MDGAT-matcher finds high-quality
correspondences and at the same time handles non-matching
points appropriately. We train our matcher using a novel gap
loss guiding the network to learn a discriminative cognition about
matching and non-matching 3D points. We thoroughly test our
approach on the KITTI odometry benchmark. The experiments
presented in this paper suggest that our approach outperforms
state-of-the-art matching approaches and achieves a substantial
improvement.

Index Terms—SLAM; Deep learning metod

I. INTRODUCTION

POINT cloud registration is a fundamental problem in
robotics as well as autonomous driving. Many robotic sys-

tems use it for mapping, LiDAR-based odometry, for simulta-
neous localization and mapping, also called SLAM [1]. Given
two sets of points, a registration approach aims at finding
the relative transformation that best aligns all 3D points in a
common coordinate frame. Popular approaches to point cloud
registration are the iterative closest point (ICP) algorithm [2]
as well as several of its variants [3]–[5]. The key difficulty in
registering point clouds is finding the correct data association,
i.e., determining which point in point cloud 1 corresponds to
which point in cloud 2. Once the data association is known,
computing the transformation is straight forward.

A robust approach to finding high-quality correspondences
between two point clouds is essential in offline 3D registration
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Fig. 1: Keypoint matching results of our method and SuperGlue. Our
method better distinguishes nearby keypoints and finds more correct
matches (green lines) and less wrong ones (red lines).

and incremental scan matching. While the ICP-alike algo-
rithms are powerful and easy to implement, they often rely
on nearest neighbor (NN) assignments or similar distance-
based heuristics to find correspondences. This often yields
a limited basin of convergence, and as a result of that, the
initial transformation between the scans matters enormously.
The better the initial guess, the more likely the data association
will lead to the correct alignment, and the approach may fail
otherwise. In case point cloud-based keypoint descriptors are
provided, they can be used for finding likely correspondences
even under suboptimal initial configurations. Descriptor-based
matching often increases robustness w.r.t. the initial guess.
This approach first aims to identify distinctive points in both
point clouds using a descriptor and then compute further
matches considering an initial relative transformation given
the distinct points. To achieve this, feature descriptors for 3D
point clouds and matching strategies can be defined manually
or learned in an end-to-end fashion.

The recent work SuperGlue [6] is a seminal paper for
learning-based matching of visual features. Given two sets of
local descriptors with keypoints, it finds for correspondences.
It utilizes a multiplex graph attention network to predict a soft
assignment between two sets of features. It selects the matches
using a predefined threshold. Inspired by SuperGlue, Simon
et al. propose StickyPillars [7]. It uses the same graph neural
network on point clouds and achieves reasonable results for
3D registration. Although beginning a great step forward, the
current SuperGlue architecture offers space for improvements.
First, it employs a fully-connected graph construction, which
limits the distinctiveness of the learned descriptor. Second, it
needs a well-tuned, predefined threshold to determine the final



2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2021

matches, which is less elegant and can lead to a suboptimal
generalization ability. We aim at tackling these challenges in
our work.

The main contribution of this paper is a novel approach
to feature matching in 3D LiDAR scans using a flexible
graph network architecture and allows for end-to-end training.
Different from existing work, we propose a novel layer to
construct the graph network dynamically. This captures the
local information better and improves the distinctiveness of
the learned descriptors. Moreover, we propose a gap loss to
guide the network to better distinguish between the positive
and negative pairs of descriptors. Our method does not require
a hand-designed threshold to determine the final matches and
achieves feature matching in an end-to-end fashion. In sum,
we make two key claims for our approach. It is able to (i)
find feature matches end-to-end, (ii) and better distinguishes
the features and outperforms the state-of-the-art methods in
feature matching. Our code is available at:

https://github.com/chenghao-shi/MDGAT-matcher.

II. RELATED WORK

Point cloud registration refers to finding the spatial trans-
formation that aligns two point clouds. The standard approach
for point cloud registration is the iterative closest point (ICP)
algorithm [2] and its numerous variants such as [3]–[5]. A
large number of existing odometry and SLAM systems rely
on ICP-alike algorithms [8]–[10]. The most challenging part
in ICP is finding the correct data association and the result
of ICP is influenced by the initial guess and it can easily
get stuck in a local minimum. To avoid making crisp data
association, there are works using soft correspondences [11],
robust estimators [12], kernel density estimation [13], or
probability density estimation [14] to achieve improved point
cloud registration.

