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Abstract— Online pose estimation and mapping in unknown
environments is essential for most mobile robots. Especially au-
tonomous unmanned aerial vehicles require good pose estimates
at comparably high frequencies. In this paper, we propose an
effective system for online pose and simultaneous map estima-
tion designed for light-weight UAVs. Our system consists of two
components: (1) real-time pose estimation combining RTK-GPS
and IMU at 100 Hz and (2) an effective SLAM solution running
at 10 Hz using image data from an omnidirectional multi-
fisheye-camera system. The SLAM procedure combines spatial
resection computed based on the map that is incrementally
refined through bundle adjustment and combines the image
data with raw GPS observations and IMU data on keyframes.
The overall system yields a real-time, georeferenced pose at
100 Hz in GPS-friendly situations. Additionally, we obtain a
precise pose and feature map at 10 Hz even in cases where the
GPS is not observable or underconstrained. Our system has
been implemented and thoroughly tested on a 5 kg copter and
yields accurate and reliable pose estimation at high frequencies.
We compare the point cloud obtained by our method with a
model generated from georeferenced terrestrial laser scanner.

I. INTRODUCTION

Maps are needed for a wide range of applications and most
robotic navigation systems rely on maps. Building such maps
is often referred to as the SLAM or simultaneous localization
and mapping problem and a large number of different
techniques to tackle this problem have been proposed in
the robotics community. Popular filtering approaches rely
on Kalman filters or particle filters and to emphasize their
incremental nature, such filtering approaches are usually
referred to as online SLAM methods. In contrast to that, most
optimization approaches estimate the full trajectory and not
only the current pose. They address the full SLAM problem
and typically rely on least-squares or related optimization
techniques.

SLAM for light-weight UAVs such as the platform shown
in Figure 1 is challenging for several reasons: First, the
sensors and computers have to be light-weight and are
often not comparable to high-quality sensors and powerful
computers used on ground robots. Second, UAVs lead to
full 6 DoF SLAM and several simplifying assumptions that
are reasonable for wheeled robots cannot be made. Third,
autonomous UAVs require good pose estimates at high
frequencies and in near real-time to allow for a stable control
of the platform. In addition to that, one is – at least for
surveying applications – interested in building a model that
accurately reflects the real geometry of the scene.
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Fig. 1: Our 5 kg UAV platform equipped with several sensors used
for effective online pose estimation and mapping on the platform.

The contribution of this paper is a highly integrated
system for fast and effective pose estimation and mapping
on light-weight UAVs. Our system provides pose estimates
at 100 Hz combining real-time kinematic GPS (RTK-GPS)
and an inertial measurement unit (IMU). In contrast to most
existing systems, our pose estimate is computed using GPS
carrier phase ranges and runs fully onboard on a light-
weight UAV. This 100 Hz solution can be used to control the
copter. In addition to that, we provide an incremental SLAM
solution at 10 Hz that is also computed fully on the copter,
fusing multiple fisheye stereo cameras, IMU, and raw GPS
measurements. The exploitation of GPS carrier phase ranges
allows us to even exploit measurements in underconstrained
situations, i.e., if only one or two satellites are visible.
The estimation is done in a statistically sound manner and
provides accurate 6 DoF pose estimates of the platform as
well as accurate 3D locations of the feature points. We have
implemented and tested our system partially as ROS modules
and partially in hardware to meet the real-time constraints.
As our evaluation shows, we provide accurate pose estimates
at the given frequencies, we can handle underconstrained
GPS situations well, and the resulting 3D models are accurate
and georeferenced.

II. RELATED WORK

Simultaneous pose estimation and mapping has always
been a central research focus in mobile robots, independently
of the type of robot. This includes wheeled robots, under-
water system, or unmanned aerial vehicles. Thus, a large
number of SLAM system have been proposed.

Whenever UAVs operate outdoors, they typically make
use of GPS observations for global positioning without a
direct need of performing the mapping task simultaneously.
Usually, GPS-based state estimation on light-weight UAVs



is based on a L1 C/A-code GPS receiver, MEMS inertial
sensors and a magnetometer [1], [2], [3]. Such a sensor com-
bination only leads to global position accuracies of approx. 2-
10 m and attitude accuracies of approx. 1-5 deg. This is often
good enough to autonomously follow waypoints, but it is
typically insufficient for UAV control or for geodetic-grade
surveying and mapping applications.

