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Abstract— Fisheye cameras offer a large field of view, which
is important for several robotics applications as a larger field of
view allows for covering a large area with a single image.
In contrast to classical cameras, however, fisheye cameras
cannot be approximated well using the pinhole camera model
and this renders the computation of depth information from
fisheye stereo image pairs more complicated. In this work, we
analyze the combination of an epipolar rectification model for
fisheye stereo cameras with existing dense methods. This has
the advantage that existing dense stereo systems can be applied
as a black-box even with cameras that have field of view of
more than 180 deg to obtain dense disparity information. We
thoroughly investigate the accuracy potential of such fisheye
stereo systems using image data from our UAV. The empirical
analysis is based on image pairs of a calibrated fisheye stereo
camera system and two state-of-the-art algorithms for dense
stereo applied to adequately rectified image pairs from fisheye
stereo cameras. The canonical stochastic model for sensor points
assumes homogeneous uncertainty and we generalize this model
based on an empirical analysis using a test scene consisting of
mutually orthogonal planes. We show (1) that the combination
of adequately rectified fisheye image pairs and dense methods
provides dense 3D point clouds at 6-7 Hz on our autonomous
multi-copter UAV, (2) that the uncertainty of points depends on
their angular distance from the optical axis, (3) how to estimate
the variance component as a function of that distance, and (4)
how the improved stochastic model improves the accuracy of
the scene points.

I. INTRODUCTION

The ability to observe a large area in front of a camera
is important for several applications. As a result of that,
monocular and stereo cameras with a large field of view
are becoming more and more popular. Examples include
surveillance systems, unmanned aerial vehicles, see Figure 1
and [22], [28] or humanoid robots [4], [17], [19]. Camera
systems with a large field of view mainly use wide-angle or
fisheye lenses, mirrors, multiple cameras or rotating cameras.
Fisheye lenses are an attractive choice as they offer several
advantages in the image acquisition process such as a large
field of view, robust mechanics and availability of very small
form factors. They record a large field of view at each time
of exposure, they avoid difficult to calibrate mirrors, they are
comparably robust from a mechanical point of view and are
available at small form factors. Using pairs of fisheye cameras
allows to capture a large field of view stereoscopically, which
is useful for monitoring the space around the sensors e.g. for
obstacle avoidance. In contrast to classical cameras, however,
fisheye lenses do not follow a perspective projection and
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Fig. 1. Our UAV (left) equipped with fisheye stereo cameras with an
opening angle of 185◦. The paper describes how dense fisheye stereo
can be computed based on existing methods for perspective cameras and
analyzes the accuracy of the obtained point cloud from a theoretical and
experimental perspective. The overall system runs at 6-7 Hz on our copter
and provides 3D point clouds including information about its accuracy to
improve reconstruction.

cannot be approximated well using the pinhole camera model.
This holds especially for cameras with a field of view of more
than 180◦ and this often prevents the use of methods that
assume a perspective projection model. This paper targets
at computing dense stereo information from fisheye cameras
and provides a detailed analysis of the quality of the recoverd
3D points with respect to the fisheye specific light projection
on the image planes.

Traditional approaches to stereo vision rely on sparse points
for which the 3D position is estimated through triangulation.
The availability of sparse depth data only leads to more
difficult object segmentation [31], scene understanding, or
obstacle detection tasks. Thus, there is an increasing interest
in semi-dense and dense reconstruction approaches [5] with
applications in transportation systems [31], autonomous
cars [?], or unmanned aerial vehicles [26].

A central task in sparse as well as dense stereo methods is
to identify correspondences between the image pairs. By
exploiting the epipolar geometry, we can reduce the 2D
search problem to a simpler 1D problem. Depending on
the used projection model for calibration and rectification,
this 1D space corresponds to a straight line in a perspective
projection or to a more complicated curve, e.g. a circular line
in a stereographic projection [10]. Most systems for dense
stereo assume that this 1D space is a straight line in the
image, sometimes even that this line corresponds to a row
in the image. This assumption can prevent the direct use
of wide-angle or fisheye cameras with out-of-the-box dense
stereo algorithms.

The contribution of this paper is an approach for re-using
existing dense stereo methods with fisheye cameras. For this,
we follow the approach of Abraham and Förstner [1] and
generate virtual stereo image pairs that can then be used
with existing dense stereo methods that assume the epipolar



lines to correspond to a row in the image. This has the
great advantage that highly optimized existing dense stereo
methods can be applied as a black-box without modifications
even with cameras that have field of view of more than 180◦.
In this paper, we consider semi-global matching (SGM) by
Hirschmüller [14] and efficient large-scale stereo (ELAS) by
Geiger et al. [9] but our approach is not restricted to these
methods. Using the obtained disparity image, we derive a
dense 3D point cloud together with the uncertainty of each
single 3D point. We provide a detailed accuracy analysis of
the obtained dense stereo results. This requires a realistic
stochastic model for the disparities of the matched image
points. Core of the paper therefore is a rigorous variance
component estimation that optimally estimates the variance
of the disparity at a point as a function of the distance of that
image point to the image center and thus allows to predict
the accuracy of the 3D points. We evaluate the significance
of the improved stochastic model on scene reconstruction.