Using deep learning for point cloud registration is a compa-
rably novel area. Chen et al. [15] exploit a neural network to
estimate the similarity and the yaw angle offset between pairs
of scans and use it as the initial guess for ICP. Deep closest
point proposed by Wang et al. [16] and DeepICP by Lu et
al. [17] are learning-based end-to-end point cloud registration
methods. Different to classical ICP that iteratively updates
the geometric transform and point correspondences by nearest
neighbor searching, they establish the point correspondences
based on the similarity of feature space in an end-to-end
fashion. PointNetLK proposed by Aoki et al. [18] and PCRNet
by Sarode et al. [19] compute the global descriptors of the
point sets and estimate the transform by minimizing the dis-
tance of the global descriptors. Recent work called RPM-Net
proposed by Yew et al. [20] utilizes a different pipeline from
ICP. It uses the iterative framework of robust point matching
(RPM) [14] with deep learning network-based features, which
is less sensitive to initialization and more robust for rigid
point cloud registration. To handle registration of partially
overlapped point clouds, most recently Xu et al. [21] and
Sarode et al. [22] exploit neural networks to extract both
the global feature of a point cloud and point-wise features to
predict inlier mask and estimate the transformation in an end-
to-end fashion. The common problem with raw point-based

methods is that they require the given pair of point sets to
have significant overlap or reasonable initial associations.

Feature-based methods form another branch of point cloud
registration methods, which are generally composed by key-
points detection, keypoint matching, and the computation of
the geometric transformation. For each step, there exist a
large number of optimizations. For example, there are methods
focusing on keypoint detection, such as hand-crafted keypoints
ISS [23], curvature [8], and recently learning-based keypoints
3DFeat-Net [24] and USIP [25]. Feature matching approaches
typically exploit carefully designed descriptors. For example,
the fast point feature histogram (FPFH) proposed by Rusu et
al. [26] is a representative, hand-crafted 3D feature descriptor.
It provides accurate feature matching with reasonable com-
putational efficiency. Recent works also apply deep neural
networks to learn the descriptors and achieve remarkable
performance. For example, Zeng et al. [27] propose 3DMatch,
which is one of the earliest learning-based works that apply
deep learning on a voxelized point cloud and computes the
descriptors. The work proposed by Gojcic et al. [28] is similar
to 3DMatch but uses a more efficient data representation called
smoothed density value voxelization which reduces the input
sparsity and is amenable to fully convolutional layers. Qi
et al. [29] propose PointNet, which is the first work that
directly applies deep learning to the raw point cloud. The
main idea behind PointNet is the max pooling operation that
aggregates point-wise features into a global feature while
being invariant to input permutation. Inspired by PointNet,
Deng et al. [30] propose PPFNet, which utilizes the PointNet
to describe the local feature and further argument the feature
using a PointNet-like framework.

Unlike the standard pipeline, graph matching is not lim-
ited to rigid transform and is used to model more complex
relationships. Recently, Zanfir et al. [31] apply deep learning
to learn the cost and firstly achieve end-to-end deep graph
matching. Based on that, Wang et al. [16] propose a graph
neural network incorporating node embedding to learn a more
flexible cost. Solving a graph matching problem is typically
formulated as solving a quadratic assignment problem, which
is known to be NP-hard. Thus graph matching problems are
usually solved approximately. By simplifying the problem to a
linear assignment problem, Hungarian algorithm proposed by
Kuhn [32] can be an efficient solution. Sinkhorn algorithm [33]
is shown to be a differentiable version of the Hungarian
algorithm and is widely used in neural network [6] to enable
the network to solve the problem end-to-end.