The first systems that realized cm-accurate real-time kine-
matic GPS (RTK-GPS) solutions on UAVs, were presented
in [4], [5], [6], [7]. In none of these developments, however,
the position and attitude estimation is performed in real-time
onboard of the UAV platform. Especially for the UAV control
and precise autonomous flight, a real-time solution is key
to robust operation. Since early 2015, comparably precise
commercial state estimation systems for light-weight UAVs
can be purchased. Examples are the Ellipse-D system by
SBG [8] or the APX-15 UAV by Applanix [9], both launched
this year. In order to build a highly integrated SLAM system
– as the one proposed in this paper – it is important to
have access to all raw measurements as well as the state
estimation algorithms. Therefore, we developed an own
hardware system with full control over the measurements,
algorithms, and internal states. This enables us to effectively
couple the RTK-GPS state estimation with our SLAM sys-
tem and to incorporate camera information, inertial sensor
readings, and GPS carrier phase measurements on the level
of raw observations in real-time onboard of the UAV. This
furthermore enables us to handle underconstrained RTK-
GPS situations effectively, yielding a system that provides
accurate and reliable state estimates at 100 Hz and 10 Hz,
depending on the exploited sensor modalities.

In the context of the simultaneous localization and map-
ping problem, with or without the use of GPS, graph-based
approaches to SLAM are a popular framework since around
20 years. After the work of Lu and Milios [10], several
systems have been proposed. For example, Dellaert and
Kaess [11] focus on exploiting sparse matrix factorizations.
The incremental variant by Kaess et al. [12] exploits partial
reorderings to compute the sparse factorization. Others in-
vestigate the use of stochastic gradient descent [13], [14] for
SLAM in 2D and 3D.

While most of the SLAM back-ends are independent from
the sensing modality, several systems have been tailored
to visual SLAM. In this context, dense 3D reconstruction
approaches have been proposed such as DTAM by New-
combe et al. [15] or the approach by Stühmer et al. [16],
which computes a dense reconstruction using variational
methods. Optimizing the dense geometry and camera param-
eters is possible but a rather computationally intensive task,
see [17]. To tackle the computational complexity for real-
time operation, semi-dense approaches have been proposed,
for example by Engel et al. [18].

Due to the low weight of cameras, visual reconstruction
techniques received considerable attention for light-weight
UAVs. Pizzoli et al. [19] propose a reconstruction approach
for UAVs that combines Bayesian estimation and convex
optimization. They execute the reconstruction on a GPU at

frame rate. Also combinations of cameras on an indoor UAV
and RGB-D cameras on a ground vehicle have been used
for simultaneous localization and mapping tasks aligning
the camera information with dense ground models [20].
Harmat et al. [21] adapted the parallel tracking and mapping
(PTAM) algorithm by Klein and Murray [22] to handle
omnidirectional multi-camera systems to estimate the pose of
a small UAV. Onboard methods for autonomous navigation
of an UAV exploiting Kalman filter to process stereo camera
and IMU input are presented in [23] and [24], in the latter
additionally with laser input. Ellum [25] investigate the
accuracy and reliability of tight coupling of raw GPS code
pseudo-ranges into a offline bundle adjustment.

Our system described in this paper combines several
techniques. Parts of the individual components have been
previously published outside the robotics community and
are only described briefly here. The incremental visual pose
estimation using multiple fisheye stereo cameras is subject
of [26], [27], the fast pose estimation at using RTK-GPS and
IMU is subject of [28], [29], [30], [31]. The key novelties
here are the combination of the pose estimation at 100 Hz
using RTK-GPS and IMU as well as the online estimation
at 10 Hz fusing all sensor modalities on the same light-
weight UAV platform. Furthermore, our 10 Hz SLAM so-
lution can exploit information from underconstrained RTK-
GPS situations, i.e, less then four available satellites, due to
the integration of raw carrier phase ranges and it provides
accurate estimates comparing the resulting models to those
of terrestrial laser scans.

III. FAST AND EFFECTIVE ONLINE STATE ESTIMATION
FOR LIGHT-WEIGHT UAVS

The first subsection describes the high-speed pose es-
timation using a Kalman filter and RTK-GPS and IMU
to provide a 100 Hz pose estimate. The second subsection
describes our 10 times slower approach that uses image
data from a multi-fisheye-camera system for spatial resection
for pose determination and combines the visual information
with the RTK-GPS and IMU information in a graph-based
SLAM/bundle adjustment manner.