II. RELATED WORK

Stereo matching is a large research area and a substantial
number of algorithms for identifying stereo correspondence
has been proposed. An good overview is given by Scharstein
and Szeliski [25]. Over the last decade, more dense stereo
and reconstruction methods have been developed. Popular ap-
proaches include semi-global matching by Hirschmüller [14]
and efficient large-scale stereo by Geiger et al. [9]. Most of
the dense stereo techniques have been designed for perspective
cameras and cannot directly deal with the input of fisheye
cameras. The idea of combining fisheye camera calibration
and epipolar rectification for stereo computations goes back
to Abraham and Förstner [1], which presented a method that
can be seen as a specialization of the work by Pollefeys [24].
Esparza et al. [6] use a modified version of the epipolar
rectification model to allow for wide stereo bases and largely
disaligned optical axes. They apply epipolar rectification
only on the overlapping image parts which allows the fast
matching of detected keypoints along the image rows. Other
rectification approaches exists, for example for binocular
cylindrical panoramic images [15], which limits the vertical
field of view and do not lead to epipolar images.

A review of fisheye projection models is given by Abraham
and Förstner [1]. The work also provides an approach to
calibrate fisheye stereo camera systems. Tommaselli et al. [30]
showed that all the projection models in [1] are equally
suitable to model fisheye cameras by comparing the residuals
in 3D reconstruction after calibration. Fu et al. [8] determine
the intrinsic and extrinsic parameters of a camera system that
can consist of many overlapping fisheye cameras by using
a wand with three collinear feature points and provide a
toolbox online. Calibration approaches for a camera system
with non-overlapping fisheye cameras are described in [27]
and [11], both approaches use bundle adjustment without the
need of fiducial markers.

Wang et al. [32] gives a formula to calculate the loss
of spatial resolution of a fisheye camera with increasing
distance to the image center. Their approach improves

the image quality in regions with small spatial resolution
using compressive sensing assuming a equi-distant projection
model [34], but they do not provide a rigorous statistical
analysis of their results.

Computing stereo information from fisheye cameras has
also been investigated by other researchers. For example,
Kita [16] analyzes dense 3D measurements obtained with a
fisheye stereo camera pair with perfect calibration observing
the workspace of a humanoid robot. Herrera et al. [12]
propose a strategy for obtaining a disparity map from
hemispherical stereo images captured with fisheye lenses in
forest environments. To support the dense stereo process,
they segment and classify the textures in the scene and
consider only those matches belonging to the same class. Also
Moreau et al. [20] address dense 3D point cloud computation
using fisheye stereo pairs using epipolar curves with a unit
sphere model. Arfaoui et al. [2] use cubic spline functions
to model tangential and radial distortions in panoramic
stereovision systems to simplify stereo matching. They also
provide the mathematical relationship between matches to
determine 3D point locations. Compared to our approach,
neither Kita, Herrera et al., Moreau et al. nor Arfaoui et al.
can exploit existing dense stereo implementations as a black
box. Furthermore, they do not provide a detailed analysis of
the accuracy of their results.

In addition to the dense stereo approaches, several new
dense 3D reconstruction systems have been proposed in recent
years, for example, Dense Tracking and Mapping by New-
combe et al. [21] or the approach by Stühmer et al. [29] that
computes a dense reconstruction using variational methods.
The simultaneous optimization of dense geometry and camera
parameters is possible but a rather computationally intensive
task [3]. In order to deal the computational complexity for
real-time operation, semi-dense approaches are becoming
increasingly popular, e.g. [5] for even monocular cameras.

Visual 3D reconstruction received also quite some attention
in the context of light-weight UAV systems over the past
few years. Especially in this application, light-weight sensors
with a large field of view are attractive due to the strong
payload limitations. For example Pizzoli et al. [23] propose
a dense reconstruction approach for UAVs. They build upon
a single perspective camera and their approach combines
Bayesian estimation and convex optimization performing
the reconstruction on a GPU at framerate. Related to that,
combinations of perspective monocular cameras on an indoor
UAV and RGB-D cameras on a ground vehicle have been
used for simultaneous localization and mapping tasks aligning
the camera information with dense ground models [7]. In
contrast, our methods allows for using dense stereo methods
with fisheye camera used on UAVs and provides an estimate
of the accuracy of the returned point-cloud as illustrated in
the motivating example in Figure 1.

