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Abstract. This paper presents a system for direct geo-localization of a
MAV in an unknown environment using visual odometry and precise real
time kinematic (RTK) GPS information. Visual odometry is performed
with a multi-camera system with four fisheye cameras that cover a wide
field of view which leads to better constraints for localization due to long
tracks and a better intersection geometry. Visual observations from the
acquired image sequences are refined with a high accuracy on selected
keyframes by an incremental bundle adjustment using the iSAM2 al-
gorithm. The optional integration of GPS information yields long-time
stability and provides a direct geo-referenced solution. Experiments show
the high accuracy which is below 3 cm standard deviation in position.

Keywords: visual odometry, incremental bundle adjustment, fisheye
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1 Introduction

Micro aerial vehicles (MAVs) can operate from above in areas that are inacces-
sible from the ground such as hazardous environments. They become more and
more important for example as low cost and flexible platforms for monitoring
changes in agriculture, inspection of buildings and the wide field of surveillance
purposes. In order to autonomously navigate in an unknown environment, the
MAV must be able to perform self-localization. The position of the MAV is usu-
ally determined by a combination of GPS and IMU measurements, in which GPS
maintains the long-term stability and provides geo-referencing. But an accurate
position cannot be guaranteed e.g. when the GPS signal is obscured. In this case
a fully autonomous operating MAV has to rely on alternative localization sys-
tems. Visual odometry has proven to be very effective on MAVs, as cameras are
lightweight and the orientation and position can be recovered using the on-line
acquired image sequence.

The MAV we use for our work in the research project Mapping on De-
mand [12] is based on a MikroKopter OktoXL assembly kit. The on-board sens-
ing of a lightweight MAV has to be designed with regards to its limitation in
size and weight, and the limited on-board processing power requires highly ef-
ficient algorithms. Our platform is equipped with a GPS unit, an IMU, a high
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Fig. 1. The MAV based on the Okto XL frame set with its sensor and processing
components setup

resolution camera and four fisheye cameras, which are mounted as two stereo
pairs, one looking ahead and one looking backwards, providing a large field of
view at each time of exposure. Computation power is provided by an on-board
computer (Intel Core i7, 8GB RAM) which is based on an EPI-QM77 embed-
ded PC board. The arrangement of the components is shown in Fig. 1. The two
cameras are used besides obstacle detection [17] together with the GPS-unit and
IMU for ego-motion estimation. The RTK GPS and IMU is processed on-board
in a direct geo-referencing unit described in [5]. Under favourable conditions it
can provide the position and orientation of the MAV with an accuracy of under
2 cm and 1◦, respectively. Our task is to fuse the geo-referenced ego motion with
the visual odometry and to use it as an initial estimate for the orientation of the
images of the high resolution camera, for near real-time surface reconstruction
on a ground station, which is connected to the on-board computer through Wifi.

In contrast to single cameras and traditional stereo setups, an omnidirectional
multi-camera setup covers a wider field of view, which leads to better constraints
for localization. The four cameras with Lensagon BF2M15520 fisheye lenses with
a field angle up to 185◦ capture four image sequences with a frame rate of 10 Hz
in a synchronized way, see Fig. 2. The basis between the cameras of a stereo pair
amounts to 20 cm providing highly overlapping views at each time of exposure.
The monochromatic images have a resolution of 752×480 pixels.

Bundle adjustment is the work horse for orienting cameras and determining
3D points as it is statistically optimal and highly efficient in case sparse matrix
operations are used. Factor graph based optimization frame works like g2o have
been shown to solve such problems efficiently by exploiting the characteristic
structure [13]. Nevertheless, the computational expense rapidly grows with the
number of involved images.
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Fig. 2. Left: The omnidirectional multi-camera system as it is mounted on the MAV.
Right: An example frame set consisting of four images taken with the four fisheye
cameras

Many visual odometry systems use PTAM [11] which runs in real-time by par-
allelizing the motion estimation and mapping task simultaneously and by using
a keyframe-based bundle adjustment. However, it is not designed for large-scale
outdoor environments and it is restricted to monocular and perspective cam-
eras. To overcome the problem of continuously growing optimization problems,
so called sliding window filters or local bundle adjustments are used that keep
computational cost small enabling real-time applications [16], [6]. More recently
the incremental optimization frame work iSAM2 has been released [10]. The
incremental optimizer avoids periodical batch steps with recurring calculations
by performing only calculations for entries of the information matrix, i.e. the
normal equation matrix or inverse covariance matrix, that are actually effected
by new measurements. Only a subset of all contained variables are relinearized
and solved, which is realized by using the Bayes tree representation [9]. Fill-in
is avoided through incrementally changing the variable ordering.

