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Towards Map-Agnostic Policies for Adaptive
Informative Path Planning

Julius Riickin® David Morilla-Cabello?

Abstract—Robots are frequently tasked to gather relevant
sensor data in unknown terrains. A key challenge for classical
path planning algorithms used for autonomous information
gathering is adaptively replanning paths online as the terrain
is explored given limited onboard compute resources. Recently,
learning-based approaches emerged that train planning policies
offline and enable computationally efficient online replanning
performing policy inference. These approaches are designed
and trained for terrain monitoring missions assuming a single
specific map representation, which limits their applicability to
different terrains. To address this limitation, we propose a
novel formulation of the adaptive informative path planning
problem unified across different map representations, enabling
training and deploying planning policies in a larger variety of
monitoring missions. Experimental results validate that our novel
formulation easily integrates with classical non-learning-based
planning approaches while maintaining their performance. Our
trained planning policy performs similarly to state-of-the-art
map-specifically trained policies. We validate our learned policy
on unseen real-world terrain datasets.

Index Terms—Motion and Path Planning, Aerial Systems:
Perception and Autonomy, Reinforcement Learning

I. INTRODUCTION

ECISION-MAKING under uncertainty in unknown ter-
rains is a crucial skill for autonomous robots in many
real-world scenarios, such as exploration [14]], [15], environ-
mental monitoring [16], [23], [29], precision agriculture [22],
[30], and search and rescue [18], [26]. To complete their mis-
sion goals, robots gather relevant information about the terrain
using onboard sensors. A key challenge is to adapt planned
paths online based on newly incoming noisy measurements
under limited onboard compute and mission budget as the
robot’s understanding of the terrain evolves. This problem
is known in the literature as the adaptive informative path
planning (IPP) problem [5[], [8]I, [9], [16], [19], [21].
Specifically, this work examines the problem of mapping
user-defined areas of interest using a budget-constrained robot
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Fig. 1: Robots perform continuous- or discrete-valued terrain feature
monitoring missions, e.g. mapping surface temperature or urban
semantics. We transform mission-specific terrain map representations,
e.g. Gaussian processes or occupancy grid maps, into a novel unified
state representation for adaptive informative path planning (IPP). In
this way, we design and train a single map-agnostic planning policy
applicable to largely varying terrain monitoring missions.

with noisy onboard sensors [8], [9f, [16], [22]. To this end,
the robot adaptively replans paths online to maximise the
information gathered about the initially unknown areas of
interest based on the evolving understanding of the terrain. The
gathered information is captured in a continuously updated
terrain map using newly acquired sensor measurements.

Various adaptive IPP approaches emerged for different to-
be-mapped information, i.e. terrain features, of interest during
a mission. Mapping continuous-valued terrain features, e.g.
bacteria levels [8]] or signal strength [16], is commonly per-
formed using Gaussian processes [8], [20], [30] or Kalman
filter [22]], [24] map representations. Mapping discrete-valued
terrain features, e.g. crop-weed [32]] or rural area semantic
segmentation [22]], is commonly performed using grid maps.
Based on the current map, non-learning-based planning al-
gorithms iteratively select candidate paths and evaluate their
expected information value [8]], [9], [16]], [[19]. These ap-
proaches can be adapted for different map representations.
However, they tend to be too compute-intensive for fre-
quent online replanning as they rely on costly evaluations
of many potential future paths. To overcome these issues,
learning-based approaches have been proposed. These methods
train adaptive IPP policies offline in simulation and perform
compute-efficient policy inference at deployment [[1], [2], [4],
[14], [18], [24], [31]. Although learning-based approaches
show promising performance, they are specifically designed
for and trained on a single terrain map representation. This
prohibits their direct application to a larger variety of terrain
monitoring missions.
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We argue that the broad pool of existing adaptive IPP
approaches should be viewed along two dimensions: the
map-specific formulation modelling the adaptive IPP prob-
lem and the algorithm used to offline-train or online-search
the planning policy. The formulation of the adaptive IPP
problem is the most critical design decision to ensure the
unified applicability of planning policies across various terrain
monitoring missions. This motivates the need for a map-
agnostic formulation of the adaptive IPP terrain monitoring
problem that directly integrates with any (non)-learning-based
policy search algorithm used for adaptive IPP. Particularly, this
formulation ensures training and deploying learned policies in
largely varying terrain monitoring missions.

