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Abstract— For safety reasons, robotic lawn mowers and
similar devices are required to stay within a predefined working
area. Keeping the robot within its workspace is typically
achieved by special safeguards such as a wire installed in the
ground. In the case of robotic lawn mowers, this causes a
certain customer reluctance. It is more desirable to fulfill those
safety-critical tasks by safe navigation and path planning. In
this paper, we tackle the problem of planning a coverage path
composed of parallel lanes that maximizes robot safety under
the constraints of cheap, low range sensors and thus substantial
uncertainty in the robot’s belief and ability to execute actions.
Our approach uses a map of the environment to estimate
localizability at all locations, and it uses these estimates to
search for an uncertainty-aware coverage path while avoiding
collisions. We implemented our approach using C++ and ROS
and thoroughly tested it on real garden data. The experiment
shows that our approach leads to safer meander patterns for
the lawn mower and takes expected localizability information
into account.

I. INTRODUCTION

Robotic mowers should operate autonomously over a long
period of time, on various types of gardens, and without
human intervention. They may mow the lawn in parallel
lanes for aesthetic reasons and to make the robot path more
understandable by the end-user. Furthermore, lawn mowers
must not put themselves or humans in danger, which is
achieved by forbidding the mower to leave the working area
and by avoiding collisions with obstacles inside it. Both
the working area and static obstacles are usually defined
by laying a wire manually along their borders. The wire
can be sensed with high precision and robustness by a short
range sensor. The main drawback of this approach is the
inconvenience for end-users: it is tedious to set up and
eventual mistakes are difficult to correct. The next leap in
robotic lawn mower navigation is to make the product more
customer friendly through a wireless solution. It should be
robust, safe, and provide price competitiveness. An approach
towards that goal is to equip the robot with a low cost 2D
laser scanner and use Simultaneous Localization and Map-
ping (SLAM) techniques in combination with uncertainty-
aware navigation.
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In this paper, we concentrate on the problem of planning
a coverage path under motion and sensing uncertainty that
may run on a robot operating without a perimeter wire.
Uncertainties in movement and sensing lead to problems
in belief space, as the robot state cannot be assumed to
be precisely known at all times. We must thus maintain
a probability distribution over possible states of the robot,
called the belief, and compute a control policy to select the
best actions given the knowledge about the environment and
the current belief. Our setting implies prior knowledge about
the environment, i.e., a point-cloud or occupancy grid map
of the surroundings, and the emplacement of obstacles and
work-area borders as polygons. This is a safety requirement
in the absence of a perimeter wire, as certain borders such as
ones separating the working-area from board walks cannot
be sensed by on-board sensors and must be taught in.

The main contribution of this paper is a new approach
for coverage path planning in belief space for mobile robots
with laser scanners, and has a special focus on robotic lawn
mowers. Our coverage builds upon our uncertainty aware
planning system [16], where we plan point-to-point paths
in belief space. Similarly, the approach starts by computing
a localizability prior for the robot’s sensor at all possible
locations in the map. This is fused with an odometry drift
to yield the expected belief dynamics, which are taken
into account at planning time to compute a set of parallel
lanes that avoid collisions. In sum, our approach computes
coverage paths in belief space that are safer than state-of-the-
art techniques achieve by taking into account the collision
probability of the path.

II. RELATED WORK

Covering polygonal regions in 2D configuration space
is a well studied problem. Traditional approaches work by
decomposing the workspace into regions using cell decom-
positions, by discretizing the workspace using grids, or by
using a spanning tree. If the space to be covered is not known
in advance, online approaches exist that cover the integrality
of the workspace while exploring it. Recent approaches have
focused on extensions to non-holonomic robots [12], the
inclusion of other externalities such as battery power [21],
or planning coverage for 2.5D elevation maps [5]. For more
details on approaches for robotic coverage path planning, see
the surveys by Galceran et al. [6] or Bormann et al. [14].