The most similar works to this paper are SuperGlue [6]
and StickyPillars [7]. Sarlin et al. propose SuperGlue to use a
graph neural network to embed structure information into the
descriptor for a more powerful one, which shows promising
results on image matching problem. Most recently, Simon et
al. propose StickyPillars, which firstly applies such a pipeline
on 3D feature matching. Different to them, our method uses
a novel multiplex dynamic graph attention network with the
proposed gap loss to realize 3D point cloud feature matching.

https://github.com/chenghao-shi/MDGAT-matcher
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Fig. 2: Our inference pipeline. Our network consists of three main parts: keypoint encoder, multiplex dynamic graph attention network,
and assignment layer. The keypoint encoder takes the point cloud and keypoint positions p as input and embeds the local keypoint
appearance (descriptor encoder) and the spatial clues (position encoder) into a new feature. The multiplex dynamic graph attention network
further enhances the feature by aggregating the contextual information from both, keypoint sets based on a dynamically constructed graph.
Based on the enhanced descriptions, the assignment layer creates a score matrix, and explicitly incorporates the keypoint dustbin. The soft
assignment matrix is then predicted using Sinkhorn algorithm. Performing the max operator to each row except the dustbin, we finally
determine the matches.

III. BACKGROUND – POINT MATCHING AND SUPERGLUE

We denote two point clouds as A and B, and the keypoints
extracted from them are pA and pB , where pA ⊂ A and
pB ⊂ B. Each keypoint pi has 3D coordinates, (x, y, z)i,
and the numbers of the keypoints in these two sets are M
and N , respectively. Several learning-based methods [17], [34]
assume that all the keypoints have a corresponding partner,
and describe the correspondences with a partial assignment
matrix P ∈ {0, 1}M×N :

P 1N = 1T
M , (1)

PT1M = 1T
N . (2)

Given the correspondences, the network tries to generate
distinctive descriptors by learning a function f , which mini-
mizes the distance between matched keypoint pairs in feature
space or maximizes the similarity between them as:

f∗ = argmax
f

2

M

M∑
i=1

N∑
j=1

PijSij , (3)

where the match score matrix S = f(pA) ·f(pB)T, and f(pA)
and f(pB) are the descriptors learned by the networks as for
the set of keypoints pA and pB .

For a generalized formulation and handling non-matched
keypoints, we create a so-called “dustbin” b for the non-
matched points (we use the name dustbin similar to [6]). Key-
points of A and B can now be written as p̃A = [(pA)T, bA]T

and p̃B = [(pB)T, bB ]T . Consequently, for each keypoint in
the point cloud, it is either matched to a keypoint in the other

one or to the dustbin of the other one. Assuming there are
K matched keypoint pairs, the new partial assignment matrix
P̃ ∈ {0, 1}(M+1)×(N+1) is constrained by:

P̃ 1N+1 = [1T
M , N−K], (4)

P̃
T
1M+1 = [1T

N , M−K], (5)

where 1N is the all-ones vector of length N , and N−K and
M−K are the numbers of unmatched keypoints.

The match score between any keypoint and the dustbin is
set as z ∈ R, which can be learned by a network. Let S̃ be
the match score matrix of p̃A and p̃B , where the last row and
column are filled with z. We then extend Eq. (3) to:

f∗ = argmax
f

2

M

M+1∑
i=1

N+1∑
j=1

P̃ijS̃ij . (6)

Eq. (6) aims at maximizing the total match scores for all
the matched and non-matched keypoint pairs. The keypoint
matcher network aims a determining (i) given the ground true
matches P̃ during training, how to learn the descriptor function
f and (ii) after learning the descriptor function f , during the
inferring, how to estimate the final partial assignment P̃ given
the estimated S̃ generated from the function f , i.e.

P̃
∗
= argmax

˜P

2

M

M+1∑
i=1

N+1∑
j=1

P̃ijS̃ij . (7)

Our approach is inspired by SuperGlue [6], which uses a
multiplex graph neural network f to generate descriptors for
visual features extracted from images. It takes two keypoint
sets extracted from two input images f(pA,pB) and uses self-
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(intra-image) and cross- (inter-image) attention to reason about
contextual information in both images. By formulating an
optimization function, SuperGlue introduces an optimal trans-
port layer to solve the function and predict a soft assignment
matrix P ∈ [0, 1](M+1)×(N+1). SuperGlue also uses dustbins
to handle the unmatched keypoints but with an additional
predefined threshold to determine the final assignment matrix
P̃.