The main contribution of this paper is such a novel map-
agnostic formulation of the adaptive IPP problem for ter-
rain monitoring illustrated in Our formulation uni-
fies continuous-valued, i.e. regression, and discrete-valued,
i.e. classification, terrain feature monitoring for adaptive IPP
policies. To achieve this, we unify state space representations
across terrain map representations utilised for replanning on-
line. Based on this unified state space and a new reward
function, we train and deploy a single generally applicable
planning policy on previously unmet variations of terrain
monitoring missions using reinforcement learning (RL).

In sum, we make the following claims. First, our map-
agnostic planning policy trained and deployed on vastly vary-
ing simulated terrain monitoring missions performs on par
or better than state-of-the-art map-specifically trained poli-
cies and non-learning-based adaptive IPP approaches. Second,
our map-agnostic policy performs similarly to state-of-the-
art adaptive IPP approaches on various real-world terrain
datasets. Third, in our experiments, we demonstrate that our
map-agnostic adaptive IPP formulation easily integrates with
previous non-learning-based state-of-the-art adaptive IPP al-
gorithms while maintaining or improving their performance.
We will open-source our code for usage by the community at:
https://github.com/dmar-bonn/ipp-rl-gen.

II. RELATED WORK

This work addresses the problem of robotic information
gathering in initially unknown terrains where certain areas
are considered more interesting than others, e.g. temperature
hotspots [4]], [22] or search and rescue victims [18], [26]. This
problem is known as the adaptive IPP problem [8], [9]], [16],
[19], [21]], where the aim is to efficiently discover and precisely
map the areas of interest using a resource-constrained robot,
e.g. an unmanned aerial vehicle (UAV) with limited battery
capacity [22], [29], [30]. Various adaptive IPP approaches have
been proposed, which actively replan paths online during a
mission based on the robot’s state and previously collected
measurements. In contrast, often less efficient non-adaptive
approaches, e.g. coverage paths [7]], [27], pre-compute static
paths that cannot be modified during a mission.

Methods for adaptive IPP can be categorised into non-
learning-based and learning-based planning approaches. Non-
learning-based approaches have been successfully applied to
many different variants of the adaptive IPP problem, such

as exploration [14], [15], search and rescue [5], [26], and
terrain monitoring [8]], [9], [30]. Sampling-based methods
solve the adaptive IPP problem by iteratively (re-)sampling
potential paths and evaluating their information value based
on the robot’s terrain understanding, building upon established
sampling-based search, such as receding horizon planning [9]
or Monte-Carlo tree search (MCTS) [5]], [19]. Optimisation-
based methods utilise derivative-free optimisation, such as evo-
lutionary algorithms [8]], [22]] or Bayesian optimisation [16],
[30], directly maximising the information acquired along the
path. Although non-learning-based planning methods for adap-
tive IPP show promising results, they tend to be computation-
ally inefficient [1]], [22]], [24] as they evaluate expensive-to-
compute information criteria for many potential future paths,
prohibiting fast online replanning or sacrificing path quality.
Further, these approaches directly use mission-specific terrain
map representations to design the planning state space, which
requires adapting planning methods for deploying them in
monitoring missions with different terrain maps.

Recently, learning-based methods were proposed to tackle
the adaptive IPP problem, providing higher compute efficiency
and achieving similar or better planning performance. This
is done by shifting the computational burden to an offline
training phase, simulating many terrain monitoring missions,
and inferring the learned planning policy at deployment [1],
(30, 4], [14], (241, (28], 290, [31], [32]. RL methods have
been proposed for specific adaptive IPP applications, such as
terrain exploration [2f], [[14]], [18] and monitoring [1]l, [4], [24],
[28]], [31]. These works mainly differ in their reward function
design influenced by the mission goal and terrain map repre-
sentation, and the used policy networks trained with different
RL algorithms. Methods for exploration design reward func-
tions measuring coverage of the terrain [2f], [[14], while works
considering efficiently finding and precisely mapping areas of
interest commonly reward decreasing terrain map uncertainty
in these areas [1]], [24], [29], [32]]. All these approaches
maintain a mission-specific spatial terrain map representation
to fuse onboard measurements, such as occupancy maps [2],
[14], [18]], [32], [33] or sub-sampled Gaussian processes [1]],
[4], [28], [31]. These approaches directly use mission-specific
terrain map representations to design the planning algorithm’s
map-specific state space and train the adaptive IPP policy on
this map-specific state space.