Accounting for positional uncertainty adds significant
challenges to motion planning, as the planning takes place
in belief space instead of the configuration space. This is
done by accounting for the predicted evolution of the robot
belief at planning time, or belief dynamics. They model the
interplay between information loss through odometry drift



and information gain through exteroceptive sensors. This can
be done for different sensor types and belief representations:
Van den Berg et al. [4] use an Extended Kalman Filter (EKF)
to model the belief of different robot types (car-like, dif-
ferential drive, aircraft-like) that gain information on their
state through GPS beacons. Censi et al. [2] model belief
dynamics in information space and assume the robot to have
a wall-detection sensor. The belief dynamics are then used
in the path planning process using different methods: They
can be included in many robot problems that are modeled
as Markov Decision Processes using Augmented Markov
Decision Processes as done by Roy et al. [15] or [13].
Lambert et al. [11] extend an A* heuristic search algorithm
to incorporate the belief dynamics, while the approach by
Van den Berg et al. [19] combines them with Rapidly
exploring Random Trees.

Recently, some research has tried to combine coverage
and belief space planning with the goal of accounting for
sensing uncertainty. In this paper, we combine our precedent
uncertainty-aware point-to-point path planning approach [16]
into the boustrophedon coverage algorithm in 2D configura-
tion space by Choset et al. [3]. Similarly, the approach by
Kim et al. [9] uses techniques from active-SLAM to deter-
mine when to backtrack to previously explored areas. They
consider camera equipped underwater robots that actively
build a map by drawing parallel lane patterns. In contrast to
that, we use a 2D laser scanner on a map that has previously
been explored under supervision by the end-user. Paull et
al. [10] present an approach to plan coverage paths in belief
space for teams of underwater robots that can cooperatively
localize with a focus on achieving complete coverage. From
a modeling perspective, the approach closest to the one
presented is the work by Galceran et al. [7]. They also
assume to have a localization prior and compute paths along
parallel lanes. However, they plan for underwater robots
that float above obstacles, so do not take into account the
probability of colliding with objects or leaving the working
area and thus have a different objective.

III. PROBLEM DESCRIPTION

We address the problem of coverage path planning in
belief space for differential-drive equipped mobile robots. In
the robotic wireless lawn mower setting, this involves finding
parallel lanes covering the entire working area while maxi-
mizing the probability of staying localized during navigation
along the path. Parallel lanes are used to make the robot
more understandable by the end-user and for aesthetically
pleasing mowing patterns. We account for the uncertainties
from motion and sensing, and assume the SLAM-map to
be largely free of gross errors and the world to be static.
We assume this large prior knowledge because the product
is initialized, i.e., taught the working area borders while
mapping, supervised by the end-user.

For the computation of belief dynamics at planning time,
we describe the robot configuration by its position (x, y) and
the robot belief by a two-dimensional Gaussian distribution
b ∼ N (µb, Σb), Σb =

[
σ2
x σ2

xy

σ2
xy σ2

y

]
. We discount the robot

orientation during belief dynamics computation as this re-
duces the dimensionality of the path planning problem, does
not have a large influence on model accuracy because of the
low robot speed, and still permits the detection of collisions.

We forward-simulate the belief evolution at planning time
and model how the robot gains information on its state
through its exteroceptive sensors and loses it through odom-
etry drift recursively using an EKF, as described in Thrun
et al. [18]. The belief space is defined as the set of all
probability distributions over the configurations of the robot.
In our case this is a position × covariances space. To
make the computations lighter, we further discretize by only
considering beliefs centered at regular intervals of a grid.

IV. OUR APPROACH

To plan in belief space, we require a localization prior
for the 2D laser-scanner of the robot, which we show how
to compute in Sec. IV-A. We then review how coverage
in configuration space can be formulated as a Generalized
Travelling Salesman Problem (GTSP) in Sec. IV-B. We
finally formulate the coverage problem in belief space as
a GTSP using a three-step approach in Sec. IV-C.