Multi-camera systems are regularly used for odometry, especially stereo cam-
era systems, e.g. [15], [22] and more than two cameras e.g. in [14] or [8]. Fisheye-
Cameras, see e.g. [1], catadioptric cameras, see e.g. [3] or omnidirectional cam-
eras, see [23] ensure stable geometric positioning and full scene coverage due to
their large field of view.

In this paper we treat the issue of visual odometry for real-time egomotion
estimation using the synchronized images of the omnidirectional multi-camera
system in a keyframe based fast incremental bundle adjustment using the iSAM2
algorithm [10]. To obtain longtime stability and to ensure the localization-system
against sensor malfunctions, highly accurate GPS information can be integrated.

The paper is organized as follows. In the next section, we present our system
for visual odometry. The image processing for data acquisition and reliable data
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association and the robust orientation of a set of frames taken in a synchronized
way is presented. Further, we describe how the sparse non-linear incremental
optimization algorithm iSAM2 is applied to avoid periodic batch bundle adjust-
ment steps on sets of keyframes. The paper is based on previous work published
in [19] where first results using the iSAM2 algorithm for visual odometry in a
Matlab prototype are shown. In section 3 we present first results of the visual
odometry and the integration of GPS. Finally, we conclude and give an outlook
on our future work in section 4.

2 Concept for Visual Odometry

2.1 Overview

Visual odometry is the process of determining the pose of the cameras in real-
time by using the associated image sequences. Our real-time system uses feature
points and consists of several steps:

1. The data acquisition and association detects feature points, performs the
matching and provides camera rays associated with the previous and the
other camera images.

2. The fast orientation of individual frames provides a robust solution and ap-
proximate values for the subsequent bundle adjustment and allows to select
keyframes.

3. The incremental bundle adjustment uses the new information at a keyframe
and merges it optimally with the previous information and optionally with
GPS/IMU processed pose information.

The last step uses all available data and is therefore the most costly one. To
ensure real-time capability it needs to be efficient and the previous steps have
to guarantee outlier free information. Therefore we chose for the third step the
software package iSAM2 for “incremental smoothing and mapping” and aim at
efficient and robust methods for reliable data association. The steps are now
described in more detail.

2.2 Data Association

The data association in our visual odometry system is based on interest points,
which are tracked simultaneously in the individual cameras by running four
threads in parallel. We use the OpenCV implementation of the KLT tracker:
Interest points are corners in the gradient image with a large smallest eigenvalue
of the structure tensor [21], that are tracked using the Lucas-Kanade implemen-
tation with pyramids according to [4]. Fig. 2 shows an example of 50 extracted
feature points in the four images of the fisheye cameras.

Each tracked feature point is converted into a ray direction, i.e. a normal-
ized direction vector, that points to the observed scene point in the individual
camera system. The fisheye lenses are modelled with the equidistant-model de-
scribed in [1] which allows for ray directions that have a larger angle than 90◦
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Fig. 3. Two frames taken in the left and right camera of a stereo pair. The extracted
feature point in the left image on the rightmost car has the drawn epipolar line in the
right image. The matching point in the right image lies on the indicated yellow line
and the corresponding local image patches show a high correlation

to the viewing direction. The interior orientation of each camera is determined
by camera calibration according to [2] using Chebyshev polynomials. Using the
equidistant-projection and applying all corrections to the feature points we ob-
tain image points ex. The spherically normalized ray direction xs can be derived
by using the radial distance r = |ex| that grows with the angle between the
viewing direction and the camera ray. The uncertainty of each image point can
be transformed to the uncertainty of the associated spherically normalized ray
direction xs via variance propagation yielding Σxsxs . Note that the covariance
matrix of the camera rays is singular, as the normalized 3-vector only depends
on two observed image coordinates.

Feature points in the overlapping images of a stereo camera pair are matched
by using the correlation coefficients between the local 7×7 image patches at the
feature points in the left and right images. The rotation R2

1 and translation t21
from the left into the right camera of the respective stereo pair is determined in
advance according to [18]. We can use this information to reduce the amount of
possible correspondences to feature points lying close to the corresponding epipo-
lar lines, see Fig. 3, by statistically testing the contradiction to the coplanarity
constraint [xs

1,R
2
1t

2
1,x

s
2]. We assume feature points with the highest correlation

coefficient ρ1 to match, if ρ1 is above an absolute threshold, e.g. 0.8, and – if
there is more than one candidate close to the epipolar line – the closest-to-
second-closest-ratio r = ρ2/ρ1 with the second highest correlation coefficient ρ2
is lower than an absolute threshold, e.g. 0.7. Finally, we counter-check if this
criterion holds also for all feature points in the left image if there are more than
one feature points fulfilling the coplanarity constraint. In some rare cases this
procedure leads to wrong matches, which can be detected later with a third
observing ray from another pose.
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Fig. 4. A two-camera system with fisheye cameras c = 1, 2 with projection centers Ztc,
rigid motion Mc and time-varying motion Mt, having a field of view larger than 180◦

shown at two exposure times t = 1, 2 observing two points Xi, i = 1, 2, X1 being close
by and X2 at infinity

2.3 Localization of each Frame

We use a map which consists in our context of a set of scene points X = {Xi, i =
1, ..., I}. The map is initialized on the initiating frame set by using the matched
ray directions in a stereo pair.