Overall, all previous adaptive IPP approaches propose
terrain map-specific solutions, assuming either occupancy
maps [2fl, [14], [18], [22], [32], [33[], pre-trained Gaussian
processes [[1]1, [4f], [8], [19], [28], [31] or Kalman filters [22],
[24], as their planning state representation. Thus, these meth-
ods require adaptation and re-training as the map, and hence,
planning state representations change. This prohibits the ap-
plication of learned policies to various monitoring missions
that require different map representations. In contrast, we
present a novel map-agnostic state formulation for adaptive
IPP unifying terrain monitoring missions across various map
representations. Combining this map-agnostic state space with
a new reward function, we train a single planning policy using
RL that is applicable to continuous- and discrete-valued terrain
feature monitoring missions.
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III. PROBLEM FORMULATION

This work aims to formulate the adaptive IPP problem
for terrain monitoring [9], [10], [16], [[17], [22] in a terrain
map-agnostic fashion to offline-learn or online-solve plan-
ning policies across different monitoring missions and map
representations without adapting or re-training policies. We
consider a robot with pose p; € RPr at time ¢, moving
in an a priori unknown terrain. The terrain ¢ C RPe is
characterised by its initially unknown and stationary feature
field F': £ — F, where F is the mission-specific continuous
or discrete terrain feature space. The goal is to estimate and
precisely map the terrain feature field F' in interesting areas,

r={x€&|F(x)eFr} C¢, )]

where F; C F is the user-defined subset of feature values
qualifying the interest in a point x € &, e.g. a value range or
semantic classes, with each x € £; being of equal interest.

To accomplish this objective, the robot is equipped with
a sensor to collect measurements z € Z from the terrain,
e.g. semantically segmented RGB images, thermal images, or
radiation levels. At each time step ¢, the measurements provide
noisy information about F' according to z; ~ p(z | py, F') and
are used to model a stochastic process Ey over all possible
terrain feature field functions F’,

Ft ~ p(F | Zl:t7p1:t79F)7 (2)

where z1.; is the set of all collected measurements at robot
poses p1., and O indicates the chosen map representation
and its hyperparameters. Most works update the belief for
continuous-valued feature spaces F C R with pre-trained
Gaussian processes or Kalman filters, and for discrete-valued
feature spaces F C N with occupancy grid mapping.

We aim to find an optimal action sequence Y* =
(aj, ...,ay), where a; € A C RP« are relative pose
changes. The action sequence * maximises an information
criterion I : AN x &1 — R, where AN encompasses all
action sequences of variable length N, associating the sensor
measurements collected while executing an action sequence
with their information value about areas of interest £,

Y* = argmax I(¢, &), st. C(v) < B, 3)
PpeAN

where C' : AN — R is the action sequence execution cost,
e.g. battery capacity or travel time, and B > 0 is the robot’s
fixed maximum mission budget. As F' and thus &5 are a priori
unknown, [Eq. (3)|cannot be solved offline. The optimal action
sequence " in m changes as Fy is updated based on new
measurements. Therefore, online replanning is required to find
an optimal ¢* that adaptively focuses on areas of interest &;
as they are discovered.

The concrete formulation of depends on the spe-
cific terrain monitoring mission. Depending on the mission
characteristics, the spatially mapped terrain feature space F
might be discrete, such as semantic classes, or continuous,
such as surface temperature. For a given mission, the user
defines interesting features F; C F and chooses the map
representation F, with map hyperparameters 6. We denote

H = {F,Fr,0r} as the set of mission hyperparameters
defining the specific instantiation of

As shown in previous works [1]], [2], [14], [18], [24], [31],
[33], the adaptive IPP problem in [Eq. (3)| can be transformed
into an RL problem for many terrain monitoring mission
variants by