III. DENSE STEREO METHODS
FOR PERSPECTIVE CAMERAS

In our work, we consider two popular dense stereo methods
for computing a dense depth reconstruction given a stereo pair.



These two methods are efficient large-scale stereo (ELAS) [9]
and semi-global matching (SGM) [14]. Both have been
designed for calibrated perspective cameras and the output
of both methods is a disparity image.

ELAS [9] and its implementation LibELAS compute
disparity maps from rectified stereo image pairs and are
robust against moderate illumination changes. ELAS provides
a generative probabilistic model for stereo matching, which
allows for dense matching using small aggregation windows.
The Bayesian approach builds a prior over the disparity space
by forming a triangulation on a set of robustly matched
correspondences, so-called support points. ELAS applies a
maximum a-posteriori estimation scheme to compute the
disparities given all observations in the other image which
are located on the given epipolar line. This yields an efficient
algorithm with near real-time performance that also allows
for parallelization.

Semi-Global matching [14] aims at combining local and
global techniques in order to obtain an accurate, pixel-wise
matching at comparably low computational requirements.
It uses mutual information as the matching cost for cor-
responding points and the global radiometric difference is
modeled in a joint histogram of corresponding intensities.
An extension of SGM relies on the Census matching cost.
Census is slightly inferior to mutual information, if there are
only global radiometric differences, but it has been shown to
outperform the mutual information in the presence of local
radiometric changes and thus is beneficial in most real-world
applications [13].

SGM uses a global cost function that penalizes small
disparity steps, which are often part of slanted surfaces,
less than real discontinuities. The cost function is optimized
similarly to scan-line optimization and it finds an efficient
solution for the 1D case. The key idea in SGM is to perform
this computation along eight straight line paths ending in the
pixel considering symmetry from all directions. Each path
encodes cost for reaching the pixel with a certain disparity.
For each pixel and each disparity, the costs are summed over
the eight paths and at each pixel, the disparity with the lowest
cost is chosen.

IV. DENSE FISHEYE STEREO AND ITS ACCURACY

This section describes our approach to obtain a dense
3D point cloud together with its uncertainty information
using a stereo camera with fisheye lenses. The following two
subsections introduce the equi-distance model. It describes the
fisheye-specific light projection and the epipolar rectification
model for fisheye cameras proposed in [1] that makes com-
mon dense stereo methods applicable. The third subsection
describes how we compute the dense 3D point cloud with its
uncertainty through variance propagation using the disparity
information.

A. Fisheye Model

The fisheye specific projection from a 3D ray to a 2D
image point can be described using the so-called equi-distance
model, which is a reasonable first-order approximation for the
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Fig. 2. Left: Camera ray kx specified by angles φ and α in camera frame
with optical axis z. Right: Relation between direction angles and conditioned
image point coordinates x∗.

Fig. 3. The projection of the epipolar planes inside the rows according
to (3). Each pixel coordinate of rectified image corresponds directly to the
angles β and ψ.

intrinsically non-perspective projection of fisheye lenses [33].
The equi-distance projection model projects a 3D camera ray
kx = [kx, ky, kz]T in the camera reference frame (indicated
by superscript k), whose orientation is specified by the two
angles φ and α as depicted in Figure 2, into a 2D position

x∗ =

[
x∗

y∗

]
=

 atan2(kr,kz)
kr

kx
atan2(kr,kz)

kr
ky

= sinφ

[
cosα
sinα

]
(1)

with kr =

√
kx

2
+ ky

2. Note that the projection is radial
symmetric in relation to the optical axis. The radial distance in
the conditioned image r∗ =

√
x∗2 + y∗2 = φ only depends

on the angle φ between the 3D ray kx and the optical axis and
becomes a monotonously increasing function, which allows
for a field of view even larger than 180◦.

The relation of conditioned image point x∗ to its uncon-
ditioned coordinates is given by x′ = c x∗ − h with the
principal point h = [hx, hy]

T and the principal distance c
obtained by camera calibration e.g. according to [1]. Given
a 2D point x∗, the inverse transformation of (1) into a 3D
camera ray reads as

kx =
[
kx, ky, kz

]T
=

[
sin r∗

r∗
x∗,

sin r∗

r∗
y∗, cos r∗

]T
. (2)

In Section IV-C, we will use this model to propagate
the positional uncertainty of an observed image point to its
corresponding camera ray. Note that we have not introduced
additional parameters for lens distortion and assume them to
be negligible small after proper calibration.