IV. OUR APPROACH

The overview of our approach is illustrated in Fig. 2
and it consists of three main parts: the keypoint encoder
introduced in Sec. IV-A, the multiplex dynamic graph attention
network described in Sec. IV-B, and the assignment layer, see
Sec. IV-C. We also propose a novel gap loss in Sec. IV-D,
which guides our network to better distinguish the feature
matches.

A. Keypoint Encoder
Instead of directly using hand-crafted local keypoint de-

scriptors as the input, we use a keypoint encoder to compute
descriptors for keypoints. Inspired by SuperGlue [6], we
combine existing local keypoint descriptors with the keypoint
position information using a neural network. The goal is
to provide a learning-supported descriptor, which can better
exploit the vicinity information contained in the original hand-
crafted descriptor and thus provides a better signature. We
design our encoder to mostly keep the local information while
leaving the harder part of the global representation of the
whole scan to the subsequent dynamic graph network. To this
end, we build our encoder with two parts, a descriptor encoder
and a positional encoder, as explained below.

The descriptor encoder is designed to embed the local
vicinity information into a single, high-dimensional vector d.
Examples of popular keypoint/descriptors are USIP [25] and
FPFH [26]. USIP provides good detection repeatability on
the sparse point cloud, while FPFH is an effective local 3D
descriptor for 3D registration. In this work, we combine USIP
to detect the keypoints and the FPFH descriptors as the starting
point for building our descriptor. Each keypoint and FPFH
descriptor is encoded into a high-dimensional vector using a
multi-layer perceptron (MLP):

d = MLPdesc(FPFH(pi,C)), (8)

where C represents the corresponding raw point cloud.
Following SuperGlue [6], we combine the descriptor d with

a position encoder to embed spatial clues into the descriptor
by:

(0)f i = d+ MLPpos(pi). (9)

Thus, the input of our method are the raw point clouds
together with the USIP [25] keypoints and FPFH descrip-
tors [26], and we turn them into a new descriptor. Note,
however, our method does not rely on a specific keypoint
detector and descriptor such as USIP and FPFH, which can be
seen in the ablation study in Sec. VI-C. As we show later in
this paper, such combinations are also beneficial for tackling
our 3D point matching problem.

B. Multiplex Dynamic Graph Attention Network

After the keypoint encoder, we add a multiplex dynamic
graph attention network, short MDGAT, to strengthen the
descriptor for matching. Different to a traditional graph neural
network, which uses a fixed graph architecture, we propose a
novel dynamic graph that updates the architecture dynami-
cally. Furthermore, an attentional aggregation is performed to
enable the node to effectively receive the information from
neighboring nodes and towards a more global approach.

Multiplex graph. In MDGAT, we firstly construct a multi-
plex graph [35] taking all the embeddings from the keypoint
encoder as nodes. The graph contains two types of edges:
self-edges that connect keypoints within the same point cloud
and cross-edges that connect a keypoint to the keypoints in
the other point cloud. Self-edges are designed to help the
network learn the representation of the keypoint based on its
vicinity information while cross-edges are designed to help the
network examine each validation keypoint in the other point
set.

Dynamic graph update. In each iteration, we construct the
specific graph structure based on an attention mechanism [36].
For a query node (l)fQ

i in point cloud Q (indicating “query”)
at layer l and all the source nodes in point cloud S (indicating
“source”) at layer l, the network computes the query qi,
key kj , and value vj , which are used for later graph updating
and attentional aggregation, by a linear projection:

qi = W 1
(l)fQ

i + b1,kj

vj

 =

W 2

W 3

 (l)fS
j +

b2
b3

 , (10)

where {Q,S} ∈ {A,B}2. If Q = S, we refer to Eq. (10) as
self-attention, and as cross-attention if Q 6= S. The projection
parameters W and b are shared for all nodes at each layer
l. After that, we compute an attentional weight for the query
node with each source node: αij = softmaxj(qT

i kj). This
weight represents how much attention the query node (l)fQ

i

will pay to this source node (l)fS
j .

SuperGlue uses a fully-connected graph, which exploits all
the connections between all the nodes. However, the con-
nections between the query node and the dissimilar neighbor
source nodes may hurt the performance, as recently pointed
out by Xie et al. [37] (and can also confirm this observation
from our experiments). Thus, we propose a dynamic graph
that finds the top k edges for each query node based on
attentional weight αij and only uses these top k edges and
the corresponding nodes to construct the graph. We apply this
to all query nodes and construct a new multiplex graph in each
iteration according to the attentional weights.