A. Localizability Map

Given the information gained about the garden layout
during the initialization of the lawn mower and its sensor
model, we can estimate how measurements will affect the
robot localization using the approach by Bengtsson et al. [1],
also similar to [20]. We start by simulating the laser scanner
by ray tracing the SLAM-map of the environment (we
use a point-cloud, although it would also work with an
occupancy grid map). We then repeatedly transform the ray
traced scan by up to 50 cm and 15◦. Finally, we register
the transformed simulated laser scans with the SLAM-map
of the environment in order to compute the covariance of
converged-to locations. When the resulting covariance is
small, the sensed part of the environment possesses useful
features such as the presence of a corner or another geometric
structure that enables an unambiguous alignment. As a result
of that, the map-matching is able to converge to the actual
location where the laser-scan was ray traced from.

We perform this for every point of the map with a given
resolution and consider the result to be a localizability prior,
or estimate of an EKF update-step for the given robot
and odometry noise. An extract from the localizability map
computed for the test garden is depicted in Fig. 1. We have
chosen a maximum scanning range of 8 m to mimic low-
cost range sensors that could be used on a lawn mower. We
assume the noise in the range measurement to be Gaussian
with a variance of 3 cm. Fig. 1 shows how the map can
be divided in 5 areas where localizability is similar: scans
taken in area 1 sense the corner of a building leading to good
localizability. Scans taken in areas 2 and 3 can only detect
one stretch of the wall, leading to good localizability in only
one dimension. Scans in area 4 have little information about
the location of the robot, while areas closer to bushes and
poles towards the bottom have better localizability again.



Fig. 1: Localizability map: Top: An extract of a localizability map
for the test garden. Each ellipse corresponds to a 3 -σ projection
of expected EKF update steps. Ellipse axes of 50 cm are found in
dimensions where no information is present. Bottom: semantic view
of a localizability map for a larger area. The white areas are either
featureless or outside the working area.

B. Coverage in Configuration Space

In this paper, we propose a novel combination of the
boustrophedon coverage path planning algorithm introduced
by Choset et al. [3] and our recent path planning in belief
space approach [16] to plan coverage paths taking the
uncertainty into account. We first explain coverage as GTSP
in configuration space using the boustrophedon approach and
then generalize it by including the uncertainty in Sec. IV-C.

The boustrophedon coverage algorithm generates a parallel
lane pattern covering the entire working area that accounts
for obstacles by dividing the workspace into obstacle-free
regions called decomposition cells, as shown in different
colors in Fig. 2. Boustrophedon decomposed cells can be
completely covered using two simple motions: either by
moving in the parallel lane direction (long arrows) or by
moving along a cell edge (short arrows). We note that
using those two simple motions, there are four different
possibilities to cover an entire decomposition area. One path
covering the decomposition area starts at the top left corner
and follows obstacles towards the right, (tl). Three other
paths are defined symmetrically starting in the bottom left
(bl), top right (tr) and bottom right (br) corners. Covering
the entire working area now becomes a matter of connecting
exactly one of the four solutions for each decomposition cell
into a contiguous path using a GTSP formulation.

The GTSP generalizes the Travelling Salesman Problem
by partitioning the vertices to be visited into subsets, and
computing a shortest tour visiting each subset exactly once.
Formally, it is defined over a graph G = (V,E,w) where
V are vertices, E edges and w edge weights. Additionally,
the vertices V are partitioned into pairwise disjoint sets
V =

⋃
i Vi. The GTSP solution is the minimum-cost tour

containing exactly one vertex from each disjoint set Vi.
To formulate the coverage in configuration space problem

as a GTSP, we must design the sets V,E and w. Without loss
of generality, we assume the boustrophedon decomposition
to yield a set A consisting of n decomposition cells. To solve
the problem for any one decomposition cell, it is enough to
drive along one of the four possible paths covering it. The
vertex vi,sp can be intuitively understood as “the solution