B. Epipolar Rectification

In a camera pair with two projection centers, all epipolar
planes intersect at the baseline. Despite ideal properties of
the stereo cameras like parallel optical axis, the introduced
equi-distant projection model does not lead to images where
each 3D point is projected into the same row in both



cameras, thus the epipolar lines are curved. To obtain parallel
epipolar lines such that the vertical disparity vanishes and the
correspondence search can be reduced to a one-dimensional
search along the image rows, we use the epipolar rectification
model proposed by [1]. We exploit the concept of a virtual
camera to achieve a rectification for the image pair that is
independent of the real projection system and leads to ideal
properties: identical interior orientation with no distortions,
no camera rotation and a baseline in one axis direction. The
epipolar equi-distance rectification model projects the epipolar
planes to the same image row in both images.

The projection function is given by

x∗ =

 atan2

(
kx,

√
ky

2
+ kz

2

)
atan2

(
ky, kz

)
 =

[
β
ψ

]
(3)

where the coordinates of the conditioned image point x∗

correspond directly to the angles ψ and β that describe the ray
to the observed 3D point as shown in Figure 3: β characterizes
the pitch angle of each epipolar plane and ψ characterizes
the projection inside the epipolar plane, i.e. the image row.

For image rectification principal distance c and principal
point h from calibration can be used. Given an image pixel
position x′ in the rectified image the corresponding angles
are than obtained by the relation [β, ψ]

T
= (x′ − h)/c .

The transformation from conditioned image position x∗

into a ray direction kx with unit length is given by
kx = [sinx∗, cosx∗ sin y∗, cosx∗ cos y∗]

T
. (4)

C. 3D Point Cloud with Uncertainty
We derive the 3D point coordinates with their uncertainty

through variance propagation given an image point with
its disparity information. Let Σx′x′ describe the positional
uncertainty of the image point x′ = [x′, y′]T in the unrectified
image given by

Σx′x′ = Diag([σ2
x′ , σ

2
y′ ]). (5)

For the fisheye lenses, we use the equi-distant camera model
according to Section IV-A. Using the principal distance c and
principal point h from calibration, we obtain the conditioned
image coordinates x∗ with their covariance matrix Σx∗x∗ as

x∗ = (x′ − h) /c and Σx∗x∗ = Diag([σ2
x′ , σ

2
y′ ])/c

2. (6)

This yields the corresponding camera ray kx according to
(2) and its covariance matrix through variance propagation

Σkxkx = J1Σx∗x∗JT
1 (7)

with

J1=


sin(r∗)y∗2+cos(r∗)x∗2r∗

(x∗2+y∗2)3/2
(cos(r∗)r∗−sin(r∗))y∗x∗

(x∗2+y∗2)3/2

(cos(r∗)r∗−sin(r∗))y∗x∗
(x∗2+y∗2)3/2

cos(r∗)y∗2r∗+sin(r∗)x∗2

(x∗2+y∗2)3/2

− sin(r∗)x∗

r∗ − sin(r∗)y∗

r∗

. (8)

Given the previously defined rectification, we obtain the
angles ψ and β from a ray kx according to (3) and for the
covariance matrix follows

Σ[
β
ψ

] = J2ΣkxkxJT
2 (9)

with

JT
2 =


√
ky2+kz2

kx2+ky2+kz2
0

−kxky√
ky2+kz2(kx2+ky2+kz2)

kz
ky2+kz2

−kxkz√
ky2+kz2(kx2+ky2+kz2)

−ky
ky2+kz2

 . (10)

As the corresponding camera rays do intersect in one
point (as β is identical for both rays), we can determine
its coordinates easily. Let s be the distance from the left
camera along the camera ray kx to the unknown 3D point
p = s kx. Camera ray kx can be derived with β and ψ
according to (4). To compute s, we use the angles β and ψ
and the ψ-disparity γψ given with the image coordinates of
corresponding points, see also Figure 3. Note that the apical
angle, i.e. the intersection angle, complies with the disparity
angle

γψ = γx′/c (11)

with the measured disparity γx′ in the epipolar rectified image
and the principal distance c used for this rectification. This
can be shown using the angular sum γψ = 180◦ − ψ′1 − ψ′2
with the interior angles ψ′1 = 90◦−ψ and ψ′2 = 90◦+ψ−γψ .

Exploiting the law of sines, we obtain

s = b
sin (90◦ + ψ − γψ)

sin γψ
= b

cos (ψ − γψ)
sin γψ

, (12)

with b being the base line, which leads to the 3D coordinates
of the point p as

p(ψ, β, γψ) = b
cos (ψ − γψ)

sin γψ

 sinψ
cosψ sinβ
cosψ cosβ

 . (13)

With the vector q = [ψ, β, γψ]
T, the covariance matrix of p

is obtained through

Σpp = J3 Diag([Σ[
β
ψ

], σ2
γψ

]) JT
3 with J3 =

∂p

∂q
. (14)

The individual elements of J3 in (14) are the partial
derivatives of (13) and are best obtained using a symbolic
calculation toolbox such as Mathematica or Maple and are
not shown here due to the sake of brevity.