Instead of using a fixed number of k to choose the edges
for the nodes in all the layers, we use a decay strategy, which
gradually decreases the connections when the layers go deeper.
It is natural to use such a decay strategy as it can be seen as
firstly observing the overall scene and then gradually focusing
on a specific area of interest. We report the chosen parameters
in Sec. VI-A and verify the effectiveness of this design in
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Sec. VI-C, showing that the proposed dynamic graph performs
better than the fully-connected static graph.

Attentional aggregation. Attentional aggregation [38] is an
operation that dynamically assigns weights to the neighbor
connections of a node. It is based on an attention mecha-
nism [36] enabling a node to receive the information from
neighboring nodes towards a global understanding. After the
above-proposed dynamic updating, this attentional aggregation
is performed on each node of each newly generated graph and
is done via message passing. More details about aggregation
could be found in the work by Sarlin [6]. Once the aggregation
is done for all the layers, the final descriptors of the nodes are
then represented by an additional liner projection layer:

f i = W (L)f i + b. (11)

C. Assignment Layer

The two above-described layers, keypoint encoder, and
multiplex dynamic graph attention, together form the feature
descriptor f(·). As described in Sec. III, to design the loss
function for training our network, we need to solve Eq. (7).
The solution can be approximated using the Sinkhorn algo-
rithm [39], which is commonly used for graph matching and
is fully differentiable. It iteratively performs normalization
along rows and columns. At the t iteration, the score matrix
is updated by:

(t)S̃′ij =
(t)S̃ij − log

∑
j

e
(t)S̃ij , (12)

(t+1)S̃ij =
(t)S̃′ij − log

∑
i

e
(t)S̃′ij . (13)

After T iterations, we use the solution as the soft assignment
matrix: P = (T )S̃.

Sarlin et al. [6] drop the dustbin and recover the assignment
by comparing the soft assignment score P1:M,1:N with a hand-
tuned threshold. In contrast, we do not manually define a
threshold and drop the dustbins. Instead, we directly resolve
the P̃ by finding the best match on raw P.

P̃A→B = max
row

(P), (14)

P̃B→A = max
row

(P
T
), (15)

P̃ = P̃A→B � P̃
T

B→A, (16)

where maxrow represents an operation that sets the maximum
value along the rows to 1 and the others to 0, P̃A→B represents
the predicted matrix assigns the keypoints in A to the keypoints
in B or dustbins, and � represents the Hadamard product. We
use Eq. (16) to perform a mutual check to ensure the match
is the best for both keypoints. This does not work well for the
original SuperGlue as it requires a discriminative assignment
matrix, as can be seen in Sec. VI-B. To this end, we introduce
a gap loss that is described in the next section, to guide the
network learning such a discriminative assignment matrix.

D. Gap Loss

Our goal is to enlarge the relative difference(i.e., the gap) of
the soft assignment values between the true matches and the
wrong matches, and not just to maximize the absolute values
of the truth matches. In this work, we propose a novel gap
loss based on a triplet loss [40]. A triplet PA

i consists of an
anchor keypoint in A, a positive correspondence as well as a
negative correspondence in B, respectively indexed by i, p, n.
In our case, the anchor keypoint can be an arbitrary keypoint.
A positive match p refers to the truth match for the anchor
keypoint, while a negative match n can be any non-matching
keypoint for the anchor keypoint.

For training, we can generate such required ground truth
correspondences easily. Using ground truth poses (e.g., avail-
able in the KITTI dataset), we generate the ground truth
correspondences M ∈ {0, 1}(M+1)×(N+1) by projecting the
keypoints to the other point cloud. The proposed gap loss is
then calculated as:

Lossgap =

M∑
i=1

log(

N+1∑
n=1

[(− log ri + logPin + η)+ − η])

+

N∑
j=1

log(

M+1∑
n=1

[(− log cj + logPnj + η)+ − η]),

(17)

where (z)+ = max(z, 0), ri =
∑N+1

n=1 PinMin refers to
the true match assignment value for keypoint pA

i , and cj =∑M+1
n=1 PnjMnj refers to the true match assignment value

for keypoint pB
j . Different from triplet loss utilizing only one

negative match for each anchor keypoint, the proposed gap
loss aims to expand the margin between the positive match
with all the other negative matches.