1

2

3
4

tl

bl

Fig. 2: View of the right part of the test garden decomposed using a
boustrophedon decomposition. Two types of movement are required
for covering a cell: moving across parallel lanes (long arrows) or
moving along obstacles (short arrows). Every decomposition cell
i ∈ {1, 2, 3, 4} has 4 solutions with starting points sp in different
corners: sp ∈ {tl, tr, bl, br}. Covering the whole working area is
the optimal way of combining decomposition cell solutions into a
contiguous path of the form (1tl, 2tl, 4tr, 3tr).

to decomposition cell i starting from starting point sp”. A
decomposition cell thus becomes a set of possible solutions
Vi of which one must appear in the working area coverage
path, see Eq. (1). The set of vertices V of the GTSP is the
union of all disjoint decomposition-cell solutions Vi and has
size 4× n:

V =
⋃
i∈A

Vi with Vi =
⋃

sp∈{tl,tr,bl,br}

vi,sp (1)

The edges E and their associated weights w are used to
encode the costs of travelling from vi to vj and performing
the covering path associated with vj . This cost is the path
length between the end point of vi and the starting point
of vj , added to the solution length of vj . Every vertex has
(n− 1)× 4 edges, namely one towards the starting points of
all other areas, so there are (16n2−16n) edges and weights.

To compute the final coverage path, we implement a GTSP
solver that we initialize with the insertion heuristic, i.e., it-
eratively adding one closest vertex from each decomposition
cell until a complete tour is found. This initial solution is then
refined by using three local search operators for GTSP [8]
until a termination criterion is met:
• Swap starting point: For a random cell in the solution,

change the starting point to another one.
• k-random swap: switch k ≤ 3 random cells in the

solution with each other.
Summarizing, the steps to plan a coverage plan in con-

figuration space using the boustrophedon algorithm are the
following:
• Decompose the work-area into the set of decomposition

cells A with |A| = n that can be covered by parallel
patterns using the boustrophedon decomposition.

• Compute the set of vertices that encode possible solu-
tions for all decomposition cells. There are 4 different
starting points for every cell, each inducing an exit
point, see Eq. (1).

• Compute the edges E and weights w(vi, vj) ∀i, j ∈ V
that correspond to the cost of travelling from vertex vi
to vj and the cost of covering vj .

• Solve the GTSP to obtain one contiguous minimal
length path.



C. Coverage in Belief Space

We now generalize the coverage approach from configu-
ration to belief space, also relying on the GTSP formulation.
Similarly to the situation in configuration space, we use a
three-step procedure. First, we decompose the work-area into
decomposition cells and build the set of vertices V represent-
ing possible solutions. Second, we compute the edge set E
and weights w that encode the costs of travelling between
decomposition cells and covering them. In the final step, we
compute a contiguous path where each decomposition cell
is covered exactly once. Our approach is modular as there is
freedom in implementing one-decomposition-cell policies in
the first step that can privilege different aspects. We choose
to maximize aesthetically pleasing parallel lane patterns for
the lawn mowing application, while avoiding collisions. The
GTSP formulation on the other hand generalizes to any
coverage problem with freedom in choosing between one-
decomposition-cell policies that differ in some aspects (e.g.,
localizability, collisions, length, # turns, ...).

Compared to coverage path planning in configuration
space, moving the problem into belief space means we must
consider all possible robot beliefs b and decide for every one
how to solve a decomposition cell or compute a transition.

1) Discretization of a belief: To make the space of all
possible robot beliefs tractable, we approximate any two-
dimensional Gaussian belief b used as a starting point for a
transition or a decomposition cell solution using Eq. (2) and
Eq. (3), where λ1,2(b) are the eigenvalues of Σb considering
the x, y-space.