V. IMPROVED STOCHASTIC OBSERVATION MODEL

We start with a standard stochastic model for the observed
entities. The sensor coordinates of the images points are
assumed to be identically and independently distributed
ID([x′i; y

′
i]) = σ2

x I2 and the disparities are assumed to have
the same variance ID(γψ) = σ2

γψ
. Due to the properties of

the optics, we can expect in a first approximation that the
accuracy of the sensor coordinates depends on the angle φ
between the viewing direction and the direction to the scene
point.

In order to determine this dependency, we observe planar
surfaces in a scene and analyze the residuals using a robust
version of variance component analysis leading to a refined
or improved stochastic model for the observation’s variances.
Using a stochastic model which is closer to reality should



Fig. 4. Left images: Stereo camera with fisheye lenses and highly textured and mutually orthogonal planes A1, A2 and A3 used for variance analysis.
Upper right images: Stereo image pair. Lower right: Image pair after epipolar rectification. Note that all epipolar lines of the left and right image are in the
same row.

lead to better estimates of the plane’s parameters. We will
check this empirically by analyzing orthogonal planes.

A. Variance Analysis

Classical estimation procedures assume the covariance
matrix Σll of the n = 1, ..., N observations to be known up to
an unknown variance factor, where l refers to the observations.
Thus, the stochastic model is assumed to be Σll = σ2

0Σ
a
ll,

where Σall is an approximation for the covariance matrix, and
the unknown variance factor σ2

0 is assumed to be one. Based
on a Gauss-Markov model of the form

p(l) = N (Ax+ a, σ2
0Σ

a
ll) (15)

with the Jacobian A and U unknown parameters, we obtain
the ML-estimate

x̂ = Σx̂x̂ATΣ−1ll (l− a) (16)

with the covariance matrix

Σx̂x̂ = (ATΣ−1ll A)−1. (17)

With the estimated residuals v̂ = Ax̂ + a − l and the
redundancy R = N − U , we have the unbiased estimated
variance factor

σ̂2
0 = v̂TΣ−1ll v̂/R with σσ̂0

=
√
2/Rσ0 . (18)

For an improved stochastic model, we now assume that
the variances of the observations follow the model

Σll =

J∑
j=1

σ2
jΣ

a
j (19)

with known approximate covariance matrices and unknown
variance factors, also called variance components, σ2

j . In our
case, we assume

σ2
l′n

= σ2
1 + σ2

2φ
2p
n (20)

i.e. the noise of the sensor coordinates is a sum of a constant
noise term n1 with p(n1) = N (0, σ2

01) and a noise term n2

proportional to the p-th power φpn of the angle φn referring
to the n-th observation, thus p(n2) = N (0, σ2

02). As we will
illustrate in the experimental evaluation through the analysis
of the variance factors computed for different angles φ, this
models describes the noise in relation to φ well.

This leads to the two covariance matrices

Σa1 = IN and Σa2 = Diag([φ2pn ]) . (21)

With the weight or precision matrix W ll = Σ−1ll of the
observations and the covariance matrix Σv̂v̂ = Σll−ATΣx̂x̂A,
the general and the specific expressions for the estimated
variance components are

σ̂2
j =

v̂TW llΣ
a
jW llv̂

tr (W llΣajW llΣv̂v̂)
. (22)

In our case, this simplifies to the relations

σ̂2
1 =

∑
n w

2
nv̂

2
n∑

n w
2
nσ

2
v̂n

and σ̂2
2 =

∑
n w

2
nv̂

2
nφ

2p
n∑

n w
2
nσ

2
v̂n
φ2pn

. (23)

The estimated variance factors lead to an updated covariance
matrix of the observations as in (19) and we apply the
estimation procedure iteratively until convergence.

B. Orthogonality Improvement

The improved stochastic model should lead to better
estimates of the plane’s parameters. In case of mutually
orthogonal planes the angle ω between the estimated normal
directions should get closer to 90◦ than when using the classic
stochastic model.

Estimating the orthogonal planes N times using different
stereo images leads to n = 1, ..., N deviations ωn − 90◦.
The empirical variance σ̂2

ω = 1
N

∑
n(ωn − 90◦)2 and the

theoretical variance σ2
ω derived from covariance matrix Σx̂x̂

of both estimated planes should (a) indicate an higher
precision than when using the classical model and (b) confirm
empirically the plausibility of the stochastic model if σ̂ω
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Fig. 5. The red dots show 30 robust estimates for standard deviation σ̂l′
using the residuals of narrow ranges of φ, the blue line shows the estimated
functional model of σ̂l′ over angle φ.

and σω comply with the relative accuracy of (18), i.e. if
σ̂ω/σω ≈

√
2/N holds.