A. Pose Estimation at 100 Hz using RTK-GPS and IMU

The GPS provides two types of observations for the
positioning of mobile objects. The first type of observations
are the code ranges (e.g. C/A code) and the second ones are
carrier phase ranges on multiple frequencies (L1, L2, and
L5). Geodetic-grade survey receivers measure the phase of
these signals with an accuracy of 1-2% of their wavelength.
Since the carrier phase wavelengths are approx. 20 cm and
the C/A-code wavelength is approx. 300 m, the former leads
to substantially higher accuracies and is therefore key to
realize a cm-accurate positioning with GPS.

GPS positioning of mobile objects based on carrier phase
ranges in real-time is called RTK-GPS and it is a relative
positioning procedure. This means, that the unknown coor-
dinates of a movable station (the UAV) are determined with
respect to a stationary master station. The advantage of this



relative positioning is an improved accuracy that comes from
single- and double-differencing of the observations, see [32].
By using single-differences, which are calculated from a
signal of one satellite measured at both receivers (UAV and
the master), the satellite clock bias as well as the atmosphere
refractions can be reduced significantly. Double-differences
are calculated from the single-differences of two satellites
and therefore eliminate the receiver clock bias and other
receiver dependent effects.

The main difficulty in RTK-GPS processing is, that the
receiver is only able to measure the fractional part of a
carrier wave cycle, while the remaining integer number
of cycles is inherently unknown. Resolving this number
is called ambiguity resolution and it is the key to RTK-
GPS positioning. Especially in kinematic applications, it
has to be very fast and robust at the same time, since the
satellite signals may be interrupted for short times quite
frequently, and this always requires a re-initialization of the
ambiguities. The method most commonly used to resolve
the ambiguities is the least-squares ambiguity decorrelation
adjustment (LAMBDA) [33]. To allow for a fast and robust
ambiguity resolution, we use the inertial sensor readings and
the magnetic field observations to aid the ambiguity float
solution, which is the process of estimating the ambiguities
as real values. This is done within the GPS/IMU integration
using the Kalman filter described below.

Our GPS/IMU integration is based on a strapdown al-
gorithm [34]. We determine the high dynamic movement
of the system by integrating the angular rates and the
accelerations of the MEMS IMU with a rate of 100 Hz.
Within a Kalman filter update (10 Hz) the GPS and the
magnetic field observations are used to bound the inertial
sensor drift.

In the filter, the navigation equations of the body-frame,
denoted with b, are expressed in an earth-fixed frame, de-
noted with e. The full state vector x includes the position
xe and the velocity ve, represented in the e-frame. For
the attitude determination, we use a quaternion qe. The
accelerometer bias bb

a and the gyro bias bb
ω are represented

in the b-frame and are estimated as well. Further the real
valued ambiguity parameters Njk

R,M are estimated so the state
space becomes:

x =
[
xeT veT qeT bbT

a bbT
ω NjkT

R,M

]T

. (1)

The observations in the measurement model are:
1) DD carrier phase observations on the L1 and the L2

frequency, measured in the e-frame, with a rate of
10 Hz,

2) DD code ranges on the L1 and the L2 frequency,
measured in the e-frame, with a rate of 10 Hz,

3) magnetic field observations, measured in the b-frame,
with a rate of 10 Hz,

4) onboard GPS attitude baseline vector, expressed in the
e-frame, with a rate of 1 Hz, see [29].

The estimated real valued ambiguities now have to be fixed
to integer numbers. This is done by applying the modified

Fig. 2: The 100 Hz RTK-GPS/IMU state estimation board.

LAMBDA method [35], which leads to faster computation
times than the original LAMBDA approach. The ambiguity
resolution can take a few measurement epochs, but usually
the ambiguities can be fixed instantaneously. Due to the
GPS/IMU integration, cycle slips in the carrier phases can
be detected and repaired reliably, see [36] for further details.

As soon as the ambiguities have been resolved for all
satellites, the double- differenced carrier phase observations
including the resolved ambiguities are provided to the 10 Hz
visual SLAM process explained in the subsequent section.