V. IMPLEMENTATION DETAILS

Some parameters related to the architecture are relevant
to reproduce our results, and we provide them together with
details about the training in this section.

Parameters. We initialize the size of the input keypoints as
N ′ = M ′ = 512 on both point clouds. Based on the uncer-
tainty calculated by USIP for each keypoint, we downsample
the keypoints to a size of N ′ = M ′ = 256. The descriptor
encoder uses a nearest neighbor search range of d = 1m. The
output of the keypoint encoder and all intermediate represen-
tations of the MDGAT have the same dimension D = 128.
For the architecture of MDGAT, we use L = 9 layers with 4
attention heads, and each performs self-attention followed by
cross-attention. MDGAT reconstructs the graph based on the
attention weights and updates dynamically. We use a decay
strategy to choose the number of k nearest neighbor when the
network goes deeper to force MDGAT to gradually focus more
on the distinctive area. More specifically, the first 5 layers are
a fully-connected graph, and the number of k of the last 4
layers are kself

6 = kself
7 = 128, kself

8 = kself
9 = 64, where kself

i

refers to using k nearest neighbor for the self connection at i
layer. For the cross-attention, we keep it as fully connected,
where kcross

1−9 = 256. We set Sinkhorn iteration to T = 100. The



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2021

network contains 3 million parameters and takes on average
127 ms per forward pass on a GTX 1660 Ti GPU.

Training. We train our network on the KITTI dataset.
Instead of selecting pairs based on fixed frame interval for
training as done by Simon et al. [7], we randomly select, given
one point cloud, another point cloud within a 10 m range in the
same sequence to form a pair, which can increase the robust-
ness of our approach. By doing this, we also get more samples,
which are 16,820 for training and 1,200 for test pairs. Ground
truth correspondences are found by projecting keypoints from
a point cloud to the other using the provided ground truth
pose. The ground truth matches are either keypoint pairs with
residuals smaller than a threshold ε or keypoint-dustbin pairs.
We set ε = 0.5 m, the same as that used in [25] for a fair
comparison. For the training, we use the Adam optimizer [41]
with a constant learning rate of 10−4 and a batch size of 64.

VI. EXPERIMENTAL EVALUATION

Our experiments are designed to show the capabilities of our
method. They furthermore support our two key claims. These
two claims are that our approach is able to (i) find feature
matches end-to-end (without requiring a predefined threshold
for determining the matches), and (ii) can better distinguish
the features and outperforms the state-of-the-art methods in
feature matching on the KITTI dataset.

A. Dataset and Evaluation Metrics

We evaluate the proposed matcher on the KITTI odometry
dataset [42]. The KITTI dataset contains 3D point cloud data
captured by a Velodyne HDL64 LiDAR with the ground truth
poses provided by GPS/INS system. Since the ground truth
poses are only available for sequences 00-10, we, therefore,
use sequences 00-09 for training, except 08 for validation and
sequence 10 for testing. To use USIP keypoint detector, we
follow the original work [25] to estimate the normal for each
point. To speed up the training and increase the robustness of
our approach, we randomly downsample the raw point cloud
into 16,384 points per frame.

The matching performance is evaluated using the matching
precision (P), accuracy (A), recall (R), and also F1-score.
Based on predicted matches, we directly estimate the transfor-
mation using singular value decomposition in the spirit of the
ICP algorithm. For evaluating the registration performance, we
follow the metrics used by Li et al. [25], which are registering
failure rate and inlier ratio. The registration failure rate is
calculated by comparing the estimated transform matrix T
to the ground truth transform matrix T g . The failure case
means relative translational error (RTE) > 2 m, or relative
rotation error (RRE) > 5◦. The inlier ratio is calculated as
inliers divided by the total keypoints number.

B. Matching and Registration Performance

We first evaluate the matching performance. We compare
our matcher with SuperGlue using multiple threshold settings
as well as SuperGlue combined with our assignment algo-
rithm. As shown in Tab. I, our matcher achieves the best

TABLE I: Matching performance.