The initiating frame set is chosen as the first keyframe with pose Mk. The
index k denotes a motion of a set of keyframes Kk of all keyframe sets K =
{Kk, k = 1, ...,K} ⊂ T = {Tt, t = 1, ..., T}, taken out of the set T of all frame
sets Tt, t being the index referring to the triggered time of exposure of a set of
frames. If a pose from the direct georeferencing unit is available, it is used to
define the coordinate system of the map. Otherwise the first keyframe is fixed
with an an arbitrarily chosen pose Mk.

After initializing the map, robust estimates for the motion Mt of the MAV
in the map are computed in a continuously running thread at each time of
exposure t via simultaneous resection of all cameras. We use a generalized camera
model with multiple projection centres c = 1, ..., 4 and known system calibration,
described by the motion Mc of each single camera from the camera system.
The measurement equation, which considers mutually fixed single view cameras,
allows the single cameras to be omnidirectional and allows for far or ideal scene
points, reads as

vitc = JT(xitc)N
(
[I 3|03]M−1c M−1t Xi

)
(1)

with the homogeneous scene point Xi, motion matrices Mt and Mc, and the
observed and spherically ray direction xs

itc and residual vitc of scene point i in
camera system k at time t, see Fig. 4, whereby J(x) = null(xT) and N(x) = x/|x|.

We determine the solution for the six pose parameters of Mt by a robust itera-
tive maximum likelihood-type estimation down weighting observations with large
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residuals by minimizing the robust Huber cost function [7]. The rigid motions
Mc are determined in advance using a rigorous bundle adjustment estimating
the system calibration [18]. We use the last determined pose Mt−1 as the initial
approximate value. The estimation of Mt then converges in most cases after 2-3
iterations. This procedure is very robust and time-effective, and allows to detect
wrong data associations and to orientate with high frame rates. A track of ob-
servations getting a low weight is excluded from tracking and is not considered
in the following frames any more.

2.4 Keyframe-based Incremental Bundle Ajdustment

The applied bundle adjustment refers to sets of keyframes, which reduce the
processing to some geometrically useful, tracked observations. A new keyframe
set with motion Mk is initiated in case a geometric distance to the last keyframe
set with motion Mk−1 is exceeded, e.g. 1 m or 30◦. In case a new keyframe set
is initiated, the observations xikc are used to update and refine the scene points
in X and poses in K in the incremental bundle adjustment, which runs then in
a separated thread.

The tracked observations are classified into two sets, x1 and x2, where x1
are the observations of scene points that are already in the map and x2 denotes
those observing new scene points. The map is continually expanded as a new
keyframe set is added. Initial values for new tracked scene points are obtained
by triangulation with observations x2. A new scene point has to be observed
at least on three keyframe sets to get affiliated to the map. Its coordinates
are determined using forward intersection. Care has to be taken with the sign:
We assume the negative Z-coordinate of each camera system to be the viewing
direction. The homogeneous representation of the scene points then need to have
non-negative homogeneous coordinates Xi,4. In case of ideal points, we therefore
need to distinguish the scene point [Xi; 0] and the scene point [−Xi; 0], which
are points at infinity in opposite directions. Intersected scene points that show
large residuals in the observations are put on the blacklist and deleted in the data
association. Observations x2 are assumed to be revised from corrupted tracks via
the former robust resection.

The map X and the set of poses in K are simultaneously refined using the
bundle adjustment approach of [20]. The approach uses bundle of rays, allows for
multi-camera systems and can numerically deal with points at infinity e.g. points
at the horizon. The measurement equation reads as

vikc = JT(x′ikc)N
(
[I 3|03]M−1c M−1k Xi

)
(2)

and is not linear in the scene points and pose parameters of Xi and Mk. The
linearization of the non-linear model at the actual linearization points is shown in
detail in [20]. We use the proposed model within the incremental solver iSAM2.