To address the need for a flexible, small and lightweight
solution to process the navigation solution in real-time on
the UAV, we developed a custom sensor system based on
a 400 MHz processor and an FPGA, see Figure 2. Our
setup includes a geodetic-grade GPS receiver (Novatel OEM
615), a low-cost single-frequency GPS Chip (Ublox LEA6T),
an IMU (Analog devices ADIS16488) and a magnetometer
(Honeywell HMC5883L). The dual-frequency GPS receiver
is used for the RTK-GPS positioning as described above.
At the same time, the antennas of both GPS receivers form
a short baseline on the UAV platform, see Figure 1, which
improves the heading determination, since the magnetometer
is usually distorted by any hard and soft iron effects or the
currents of the rotors. The usage of a real-time operating
system on the sensor board in combination with the FPGA
enables a high-frequency and time deterministic acquisition
of all sensor readings. Furthermore, all computations includ-
ing Kalman filter and ambiguity resolution is computed on
this board so that no external computations are needed and
the pose estimate can directly be fed into the flight-controller
of the UAV. The total weight of the UNIT is 240 g and the
dimensions are 11 cm × 10.2 m × 4.5 cm. More details can
be found in [30].

B. Online Pose Estimation and Mapping at 10 Hz Fusing All
Sensor Modalities

Compared to the previous section, we describe here a
ten times slower estimation procedure without real-time
guarantees. In contrast to the 100 Hz solution, it allows us to
incorporate all sensing modalities and to compute a feature
map of the environment.



Our current setup utilizes four fisheye cameras that are
triggered simultaneously at 10 Hz. We refer to images taken
at the same time of exposure as a frame set. The pose
determination of each frame set relies on image feature points
with known association to scene points in an incrementally
refined and extended map. The estimation and refinement
of the map is performed in an parallel running bundle
adjustment on selected keyframes that also integrates the
double differences from GPS as well as IMU data. All
processing is done on an onboard PC. The overall process
consists of the following steps:

1) The data acquisition and association detects feature
points and performs the matching to provide corre-
sponding image points to the previous frame set and
the other cameras.

2) The orientation of each frame set with fast resection
provides a fast pose estimate and allows to select
keyframes.

3) An incremental bundle adjustment merges the new in-
formation at a keyframe with the previous information
in a statistically optimally way.

We aim at efficient methods for reliable data association, for
fast pose determination, and to target on an outlier-free infor-
mation for the bundle adjustment step. Our optimization also
considers the GPS and IMU information. This optimization
step is the most costly one as it uses all available data on
the selected keyframes. To avoid long computation times, the
optimization is performed with the incremental optimization
by Kaess et al. [12]. The remainder of this section describes
the three steps in detail.

Our approach requires calibrated cameras. We calibrate
each fisheye camera in advance according to [37]. For cali-
bration, we model the fisheye objective with the equidistant-
model described in [38] allowing for ray directions with an
angular distance larger than 90◦ to the viewing direction.
The mutual orientation of the fisheye cameras in the multi-
camera system is determined in advance as described in our
previous work [39]. Further, we observe GPS control points
in the images to derive the offset of the camera-system to
the phase center of the GPS antenna.

1) Visual Data Acquisition and Association: Our visual
pose estimation and mapping procedure exploits point fea-
tures extracted from the images. To allow for handling four
cameras onboard the copter, an efficient feature extractor is
essential. To this end, we select KLT features that are tracked
in the individual cameras. We detect interest points that are
corners in the gradient image with a large smallest eigenvalue
of the structure tensor, cf. [40] and track them with the
iterative Lucas-Kanade method with pyramids according
to [41]. Figure 3 shows an example of tracked interest points
in the four fisheye images of a frame set.

Having calibrated cameras each tracked feature point can
be converted into a ray direction x′ that points in the
individual camera system to the observed scene point. The
uncertainty of the image coordinates can be transformed to
the uncertainty of x′ via variance propagation yielding Σx′x′ .
In all cases, the covariance matrix of the camera rays is

Fig. 3: Synchronized triggered frame set of the four fisheye cameras.
Each image contains around 200 feature points that are tracked
using a KLT tracker.

singular, as the normalized 3-vector only depends on two
observed image coordinates. To match interest points in
the overlapping images of each stereo camera pair, we use
correlation coefficients and exploit epipolar geometry to
reduce candidates on the corresponding epipolar lines within
their propagated error bounds.

We use the camera rays with its covariance information for
the spatial resection at frame rate (see Sec. III-B.2) and for
incremental bundle adjustment on keyframes (see Sec. III-
B.3).