7 = argmax I ((7(s1),.. .,
mell

m(sn));€1)

N “4)
= argmax Z thilR (stv ’/T(St)a St+1, 51) )
mell 5

where 7 : § — A is a planning policy mapping state
sy € S at a time step ¢ to an action a; = 7(s;), and II is
the function space of all possible policies. Thus, the action
sequence v is given by ¢ = (7(s1),...,7(sn)). A mission-
and map-specific reward function R(s;, 7(s¢), st41,€71) € R
resembles the information criterion /, rewarding taking actions
a; in state s; that lead to a next state s;y; with increased
information about interesting areas &7, and v € [0,1] is a
discount factor. As interesting areas ; are unknown during
a mission, prior adaptive IPP methods [1], [8], [22], [24],
[32] approximate unknown areas of interest &; using map-
specifically computed confidence intervals based on hand-
tuned confidence thresholds, rewarding uncertainty reduction

over map belief F} in these approximated interesting areas.
Different from existing adaptive IPP approaches that con-
sider terrain map-specific planning state formulations s; with
approximated areas of interest, we formulate the problem
in [Eq. (4)] in a fully probabilistic map-agnostic fashion. To
this end, we propose a planning state s, that unifies the
adaptive IPP problem across different map representations By,
allowing us to apply a single learned policy n* to varying
terrain monitoring missions. Based on this planning state, we
introduce a new reward function for [Eq. (4)] enabling training
or online-solving policy 7* for different monitoring missions.

IV. OUR APPROACH

Our approach is conceptually depicted in We unify
the adaptive IPP problem formulation introduced in
across different map representations required to spatially cap-
ture various continuous- and discrete-valued terrain features.
To this end, we view any terrain monitoring mission as a
binary classification task, probabilistically splitting the terrain
into unknown interesting areas &; and uninteresting
areas & — &;. Based on this belief over interesting areas &,
we propose a map-agnostic planning state space
and introduce a reward function to online-solve or offline-
train a planning policy across terrain monitoring missions with
different map representations (Sec. IV-B). Last, we show how
we use our state formulation and reward function to offline-
train adaptive IPP policies on varying terrain monitoring

missions in simulation (Sec. IV-C).

A. Unified Planning State Space for Adaptive IPP

Our formulation of planning states s; € S encodes all infor-
mation required to solve the adaptive IPP problem in [Eq. (4)l
i.e. the robot’s state estimation, its current understanding of the



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MARCH, 2025
= —~ fin b ~1.0 ~1.0
(i4 <LL4 '@ w’ Interesting 7, w’ Interesting 7;
— i/ — —
m - y E — W False — = False
o2 W fin S2 : 0.5 frue 05 frue
i : 5 E x X
=) : S ' g g
2 0.5 1.0 0.5 1.0 200 S0 I
F(x) F(x) Class 1 Class 2 Class 3 Class 1 Class 2 Class 3

p(F(x) EFi | Fy) = 0.34 p(F(x) EFy | Fr) = 0.84

p(F(x) EF, | F) =0.66 p(F(x) EF, | F) =0.84

Fig. 2: Our unified belief p(F (x) € Fr | Ft) over interesting areas x € £ for continuous- (left) and discrete-valued (right) terrain features.
Grey areas are unknown with large map uncertainty. (Left) Posterior normal distributions inferred from a Gaussian process or Kalman filter
map representation with an interesting value threshold f;;, = 0.6. The unified belief is computed by the orange area under the curve, which
is larger for known interesting areas than for unknown uncertain areas. (Right) The unified belief is given by the sum of posterior probability
masses over interesting classes (orange) extracted from an occupancy map representation.

terrain, and mission hyperparameters. We propose a unified
belief over interesting terrain areas reusable as input to the
planning policy 7 (s;) for feature fields F' with continuous- and
discrete-valued terrain features F that might require different
map representations Fy. Assume that X; is a set of points
x; € £ sampled from the terrain £ at time step ¢ at which we
aim to infer the state s;(x¢). Then, for each x; € X}, s¢(xy)
is defined as

six) = (p(F(x) € Fr | ), H(E(x0), o Bu A ), (5)

where p(F(x;) € Fr | Ft) is the probability of x; being part
of an interesting area &7, H (]3',5 (Xt)) is the uncertainty of the
mission-specific map belief ﬁ‘t at x;, p¢ is the robot’s current
position, B; < B is the robot’s remaining budget, and H are
the mission hyperparameters specifying[Eq. (3)] For occupancy
maps, H (F;(x;)) is the Shannon entropy at x;. For Gaussian
processes or Kalman filters, (Ft(xt)) is the variance at x;.
Our state can be integrated with any representation X; of
terrain £ to compute the state representation s; over X;. For
example, it supports equidistant grids [19], [22], [24]], [32] or
randomly sampled graphs [1]], [2], [28], [31].