Local
Matcher P A R F1

keypoints

USIP

Our Desc.+SuperGlue0.1 54.3 76.7 57.7 0.559

Our Desc.+SuperGlue0.2 57.6 75.8 49.2 0.531

Our Desc.+SuperGlue0.3 62.2 72.7 39.4 0.482

Our Desc.+SuperGlue# 57.7 72.2 35.4 0.439

Our Matcher 66.9 84.1 66.2 0.665

Subscript, e.g., 0.1 is the match threshold used in this estimation.

SuperGlue# uses the threshold-free assignment algorithm described in Sec. IV-C.

TABLE II: Registration performance.

Local
Matcher Failure rate Inlier ratio

keypoints

USIP

FPFH+RANSAC* 8.37 18.77

SHOT+RANSAC* 5.40 18.21

3DFeatNet+RANSAC* 1.55 22.48

USIP+RANSAC* 1.41 32.20

USIP+MaskNet [22]+DCP [34] 4.01 35.37

Our Desc.+SuperGlue# 5.51 23.05

Our Desc.+SuperGlue 0.58 36.19

Our Matcher 0.67 42.23

Superscript * means the results are reported by Li et al. [25].

matching performance under all criteria. Our matcher achieves
a substantial improvement of about 17% on recall (R), 9%
improvement on both, precision (P) and accuracy (A), and
22% in F1-score compared to the state-of-the-art SuperGlue,
which can also be seen in ROC curve in Fig. 3.

We then evaluate the registration performance. We compare
our method against several baselines: the hand-crafted descrip-
tors FPFH [26] and SHOT [43] together with RANSAC, and
the learning-based descriptor 3DFeatNet [24] and USIP [25]
with RANSAC, as well as SuperGlue [6]. As the pre-trained
model of USIP is not available, we directly compare our results
to the results provided in the original paper [25], which uses
the same setup as we used in this paper. Moreover, we provide
the results of the state-of-the-art feature matcher SuperGlue
with an extension from our side so that it works with 3D
point cloud instead of images, and SuperGlue is retrained
with our descriptor encoder on KITTI. We also compare
our method with the combination of MaskNet [22] with
DCP [34] which also includes filtering, contextual aggregation,
and matching. If there is no special statement, the results
of SuperGlue are generated using the best configuration with
matching threshold of 0.2. As shown in Tab. II, our network
achieves the best performance among all the baselines with
the highest inlier ratio while having a low registration failure
rate, on par with SuperGlue. Note that, SuperGlue has a big
performance decline using the threshold-free algorithm both
in matching and registration. The reason is that the threshold-
free assignment algorithm requires a discriminative assignment
matrix that clearly separates the matching and non-matching
pairs. The proposed MDGAT trained with our gap loss can
provide it, but SuperGlue cannot.
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Fig. 3: ROC curve. Our matcher outperforms the state-of-the-
art SuperGlue as well as an optimized SuperGlue version called
SuperGlue#, which uses our assignment algorithm described in
Sec. IV-C. Because no matching-threshold is required in our as-
signment algorithm, there is only one marker for our matcher and
SuperGlue# in the plot.

TABLE III: Ablation of descriptor encoder.

Local Descriptor
Matcher P A R F1

keypoints encoder

USIP

Our Desc. SuperGlue 57.6 75.8 49.2 0.531

PointNet

MDGAT

59.4 80.3 62.3 0.608

Global Desc. 63.9 82.6 63.2 0.635

Our Desc. 66.9 84.1 66.2 0.665

C. Ablation Study

We conduct ablation studies on our three key contributions:
the keypoint encoder, the MDGAT, and the gap loss.

Ablation of keypoints encoder. In this ablation study, we
compared three different designs of descriptor encoders. The
first descriptor encoder is a vanilla version of PointNet [29],
working directly on independent points sampled by the nearest
neighbor search. The second descriptor encoder is designed
inspired by PPFNet [30] and PointNet [29]. It takes the output
of our descriptor encoder (0)f and performs a symmetric func-
tion, max pooling, to extract global information, max((0)f).
We then concatenate the global vector with each local de-
scriptor [(0)f i‖max((0)f)]. An MLP is used to embed it into
a global-aware descriptor: (0)f ′ = MLP[(0)f‖max((0)f)],
fitting the input dimension D = 128 of MDGAT. As the
descriptor being able to aware of global information, we refer
to the first descriptor encoder as Global Desc. The third is the
one we used in the proposed method (Sec. IV-A), named as
Our Desc.