VI. EXPERIMENTAL EVALUATION

The goal of this experimental evaluation is to illustrate
that dense fisheye stereo can be achieved and to investigate
the accuracy of dense stereo with fisheye cameras using
the epipolar rectification model. For the evaluation, we use
a stereo camera with a basis of 20 cm and Lensagon
BF2M14420 fisheye lenses with a field of view of 185◦.
We calibrated the stereo camera by estimating the interior
and relative orientation according to [1] using the epipolar
equi-distant rectification model. For epipolar rectification, we
use a camera constant of c = 200 pixel to keep most of the
image content in 752 × 480 images. After rectification the
disparity between corresponding points is limited to the same
image row, see Figure 4.

A. Variance Analysis
For the first two sets of experiments, we use three highly

textured and mutually orthogonal planar surfaces, see Figure 4,
for evaluating the variance analysis described in Section V.
To analyze the accuracy of the observations in dependency
of the angle φ, we capture the three planar surfaces under 30
different poses such that the planes are visible over a broad
spectrum of φ. For each image pair, we use ELAS and SGM
to determine dense disparity information. For ELAS, we use
the default settings for robotic environments as well as the
default settings for SGM.

For each pixel with disparity information, we obtain the
coordinates of a 3D point p in camera frame using (13). We
compute the covariance matrix Σpp according to (14) using a
standard stochastic model with identically and independently
distributed image points and disparities σγx′ = σx′ = σy′ =
1 pixel. We then estimate for each of the 30 captured stereo
pairs the three normal directions of the three planes A1, A2

and A3 in a robust RANSAC procedure using the covariance
weighted residuals of the points to identify outliers.

We directly obtain the residual for every inlier point by
computing its distance to the plane in the direction of the
normal directions whereas each point belongs either to A1,
A2 or A3. Using all transformed points from all 30 stereo
pairs with their angle φ from the optical axis of the camera,
we estimate the best plane and update the variance factors σ̂1
and σ̂2 according to (20). This is done iteratively, updating
the estimated variance factors and scaling the covariance
matrices Σpp according to the point specific angle φ.
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Fig. 6. Estimated standard deviation σ̂l′ over angle φ using disparities
from ELAS (solid, blue) and SGM (dashed, red).

We use the exponent p = 8 in (20) as this model describes
the robust determined variances of the residuals over φ best.
The dots on the red line in Figure 5 indicate the obtained
standard deviations using a robust version of variance factor
estimation. For this, we determine the variance of the residuals
for narrow ranges of φ, by partitioning the set of all φn in
30 equally sized bins. For each bin, we use σ̂l′ = 1.48MAD
with the median absolute difference (MAD) of the residuals
to obtain a robust estimate for the standard deviation, see [18]
for details. The blue line in Figure 5 shows the estimated
functional model of σ̂l′ in (20) in dependency of φ with p = 8,
which is close to the 30 determined standard deviations.

Figure 6 shows the estimated standard deviation σ̂l′ after
convergence in dependency of φ using the disparities obtained
with ELAS (as in Figure 5) and SGM. Both curves have the
similar shape and the difference amounts about 0.2 pixel. As
this figure shows, measurements having an angle φ less than
40◦ from the optical axis have the highest and nearly constant
precision of 0.3 and 0.5 pixel. Beyond 40◦ the precision
degrades revealing the substantially smaller precision of
the disparities towards the image borders. By knowing this
function, we can now exploit this information in the improved
stochastic model.

B. Orthogonality of Planes

Table I shows the empirically derived mean and standard
deviation of all derived 30 angles. The improved stochastic
model that considers the influence of φ on the precision of
the 3D points leads in all cases to smaller deviations from
orthogonality and is therefore closer to reality. The empirically
derived standard deviations σ̂w of the angles between the
planes confirm a higher precision. The theoretic standard
deviation σω that can be obtained given our model is on
average 0.424 (ELAS) and 0.676 (SGM) times smaller using
the estimated variance factors we obtained in practice. The
quotient σ̂ω/σω is throughout in the range of

√
2/30 around

one hence the proposed improved stochastic model of the
observation process complies with the empirical results.

C. Application Examples

Finally, we want to illustrate that the described approach is
able to build dense 3D point clouds in real world situations.
Therefore, we show results from an indoor and outdoor scene.