2) Fast Pose Estimation: In our approach, we use feature
maps, which are defined as a set of scene points X = {Xi}.
In theory, the location of these scene points and the pose
of the camera system can be estimated through bundle
adjustment (BA) directly. Given the computational demands,
it is impossible to compute a BA solution at 10 Hz on
the copter. Therefore, we execute the BA only on selected
keyframes at around 1 Hz. To compute the camera poses
and between the keyframes, we compute the UAV poses by
spatial resection on each frame set.

The location of the points are initialized at the first
acquired frame set by forward intersecting the matched ray
directions in the stereo pairs. The frame set that initializes
X is chosen as first keyframe K1.

After initialization of the map, the motion Mt of the
camera system in relation to the map is computed at frame
rate using resection. For resection we use scene points Xi

that are observed in cameras c = 1, ..., 4 at time t and exploit
the known system calibration Mc to consider the multiple
projection centers. Mc describes the known transformation
of each single camera c to the reference frame of the UAV
and Mt describes the unknown transformation of the UAV
reference frame into the reference coordinate system of the
map at time t, thus Mt contains the pose parameters of the



UAV. An estimated pose Mt induces the residual

vitc = null(x
′T
itc)

TN
(

P M−1
c M−1

t Xi

)
(2)

of an observed ray direction x′itc pointing to homogeneous
scene point Xi in camera c at time t. The homogeneous scene
point Xi is transformed with the inverse motion matrices
Mt and Mc into a single camera and is projected with
P = [I3|03] into the predicted direction, which is spherically
normalized to unit length with N(x) = x/|x|. To reduce the
number of error equations per observed direction from three
to two, making the two degrees of freedom of the observed
direction explicit, we project the predicted direction into the
tangent space of the observed ray direction x′itc, i.e. the null
space of x

′T
itc, see [42]. Note that motion matrices Mc are

determined in advance with a rigorous bundle adjustment
following [39].

We optimize the six pose parameters of Mt with an
iterative maximum likelihood-type estimation with the robust
Huber cost function [43] that down weights observations with
large residuals. The estimation of the pose parameters for Mt

converges in 2-3 fast iterations using Mt−1 as initial value.
This allows a robust pose estimation at a high frame rate.

To obtain a near outlier-free input for BA, we exploit the
estimated weight in the Huber cost function. Observations
with low weights are considered as outliers and are not used
in BA and excluded from tracking.

3) Keyframe-Based Incremental Bundle Adjustment: The
last step in the SLAM pipeline is keyframe-based visual
SLAM or bundle adjustment. This optimization step consid-
ers the camera images but also incorporates the GPS DD
observations as well as the IMU measurements. For the
optimization, we rely on iSAM2 [12], which models the
problem as a factor graph. Each node on the factor graph
corresponds to a keyframe pose (Mt) or a 3D scene point
(Xi). The nodes are connected through factors that result
from the different observations,

We add a new keyframe Kt in case a certain geometric
distance to the last keyframe Kt−1 is exceeded. Each new
keyframe contains two kinds of observations, x1 and x2,
where x1 are the observations of scene points that are already
in the map and x2 denotes those observing new scene points.
With each new keyframe the map is expanded by forward
intersetion with observations x2. Note that only x1 has been
revised from outliers in the robust pose estimation described
previously. In order to identify outliers in x2 based on their
residuals we require a track to consist of at least three
keyframes for mapping.

The map X and keyframe poses in K are simultaneously
refined using bundle adjustment with integrated GPS and
IMU information.

a) Integration of camera rays: For bundle adjustment
we use the measurement equations in Eq. (2) that is not
linear in the scene point and pose parameters of Xi and
Mt. The linearization is shown in detail in [42]. In terms
of factor-graphs each observed camera ray x′itc produces a
factor f(Mt,Xi).

UAV Master 

Sat i Sat j 

Fig. 4: Double differences are determined using the distances ρ
between the known positions of the GPS satellites and the master
and the approximate UAV position.

b) Integration of DD Carrier Phase Observations: To
integrate the GPS double differences, the keyframe poses
need to be in the GPS coordinate system. Therefore, we
initially require to have a unique GPS solution, for which at
least three double differences are needed. When initializing
the BA, we first determine the positions of the first five
keyframes with GPS coordinates and do not integrate double
differences into the BA. From the 5th keyframe with a
GPS position on, we estimate a similarity transformation
and transform all keyframe poses and the map into the GPS
system.