λ̄(b) = max(λ1(b), λ2(b)) (2)

Σbdiscretized =
[
λ̄(b)2 0

0 λ̄(b)2

]
(3)

We quantize all starting beliefs for decomposition cells
or transitions into one of |U | uncertainty bins sized δ using
Eq. (4) and Eq. (5), where λmax and λmin represent the largest
and lowest eigenvalues of any expected robot belief during
operation. We will call any ub ∈ U the uncertainty level of
belief b and set |U | = 10 for the experiments.

|U | = λmax − λmin

δ
(4)

ub =

⌈
λ̄(b)− λmin

δ

⌉
(5)

2) Coverage of one decomposition cell in belief space:
Using the GTSP formulation, we now compute the set of ver-
tices V containing the solutions for all decomposition cells.
As we are working in belief space, a vertex vi,sp,b encodes the
solution for a decomposition cell i from starting point sp and
belief b. We reduce the computational burden by discretizing
b using Eq. (5). A vertex now becomes vi,sp,u, intuitively
understood as “the solution to decomposition cell i starting
from starting point sp with uncertainty level u”. While any
policy covering the entirety of a decomposition cell could
be implemented, we propose to minimize collisions while
maximizing lane length.

Given the starting point and uncertainty level, we track
the expected evolution of the robot belief along the path
and avoid any motions that might lead to collisions by
prematurely switching to the next lane, as seen in Fig. 3.
Once the entire width of the cell has been covered according
to this policy, uncovered areas may remain as illustrated in
purple in Fig. 4. We treat the uncovered areas as independent
decomposition cells and solve a local GTSP connecting the
current predicted belief of the robot b (the blue ellipse) with
the uncovered areas v4,tl,u3,1 and v4,tl,u3,2. We solve the
local GTSP using the same method used to solve the global
GTSP problem described in Sec. IV-C.4. We avoid excessive
information seeking behaviour, e.g., driving a 50 m detour to
cover a small area such as v4,tl,u3,2, by trading travelled
distance with uncovered area using parameter β which we
set to 5.0 for the experiments. We note that this policy
is too cautions to guarantee complete coverage, as certain
environments will not yield enough information to counteract
odometry drift at all positions.

4
3

1 2 3 4 5 start uncertainty levels

3

predicted robot belief 

poses to be visited to complete cell coverage
predicted collision

Fig. 3: Policy for solving one decomposition cell under uncertainty.
We compute a solution to starting in the top-left corner with u3.
The uncertainty grows in the x dimension through odometric drift,
while the uncertainty in the y dimension is bounded due to sensing
the upper wall. When the robot belief touches an obstacle, this
belief is recognized as a possible collision and the robot moves to
the next lane prematurely and continues the parallel lane pattern.

tl tr
b

b predicted robot belief
parts of the cell still to be covered
poses to be visited

part of the cell covered

3

3 3

Fig. 4: Solution to one decomposition cell under uncertainty. When
the robot has finished the policy of moving until detecting a
collision and changing lanes, certain areas might go uncovered as
shown in purple. In order to achieve complete coverage, the robot
must still visit the sub-decomposition cells v4,tl,u3,1 and v4,tl,u3,2

from the predicted belief of the robot, b.



By iterating over all decomposition cells, starting points
and uncertainty levels, we compute the vertex set for each
decomposition cell Vi using Eq. (6).

Additionally, every vertex must also store the induced
exit belief bexit(vi,sp,u), the path length d(vi,sp,u) and left
untreated area o(vi,sp,u) in order to compute the vertex
costs c(vi,sp,u) as done in Eq. (7). Those are required for
computing the edge weights w.

Vi = {vi,sp,u} ∀i ∈ A, sp ∈ {tl, tr, bl, br}, u ∈ U (6)
c(vi,sp,u) = d(vi,sp,u) + β o(vi,sp,u) (7)

3) Transitions between possible areas: The last step for
exploiting the GTSP formulation requires us to compute the
edges E and edge weights w. As those are the only elements
carrying information into the optimization process, the edge
weights must contain the goal vertex costs alongside the
transition costs:

w(vi, vj) = c(vi, vj) + c(vj) ∀i, j ∈ V (8)
vi = vi,sp,u with i ∈ A, sp ∈ {tl, tr, bl, br}, u ∈ U

As the cost c(vj) has already been computed, we only need
to compute the transition cost c(vi, vj) for all possible edges,
which represents the costs of moving the robot from bexit(vi)
to the starting point and uncertainty level of vj . Planning
this transition in belief space is useful to regain information
after meandering within an area, as the robot does not need
to follow a parallel lane pattern: this leads to greater freedom
in trading off path distance and uncertainty.