Figure 7 shows the point cloud derived from a stereo image
taken in an office with the fisheye stereo camera described
before. The disparity information is obtained with ELAS
on the epipolar rectified images. The color of each point
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Fig. 7. Left: Point cloud obtained with disparity information from ELAS. The intensity values correspond to the image content of the left image; Right:
Color according to the position accuracy of 3D point, which ranges from 5 cm to 20 cm (green high, red low accuracy).

6 (A1,A2) 6 (A1,A3) 6 (A2,A3)
ELAS
classical 89.69◦ ± 1.49◦ 90.23◦ ± 0.89◦ 89.74◦ ± 0.96◦
improved 89.93◦ ± 0.63◦ 90.02◦ ± 0.65◦ 90.04◦ ± 0.36◦

SGM
classical 89.95◦ ± 1.29◦ 89.92◦ ± 1.19◦ 89.80◦ ± 0.58◦
improved 89.93◦ ± 0.76◦ 89.94◦ ± 0.84◦ 89.87◦ ± 0.30◦

TABLE I: Empirically derived mean and std. deviation σ̂ω of the 30 estimated
angles ω between two orthogonal planes using the disparity information
from ELAS/SGM and the classical or the improved stochastic model.

corresponds in the left image to the recorded pixel intensity. In
the right image, the intensities are overlaid with the theoretical
precision obtained with the estimated variance model. The
color spectrum goes from green for points with highest
precisions of about 5 cm over yellow to red for points with
lowest precision up to 20 cm. Highest precision is achieved
for points on the desk as the angles of intersecting rays from
both cameras (γψ) are high and the angle φ is small in the
center of the image (see Figure 7). Points on the wall behind
the desk have smaller disparity angles γψ thus less precision
(yellow). The precision decreases with angle φ and leads to
more noisy 3D points more distant to the camera axis (red).

In the last example, we compare the point cloud of a
agricultural surface obtained with a fisheye stereo image taken
from our copter with a reference point cloud. To compare
both point clouds a rigid body transformation was estimated
using corresponding 3D points. The reference point cloud
has a point accuracy of about 1 cm and was obtained by
bundle adjustment and a subsequent densification using high
resolution images taken with high-end equipment. The stereo
camera is tilted with 45◦ towards the ground and the dense
depth information from the fisheye stereo image pair is shown
in Figure 8. It depicts the colored reference point cloud
overlayed with the fisheye cloud. The different color encoding
shows the absolute error for each point and the histogram
illustrates the error distribution. As can be seen, the quality
of dense stereo information decays away from the optical
axis as the stochastic model predicts. Areas with high errors
also have a high theoretical uncertainty.

D. Remarks

The processing of a fisheye stereo image pair which
includes the rectification, disparity determination and mapping
of the 3D points takes in our ROS implementation 150 ms per
image pair using the default robotics parameters in ELAS thus
enables real-time applications. Thus, we can process stereo

Fig. 8. Point cloud obtained from a single 752×480 pixel fisheye image
pair overlayed with a reference point cloud. The histogram illustrates the
distribution of the absolute distances between nearest neighbours encoded
with different colors. The black star marks the position of the copter at the
time of exposure.

images with 6-7 Hz, which is suited for online operation in
several application scenarios.

Our experiments suggest that in combination with fisheye
epipolar rectification, ELAS and SGM can both be used for
dense fisheye stereo and both methods perform similarly.
The precision of the 3D points decreases with angle φ.
For φ > 40◦, the precision drops substantially and leads
to more noisy 3D points more distant to the optical axis. This
information can be exploited within the observation model.
In our experiments, the improved model for the noise in
the observations yields a better estimate than the standard
model. The theoretic standard deviation σω is on average
between 0.42 and 0.68 times smaller than the ones obtained
experimentally.



VII. CONCLUSIONS

In this paper, we analyzed an approach to exploit existing
dense stereo methods with wide-angle and fisheye cameras
that have a field of view of more than 180◦. By conducting
fisheye calibration and epipolar rectification beforehand, we
can use existing state-of-the-art dense stereo methods as a
black box. We thoroughly investigated the accuracy potential
of such a fisheye stereo approach and derived an estimate
of the uncertainty of the obtained 3D point cloud. We
furthermore generalized the canonical stochastic model for
sensor points based on an empirical analysis. We showed
(1) that adequately rectified fisheye image pairs and dense
methods provides dense 3D point clouds at 6-7 Hz, (2) that
the uncertainty of image points depends on their angular
distance from the center of symmetry, (3) how to estimate
the parameters of a variance component model, and (4) how
the improved stochastic model for the observations influences
the accuracy of the 3D points. Please note that our method
is not limited to a specific fisheye stereo camera system. The
limitations of the disparity determination correspond directly
to the limitations of the used dense stereo algorithm, e.g. in
structureless environments.