Then, we integrate the DD carrier phase observations by
adding a factor f(Mt) for the L1 and L2 frequency to the
factor graph. For the measurement equation, the coordinates
of the GPS satellites and the master receiver is needed,
see [32].

Figure 4 depicts a double differences measurement. The
measurement equation for the phase carrier double differ-
ences is

DD + vDD = (ρjl − ρ
j
k)− (ρil − ρik) (3)

where ρ are distances between receivers and satellites as
in Figure 4 and vDD the residuals. The double differences
between all satellites and a reference satellite form the joint
double differences measurement and thus a factor for the
optimization.

c) Integration of IMU: The measured IMU rotation
angles are integrated over the time between two following
keyframes leading to the observed angles ω with the rotation
matrix R(ω). The measurement equation reads as R(ω +
vω) = RT

t−1Rt with residuals vω and is integrated with
factor f(Mt−1,Mt).

d) Incremental Optimization using iSAM2: For our on-
line application, the processing of a new keyframe Kt needs
to be finished by the time the next keyframe is added. Each
new information is incrementally merged with the previous
information, yielding a fast statistically optimal solution for
the bundle adjustment using iSAM2.

Linearization of the non-linear model at the initial values
as linearization points leads to the least squares optimization
problem

∆̂x = argmin
∆x

‖A∆x− b‖2Σ (4)

with the Jacobian A that contains block entries for each
observation, right hand side (RHS) vector b, unknown up-
dates ∆x for the scene point and pose parameters and for



Fig. 5: Trajectory of the UAV flight overlayed with a georeferenced
3D model of a near-by building.

proper weighting the covariance matrix Σ that contains the
covariance matrices of all observations.

As new measurements often have only a local effect and
fill-in may become expensive, iSAM2 encodes the condi-
tional density of cliques in a so-called Bayes tree, which
allows for an efficient incremental reordering, just-in-time
relinearization and partial solving, when parameters change
only locally. For more details, see [12].

IV. EXPERIMENTS

Our experimental evaluation is designed to illustrate the
performance of our approach and to support the main claims
made in this paper. These key claims are that our approach
(i) offers accurate pose estimation for light-weight UAVs at
high frequencies, (ii) exploits incomplete GPS observations
with less than 4 satellites, (iii) provides highly accurate and
georeferenced pose and map estimation.

For evaluation, we recorded all sensor data with our UAV
under good GPS conditions, with 5 to 8 visible satellites.
This allows us to manually eliminate GPS observations and
evaluate the effect on the overall state estimation procedure.
The flight used for this evaluation was guiding the UAV along
the facade of a house, the variation in position is around 60 m
and 15 m in height, see Figure 5. An exemplary frame set
out of the image sequence is shown in Figure 3. The dataset
contains 3,368 frame sets recorded at 10 Hz and in each
image, around 200 features are tracked. The SLAM system
initiates a keyframe each 1 m, resulting in 274 keyframes and
online SLAM starts at take off on the ground and ends at
the landing.

The first experiment is designed to show the obtained
accuracy of the estimated keyframe poses during the whole
flight. To obtain the theoretical accuracy, we extract the
covariance information, when the bundle adjustment is in-
crementally solved at a new keyframe. This is too time
consuming for online processing but can be done as an
offline evaluation. Figure 6 shows the theoretical accuracy
of the position and orientation of the copter at the estimated
keyframes. The rotation angles get more accurate, if enough
GPS observations constrain the rotation estimation. The
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Fig. 6: Theoretical accuracy of position and orientation angles of
copter at keyframes. The high long-time precision in the position
is provided by the RTK-GPS, the high precision of the rotations is
due to the high relative orientation accuracy obtained with bundle
adjustment by considering the visual information.

east [cm]
-6 -4 -2 0 2 4 6

co
un

t

0

20

40

60

80

100

north [cm]
-6 -4 -2 0 2 4 6

co
un

t

0

20

40

60

80

height [cm]
-10 -5 0 5 10

co
un

t

0

10

20

30

40

Fig. 7: Residuals between incrementally estimated positions of
keyframes for the GPS double differences.

highest rotational precision of 0.5◦ is preserved from the
50th keyframe until landing. The uncertainty is confirmed
empirically with the estimated variance factor being in the
order of one, assuming a image point accuracy of 2 pixel. The
image point accuracy of 2 pixel may be seen as somewhat
low, but results from the frame-wise KLT tracking.