One of the keys to our approach is to avoid planning
a transition to every uncertainty level at the goal. Opti-
mizing path safety implies that transitions leading to better
uncertainty-levels at the goal-pose are more desirable than
those leading to worse uncertainty. It is thus sufficient to
search for one path that fulfills an optimal trade-off between
final uncertainty and path length. We do this efficiently
by using a variant of the point-to-point planner from our
previous work [16] and adapting the generic search algorithm
to plan “point-to-set-of-points” paths in belief space. This is
effective as the transitions are computed from one final belief
to all other start positions, leading to faster computations by
searching for them batchwise. As paths towards sets of points
are searched, we cannot use heuristic-guided approaches.
We opt for a simple wave-front algorithm combining the
distance travelled with the accumulated uncertainty via a
trade-off parameter α: cost(path) = α × (path length) +
1− α (path uncertainty), with path uncertainty the sum of
belief variances over a predicted path. We set α = 0.05 to
bias the search towards safer, longer paths.

Thus, we compute one transition for all (exit-belief, start-
point) pairs of different decomposition cells which, depend-
ing on α and the information contained in the environ-
ment, induces the uncertainty-level at the goal vertex vj :
(bexit(vi), (vj,sp,uinduced

)) with uinduced ∈ U . Furthermore,
we set all edge weights according to Eq. (9), meaning that
the only edges carrying non-infinite costs are those where

good transitions have been found.

w(vi1,sp1,ub1
, vi2,sp2,ub2

) =
c(vi2,sp2,ub2

)

+ c(bexit(vi1,sp1,ub1
), (vi2,sp2,ub2

)) if ub2 = uinduced

+ ∞ else
(9)

Similarly to the case in configuration space, every vertex
has (n − 1) × 4 × |U | edges. As there are 4 × |U | vertices
per decomposition cell and n decomposition cells, we have to
compute 16×|U |2×(n−1)×n edges. On the other hand, we
reduce the amount of edges flowing into the optimization by
only considering one transition for any (exit-belief, starting
point) pair. This reduces the amount of non-infinite edges to
16× |U | × (n− 1)× n.

4) Solving the GTSP for coverage in belief space: Now
that we have computed V , E and w, we search for a
contiguous shortest path covering all decomposition cells.
We note that belief space planning has a specific structure
that differentiates it from configuration space planning. In the
configuration space GTSP, the salesman gets to choose which
vertex he travels to. In belief space, the robot cannot decide
the uncertainty level with which it starts a decomposition
cell, as it is induced by the currently taken trajectory (i.e.,
the starting points and decomposition cells on the path so
far). To solve the GTSP, we use the same approach as
for the problem in configuration space (Sec. IV-B) by first
computing a greedy solution which we iteratively improve
by using local GTSP operators.

V. EXPERIMENTAL EVALUATION

The main focus of this work is to combine belief space
with coverage planning in order to compute a safe coverage
path for a laser-scanner equipped robotic lawn mower. Our
experiment is designed to support our key claim, that our
approach computes safer coverage paths than current cover-
age techniques achieve by taking into account the collision
probability of the path.

We compare three approaches: OURS, the collision avoid-
ing, parallel lane maximizing belief space approach we have
described. MIN, a belief space approach that replaces the
cost term d(vi,sp,u) with the mean predicted uncertainty. This
minimizes the uncertainty without accounting for the prob-
ability of collision and resembles the approach by Galceran
et al. [7], but differs in finishing a cell before relocalizing.
And CONFIG, a classical Boustrophedon coverage algorithm
in configuration space.