In contrast to previous works relying on map-specific for-
mulations of s; with binary approximations of interesting
areas, our planning state formulation in [Eq. (5)| introduces a
fully probabilistic map-agnostic belief over interesting areas.
Next, we show how to compute this map-agnostic belief
Fry ~ p(F(x¢) € Fr | ﬁ’t) for continuous- and discrete-
valued terrain feature mapping missions with different fully
probabilistic map representations F} as illustrated in

Consider discrete feature spaces F = {1, ..., K} with K €
N semantic classes. Interesting areas &; are given by a user-
defined set of interesting features F; C F with |F;| < K.
As the map belief Fy ~ p(F | z1.t,P1:t) is represented using
occupancy grid maps, the unified belief p(F(x) € F | Ft)
over interesting areas is defined as

p(F(x) € Fr | Ft) Z p(F(x) = fr | z1:,P1:t) , (6)
frerz

where fr is a single class in the set of interesting classes F7
and p(F(x) = fr | 214, P1:) is given by the f;-th layer of
the occupancy map at the grid cell corresponding to x € &,
defining the categorical distribution over all K classes.

Next, consider continuous feature spaces F = [fq, fp] with
fa < fp. Interesting areas are given by user-defined thresholds

fen with f, < fin, < fp, such that F; = [fip, fo]. As the map
belief F is represented by Gaussian processes or Kalman
filters, the probability density over feature values is given by
F(x) ~ N(u(x),0(x)? | F;) with mean z(x) and variance
o(x)? of F} at point x. The unified belief p(F(x) € F; | [})
over interesting areas is defined as

p(F(x) € Fr | ﬁ't)

=
20 (x)?

s e

l(p(fthu(x))’

o(x)

where ®(-) is the cumulative distribution function of the
standard normal distribution measuring p(F(x) < f, | ﬁ't)

The mission-specific hyperparameters H = {F,F,0r}
directly influence the computation of our unified belief over
interesting areas FM inor making the effect of
the chosen mission hyperparameters accessible to the planning
policy, thus improving adaptivity to the concrete instance of
[Eq. (4) a planning method aims to solve. For learning-based
planning methods aiming to train a policy 7* offline, we
additionally condition the planning policy on the mission-
specific hyperparameters as it allows us to train a single policy
that can solve for various terrain monitoring variants
‘H without retraining.

B. Adaptive IPP Reward Function

We introduce a new reward function for the general adaptive
IPP terrain monitoring problem in[Eq. (4)|based on our unified
planning state space formulation s; presented in
The unified planning state space and reward function could
be integrated into any non-learning-based planning method
searching for the optimal policy 7* online or learning-based
planning method for training 7* offline.

In adaptive IPP problems, we aim to quickly find ini-
tially unknown areas of interest {; (Eq. (I)) and precisely
estimate the terrain feature field F' in these areas. To this
end, we aim to maximise information about the map be-
lief F, ~ p(F | z1.t,p1:+) in unknown areas of interest &y
(Eq. (2)). To adapt paths online towards areas likely of
interest, we reward uncertainty reduction of map belief F,
proportionally to our unified belief over interesting areas
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Fri(x) ~ p(F(x) € Fr | Fy) (Eq. (6)} [Eq. (7). Assume X
is a finite subset of points x € £ sampled from an equidistant
grid over the terrain £. The reward in |[Eq. (4)|is defined as

R(Sta ag, 5t+1) =

H(F(x)) = H(Fi11(x))
Z H(Ft(X»

p(Fx)e 7 |B), ©

xEX

where H(F}(x)) is the uncertainty of the mission-specific map
belief F} at a point x € & and Ft+1 is the updated map belief
after executing action a; and collecting a new observation
zt+1 ~ P(2 | Pi41, F') from a next pose py+1. For occupancy
maps, H (Ft (xt)) is the exponential Shannon entropy at x.
For Gaussian processes and Kalman filters, H (ﬁ't (xt)) is the
variance trace at X.