In addition to that, Figure 7 shows the residuals of the
GPS DD measurements after optimization, which are within
the uncertainties of RTK-GPS solution. As expected, one can
also see a larger uncertainty in the height estimate than in
the two other directions.

We also evaluate the differences between the 100 Hz
Kalman filter solution under GPS-friendly conditions and the
bundle adjustment solution. The visual information improves
the pose estimate and the differences in each axis direction
of the UTM coordinate system between both estimates is on
average 1.1 cm in east and north direction and 3.2 cm for the
height.

The second experiment is designed to demonstrate the
potential of our approach to handle underconstrained GPS
situations, i.e., situations in which less than 4 satellites are
available. Standard GPS receives report a GPS loss and can-
not estimate a solution. Through the combination of visual
SLAM and DD measurements, we can however compute a
solution and exploit individual double differences. As can
be seen from the trajectories shown in Figure 8, exploiting
two DD measurements (3 satellites) improves the trajectory



Fig. 8: The three estimated trajectories show the benefit of oper-
ating on raw GPS DD measurements. The red line represents the
trajectory exploiting full GPS information (5-8 satellites) and is con-
sidered as the reference trajectory. Assuming that only 3 satellites
are available, the combination of only 2 GPS DD measurements
with visual information leads to the solution shown in blue that
is much closer to the red reference trajectory than the GPS-free
solution shown in black, which could not exploit underconstrained
GPS measurements.

estimates substantially and thus is a valuable information for
UAV operating in GPS-unfriendly environments.

The last experiment shows the highly accurate mapping
that is possible using our system. To evaluate the quality
of our map estimates, we mapped the house along which
the copter flew with a terrestrial laser scanner and precisely
georeferenced the recording location so that the point cloud
can also be compared to a georeferenced near ground truth
3D model.

As the map build using our copter is also georeferenced,
both models can be compared without any further alignment.
We compare our reconstruction with the georeferenced ter-
restrial laser scan to evaluate the quality of the determined
poses, see Figure 9. The median of the absolute differences
to the nearest neighbors in each axis direction is around
1 cm. A robust MAD estimation in the component-wise
deviations results in about 3 cm and 50% of all points that
have a distance smaller than 5 cm to the nearest neighbor.
The full distribution is given in the histogram in Figure 9.
This experiment shows that our approach generated accurate
georeferenced 3D point clouds online.

All computations are performed onboard the copter, which
is equipped with a standard 3.6 GHz Intel CPU with 4
cores and the Kalman filter runs on the real-time board. All
steps except the optimization is done at 10 Hz for all four
cameras and the BA optimization runs once per second and
is completed between the next keyframe is created and the
next optimization would be triggered.

In sum, our experimental evaluation shows that the pro-
posed system offers accurate pose estimation for light-weight
UAVs at 100 Hz and 10 Hz. Our visual SLAM system can
furthermore exploit underconstrained RTK-GPS observations
with less than 4 satellites, which reduces the drift in com-
parison to SLAM systems with traditional GPS integration.
Through the effective fusion of GPS, IMU, and visual
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Fig. 9: Top: Point cloud from reconstruction using high resolution
images (red) and point cloud from terrestrial laser scan (textured).
Bottom: Histogram of the distances between the individual points
from the SLAM system and the terrestrial laser scan.

information, we can compensate GPS- unfriendly situations.
Finally, we compared our 3D point cloud to a georeferenced
near ground truth 3D model providing an objective measure
of the quality of the computed point cloud. In this way, the
experimental evaluation supports our claims.

V. CONCLUSION

In this paper, we presented an effective system for online
pose and simultaneous map estimation designed for light-
weight UAVs. Our system combines real-time GPS and IMU
integration at 100 Hz including GPS ambiguity resolution
and provides a real-time kinematic solution. In addition to
that, we presented an effective bundle adjustment solution ex-
ploiting RTK-GPS carrier phase observations, IMU data and
visual SLAM in an incremental fashion at 10 Hz. The overall
system yields a robust pose estimate at high frequencies
and can handle underconstrained GPS situations effectively.
The components running at 100 Hz have been implemented
on a light-weight, real-time hardware board and the other
components are software ROS modules and everything runs
online on a 5 kg multi-copter. By comparing our results
with models generated from georeferenced terrestrial laser
scanners, we show a deviation of the median to our point
clouds of less than 1 cm.
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