The experiment consists in computing coverage paths on
data from a real garden and driving along every path in
simulation using Gazebo 90 times. The simulated 2D laser
scanner has a range of 8 m and 1850 samples at 10 Hz. All
scans are used in a point-to-plane scan-matching algorithm
for localization [17] with resolved data association. The
simulated odometry has zero-mean Gaussian noise with vari-
ance (0.25 m,0.25 m,15◦) (longitudinal, lateral, rotational)
per meter. We choose these high noise values to show how
the approaches deal with difficult situations that a robotic
lawnmower might encounter, such as driving on wet grass



over uneven ground. All computations are performed on
an Intel Core i7 CPU @2.8 GHz. The garden measures
12 × 36 m and the coverage pattern has 1 m spacing, while
the GTSP solver terminates after 40 s, which we include in
the computation time.

We show the paths covering the working area for all
approaches in Fig. 5 and present other quantitative results
for the path computation in Tab. I. All coverage paths start
in the top right and clearly show the parallel lane patterns
underlying their one-cell-coverage policies. Path-length wise,
we note how CONFIG is the shortest as it optimizes the
distance, while MIN is the longest, as is does not include a
cost term for solution length. Computation-time wise, OURS
takes five times longer than the next slowest approach. The
main reason for this is the computation of many transitions
between two points in belief space (shown as # edges), as we
must solve all decomposition-cell-sub-GTSPs as described
in Fig. 4. These paths do not change without adding new
information about the environment, so they can be stored
in a look-up table or computed offline. As the uncertainty-
aware approaches have difficulties finding transitions towards
very narrow areas such as the U-shaped obstacle in the top
right, their final coverage percentage is not 100%. We also
show the predicted belief evolution for OURS in Fig. 6 and
draw attention to the effects of localizability: the predicted
uncertainty for paths in less informative parts of the garden
is large (cyan, bottom), while safe areas are recognized as
such (blue, top left). The figure shows how our approach
interrupts lanes before the predicted 3-σ uncertainty ellipses
touch an obstacle.

workspace borders Coverage path, start ------ end

Fig. 5: The coverage paths computed by the three approaches.

We show the results of performing the coverage paths 90
times in simulation in Tab. II. The simulated robot drives

Fig. 6: Predicted robot belief evolution over the coverage path using
our approach, the visualization is thinned out for readability.

Approach Path length (m) Computation time (s) # Edges

OURS 486 584 72449
MIN 526 112 19372
CONFIG 438 45.3 2998

TABLE I: Computational aspects of the computed paths.

along every coverage path for about 45 km. We sample the
ground truth position and robot belief every 25 cm, from
which we compute the localization error (distance between
ground truth pose and robot belief), lane error (distance
between ground truth position and lane) and the number of
collisions. OURS has the lowest lane errors and collisions,
showing how we plan safer coverage paths than the other
approaches. This is due to the ability of the approach to
interrupt lanes as soon as the risk of collision is too high,
which happens when the predicted lane and localization
errors are large while close to a border. We note how in
this experiment, MIN has the lowest localization error, while
still having more collisions than OURS. This is due to this
approach’s smaller impact on lane error and it’s indifference
to the collision probability. In sum, our experiment shows
how planning coverage paths in belief space leads to paths
with fewer collisions and better localization.

Approach Dist.(m) Loc. err.(m) Lane err.(m) Collisions

OURS 45592 0.29 ± 0.28 0.18 ± 0.27 72 ± 3.7
MIN 49193 0.28 ± 0.31 0.24 ± 0.31 421 ± 22
CONFIG 41229 0.38 ± 0.4 0.29 ± 0.4 1172 ± 93

TABLE II: Results of the 90 simulated runs of the three approaches.

VI. CONCLUSION

We present a novel approach to plan coverage paths in
belief space. We take the predicted evolution of the robot
belief at planning time into account to avoid static obstacles.
Our method exploits prior knowledge of the map to compute
a localization prior which we then use to predict the robot
belief for any path. Our approach relies on formulating the
coverage problem in belief space as a GTSP. This allows
us to pre-compute solutions to decomposition cells and
transitions in belief space, which we then quickly combine
into one path covering the entire working area by solving the
GTSP. We evaluate our approach on data from a real garden
and provide comparisons to other existing techniques and
show the additional collision avoidance capabilities gained
by planning coverage paths in belief space.
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