ACKNOWLEDGMENT

The authors would like to thank Christian Eling and Lasse
Klingbeil from the University of Bonn for their support during
the UAV experiments.

REFERENCES

[1] S. Abraham and W. Förstner. Fish-eye-stereo calibration and epipolar
rectification. ISPRS Journal of Photogrammetry and Remote Sensing
(JPRS), 59(5):278–288, 2005.

[2] A. Arfaoui and S. Thibault. Mathematical model for hybrid and
panoramic stereovision systems: panoramic to rectilinear conversion
model. Applied Optics, 54(21):6534–6542, 2015.

[3] M. Aubry, K. Kolev, B. Goldluecke, and D. Cremers. Decoupling
photometry and geometry in dense variational camera calibration. In
Proc. of the IEEE Intl. Conf. on Computer Vision (ICCV), 2011.

[4] M. Bennewitz, C. Stachniss, W. Burgard, and S. Behnke. Metric local-
ization with scale-invariant visual features using a single perspective
camera. In European Robotics Symposium, pages 143–157, 2006.

[5] J. Engel, J. Sturm, and D. Cremers. Semi-dense visual odometry for
a monocular camera. In Proc. of the IEEE Intl. Conf. on Computer
Vision (ICCV), pages 1449–1456, 2013.

[6] J. Esparza, H. Helmle, and B. Jähne. Wide base stereo with fisheye
optics: A robust approach for 3d reconstruction in driving assistance.
In Proc. of the German Conf. on Pattern Recognition (GCPR), volume
8753 of Lecture Notes in Computer Science, pages 342–353, 2014.

[7] C. Forster, M. Pizzoli, and D. Scaramuzza. Air-ground localization and
map augmentation using monocular dense reconstruction. In Proc. of
the Intl. Conf. on Intelligent Robots and Systems (IROS), pages 3971–
3978, 2013.

[8] Q. Fu, Q. Quan, and K.-Y. Cai. Calibration of multiple fish-eye cameras
using a wand. IET Computer Vision, 9(3):378–389, 2014.

[9] A. Geiger, M. Roser, and R. Urtasun. Efficient large-scale stereo
matching. In Proc. of the Asian Conf. on Computer Vision (ACCV),
volume 6492 of Lecture Notes in Computer Science, pages 25–38,
2010.

[10] J. Heller and T. Pajdla. Stereographic rectification of omnidirectional
stereo pairs. In Proc. of the IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), pages 1414–1421, 2009.

[11] L. Heng, M. Bürki, G.H. Lee, P. Furgale, R. Siegwart, and M. Pollefeys.
Infrastructure-based calibration of a multi-camera rig. In Proc. of the
IEEE Intl. Conf. on Robotics & Automation (ICRA), 2014.

[12] P.J. Herrera, G. Pajares, M. Guijarro, J.J. Ruz, and J.M. Cruz. A
stereovision matching strategy for images captured with fish-eye lenses
in forest environments. IEEE Sensors Journal, 11:1756–1783, 2011.

[13] H. Hirschmüller. Semi-global matching – motivation, developments and
applications. In Proc. of the Photogrammetric Week, pages 173–184,
2011.

[14] H. Hirschmller. Stereo processing by semi-global matching and
mutual information. IEEE Trans. on Pattern Analalysis and Machine
Intelligence (TPAMI), 30(2):328–341, 2008.

[15] H. Ishiguro, M. Yamamato, and S. Tsuji. Omni-directional stereo.
IEEE Trans. on Pattern Analalysis and Machine Intelligence (TPAMI),
14(2):257–262, 1992.

[16] N. Kita. Dense 3d measurement of the near surroundings by fisheye
stereo. In Proc. of the Conf. on Machine Vision Applications, pages
148–151, 2011.

[17] N. Kita. Direct floor height measurement for biped walking robot
by fisheye stereo. In IEEE Intl. Conf. on Humanoid Robots, pages
187–192, 2011.

[18] K.R. Koch. Parameter Estimation and Hypothesis Testing in Linear
Models. Springer Berlin, 2 edition, 1999.

[19] D. Maier, C. Stachniss, and M. Bennewitz. Vision-based humanoid
navigation using self-supervised obstacle detection. The Int. Journal
of Humanoid Robotics (IJHR), 10, 2013.

[20] J. Moreau, S. Ambellouis, and Y. Ruichek. Equisolid fisheye
stereovision calibration and point cloud computation. In ISPRS Archives
of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, volume XL-7/W2, pages 167–172, 2013.

[21] R.A. Newcombe, S. Lovegrove, and A.J. Davison. Dtam: Dense
tracking and mapping in real-time. In Proc. of the IEEE Intl. Conf. on
Computer Vision (ICCV), 2011.
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