If available, pose information from the direct georeferencing unit for Mk are
incorporated as direct observations of the pose parameters. For proper weight-
ing the provided covariance information of the georeferencing unit is used. The
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Fig. 5. On each acquired set of frames a new motion Mt (green) is determined by
resection using the observed scene points in map X . After a certain motion distance,
e.g. 1 m or 30◦, a keyframe is initiated (red). At every keyframe, an incremental bundle
adjustment step is performed to refine all keyframes Mk in K and scene points in map
X

offset in rotation and translation between the camera system and the direct
georeferencing unit is determined in advance by using GPS control points in a
calibrating bundle adjustment. This way the offset has been determined with an
accuracy of under 1 cm and 0.2◦.

For our real-time application the processing of a new keyframe set Kk needs
to be finished by the time the next keyframe set is added. For the first keyframe
sets we use batch bundle adjustments as the map contains only a small number
of scene points yet. After that the new information are incrementally merged
with the previous information, yielding a fast optimal solution for the bundle
adjustment using iSAM2 [10].

3 Experiments

Sensor data was recorded by the MAV during a 5 min flight in which a building
was mapped with the high resolution camera. In this flight the visual odometry
sets a new keyframe on average after 2 sec. The processing of a new keyframe
needs on average 0.3 to 0.5 sec. In most cases this time is sufficient (1) to detect
and track 200 feature points in each of the four cameras with a frame rate of
10 Hz, (2) to determine the spatial resections for each frame set, (3) to revise the
tracks from outliers and (4) to execute the incremental bundle adjustment step.

The poses of the direct georeferencing unit are integrated as uncertain prior
information on the keyframes to obtain long-term stability and a georeferenced
ego-motion. Under favorable conditions the incremental bundle adjustment can
determine a real-time standard deviation in the position of about 1–2 cm, see
Fig. 6.

The theoretical a posteriori estimated uncertainties are in general too op-
timistic. Therefore we have determined the ego-motion with visual odometry
without using prior information from GPS. Using a similarity transformation on
the GPS positions we can determine deviations between the independently esti-
mated trajectories. The deviations between the keyframe poses are shown in the
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Fig. 6. Accuracy of the positions from GPS and from visual odometry, respectively
shown as point errors

√
σ2
X + σ2

Y + σ2
Z . The accuracy of the GPS measurements (black)

and of the visual odometry which integrates the GPS measurements (red). The accu-
racy of pure visual odometry is derived from difference (blue): Apparently the visual
odometry has a standard deviation below 3 cm and on an average is up to twice as un-
certain as the GPS measurements, but temporarily it provides more accurate positions.
The uncertainty of the integrated position is throughout less than 2 cm

Fig. 7. The deviations between the keyframe positions from visual odometry, that were
transformed on the GPS positions, to the GPS coordinates in the east, north and height
component

histograms in Fig. 7. The histograms confirm the theoretical standard deviation
from Fig. 6.

Figure 8 shows the cumulative percentage of the 2803 track lenghts. For this
flight with 148 keyframes most track lengths contain eight keyframes, 5 % of the
tracks contain 35 keyframes and at least twelve tracks contain 100 keyframes.
As a consequence we obtain a high long-term stability for the orientation angles.
The obtained real-time accuracy of the rotations is throughout in the order of
about 0.05–0.1◦. Especially scene points close to infinity, i.e. points that are far
away relative to the motion of the observing camera system, can be observed
for a long time, which increases the accuracy of the camera rotation as shown
in [20].
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Fig. 8. Cumulative histogram H(l) of the track lengths l of a flight with four fisheye
cameras. The median and the 95-%-point is indicated

The iSAM2 algorithm is very efficient as it relinearizes and solves only sub-
problems that are actually influenced by the added observations. The optimiza-
tion algorithm provides a solution which is in a statistical sense globally optimal.
We compared the result with an offline batch bundle adjustment. The differences
in the estimated pose parameters have been throughout in their estimated un-
certainty.

4 Conclusions and Future Work

We presented our system for visual odometry performing a keyframe-based bun-
dle adjustment for real-time structure and motion estimation in an unknown
scene. Incremental bundle adjustment is performed by using the iSAM2 algo-
rithm for sparse nonlinear incremental optimization in combination with a mea-
surement equations that allows for multi-view cameras, omnidirectional cameras
and scene points at infinity. The experiments show that a high accuracy level
in the position can be obtained, which is in the order of RTK GPS. Long-time
stability and a georeferenced position can be obtained by integrating GPS in-
formation. Using fisheye cameras and the inclusion of far points lead to stable
poses. The inclusion of GPS is necessary in unknown environments for georef-
erencing. The visual odometry can bridge gaps due to interruption of the GPS
signal with high accuracy.

Future work will focus on the issue of vibrations due to the rotors of the
MAV on the mutual orientations of the multi-camera system. Further we have
to solve the issue of estimating scene points which are at first near to the camera
system and as the camera system moves away lying numerically at infinity.
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