All the encoders use the same nearest neighbor search
range r = 1 m. We retrain our network with the above
encoders. This experiment shown in Tab. III demonstrates
that our descriptor with the simplest structure achieves the
best performance. The possible reason is that the self-attention
can be treated as global information aggregating, which is a
powerful and flexible mechanism and is further enhanced by
dynamic graph updating used in MDGAT. Thus, concatenating
global information as Global Desc. at the beginning during
encoding can be redundant and even cause the decline of
discrimination. It is the same to PointNet, which describes
the overall appearance using max pooling, and loses the local
details.

Ablation of MDGAT. In this ablation study, we evaluate

TABLE IV: Ablation of MDGAT.

Local
Matcher P A R F1

keypoints

USIP

Our Desc.+SuperGlue 57.6 75.8 49.2 0.531

MDGAT variant 1 62.1 81.6 61.8 0.619

MDGAT variant 2 64.9 83.3 65.9 0.653

MDGAT 66.9 84.1 66.2 0.665

MDGAT variant 1 uses kself
6,7 = kcross

6,7 = 128, kself
8,9 = kcross

8,9 = 64.

MDGAT variant 2 uses kself
1−7 = 128, kself

8,9 = 64, kcross
1−9 = 256.

MDGAT uses kself
6,7 = 128, kself

8,9 = 64, kcross
1−9 = 256.

TABLE V: Ablation on loss.

Local
Matcher Loss P A R F1

keypoints

USIP

Our Desc.+
raw loss 57.6 75.8 49.2 0.531

SuperGlue
triplet loss (hard) 62.1 82 62.8 0.624

gap loss 64.8 82.9 62.4 0.636

Our
raw loss 56.8 76.1 50.4 0.534

Matcher
triplet loss (hard) 61.8 81.9 61.6 0.617

gap loss 66.9 83.4 62.3 0.645

several variants of MDGAT. We refer the one using the first
7 layers kself

1−7 = 128, kcross
1−7 = 256, the last 2 layers kself

8,9 =
64, kcross

8,9 = 256 as MDGAT variant 1 and the one using 6, 7

layers kself
6,7 = kcross

6,7 = 128, the last 2 layers kself
8,9 = kcross

8,9 = 64
as MDGAT variant 2.

As shown in Tab. IV, comparing to other setups, the
gradually decreasing k design performs the best. The possible
reason is that it is more natural to firstly observe the overall
scene and then gradually focus on specific interests.

Ablation of the loss function. We evaluate our gap loss
comparing to the raw loss used in SuperGlue and the triplet
loss [40] using the hardest negative match, respectively. We
retrain both of our matcher and SuperGlue on three loss
functions and consequently get in total six different setups.
The evaluation results shown in Tab. V suggest that our gap
loss achieves the best performance. The results are not hard
to explain that compared to the raw loss, the gap loss is more
reasonable for the matching problem, and compared to the
triplet loss, the gap loss utilizing all the negative matches is
more efficient while being with barely any extra computational
burden in our case.

VII. CONCLUSION

In this paper, we present MDGAT-matcher, a novel neural
network-based keypoint matching approach for 3D point cloud
data. Our network consists of three components: a keypoint
encoder, a novel multiplex dynamic graph attention network,
and an assignment layer. It utilizes both, the local vicinity
information as well as contextual information to achieve better
keypoint matching. We propose a dynamic graph construction
with an attention mechanism to boost the network focusing
on the key interest points. By introducing a new gap loss, our
method can better distinguish true and false matches, and in
turn learns a discriminative assignment matrix. We evaluate
our approach on the KITTI odometry benchmark and provide
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comparisons to the state-of-the-art approaches, including both,
learned and hand-crafted ones. The experiments suggest that
our approach outperforms existing methods and achieves a
substantial improvement. In future work, we want to test our
approach in different environments and extend it for tackling
localization problem.
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