Assume two points x,x’ € &. If both points have the
same probability of belonging to areas of interest &;, the
reward favours points x with higher expected map uncertainty
reduction to foster exploration. If both points’ expected map
uncertainty reduction is the same, the reward favours point x
with a higher probability of belonging to areas of interest &1
to focus on these areas as they are discovered. By definition
of our reward also contains pure terrain exploration
scenarios with areas of interest £; = £ covering the whole
terrain as a special case if all feature values 7 = JFr are
of interest. In these cases, p(F(x) € F; | F};) = 1 for all
x, X’ € ¢ by definition of [Eq. (6)| and [Eq. (7)} Thus, points x
with higher expected map uncertainty reduction are favoured,
fostering the exploration of the whole terrain.

C. Planning Policy Training Details

We use RL to train a single unified planning policy 7*
on simulated terrain monitoring deployments with previously
unmet mission variations. We detail our terrain monitoring
mission simulations, encoding of mission hyperparameters H
and the used RL algorithm and policy network representing 7*.
In practice, any policy learning method, e.g. imitation learning,
policy network architecture, and hyperparameter encoding
could be used to train the policy with our new adaptive IPP
formulation introduced in and

Mission simulations. We sample mission hyperparameters
H = {F,Fr,0r}, defining the monitoring mission. We
randomly choose continuous- or discrete-valued terrain fea-
tures F. Note that we train our policy on both classes of
terrain feature monitoring missions to minimise the training
to deployment gap [[13]] and maximise planning performance.
In case of continuous-valued features, we use a Gaussian
process with sampled kernel parameters 6 to represent the
map belief Fy. In case of discrete-valued features, we use
an occupancy map to represent Fy. For given features, we
simulate randomised ground truth feature fields F' with spatial
correlations of different extents as depicted in

Hyperparameter encoding. We explicitly input mission
hyperparameters [gp and f;; into state s;. The map hyper-
parameter [op > 0 € Op is the lengthscale of a Gaussian
process Matern kernel used to represent the map belief F}. This
is important as different lengthscales result in different map

updates along paths, potentially affecting decision-making.
Map beliefs F, assuming spatially independent measurements
z, e.g. occupancy grid maps, are naturally encoded by lgp = 0
as Matern kernels with [gp — 0 assume spatially independent
measurements. The user-defined value threshold f;, € F
represents the interesting features Jj.

Policy training. We train our policy 7* using the proximal
policy optimisation algorithm [25] and compute our state
space in [Eq. (5) over an equidistant grid X;. We use the
IMPALA encoder [[6] to process the interesting area belief
p(F(x) € Fi|FE,) and map belief uncertainty H(F}(x))
for each x € X;. We use a multilayer perceptron (MLP) to
process the current robot’s pose p;, remaining budget B; and
mission hyperparameters H, and a MLP head to predict the
stochastic policy 7(s;) and value function V;(s;).

V. EXPERIMENTAL RESULTS

The experiments are designed to support our claims. In
Sec. V-B| we show that training our map-agnostic policy on
various monitoring missions yields competitive performance
with state-of-the-art online non-learning-based policy search
methods and offline-learned policies adapted and re-trained
for each class of monitoring missions with specific terrain
map representation. In we verify that our map-
agnostic policy trained in simulation performs similarly to
these state-of-the-art adaptive IPP methods on unseen real-
world datasets. In we show that our map-agnostic
adaptive IPP formulation unifies existing adaptive IPP methods
while maintaining or improving their performance.

A. Experimental Setup

Mission setup. The general procedure for simulating mon-
itoring missions used to train and evaluate planning policies
is described in For discrete-valued terrain features,
we assume three semantic classes F with interesting classes
Fr of varying spatial extent. We equip a simulated UAV
with a sensor delivering image-like semantic measurements
z; spanning a downwards-projected field of view. We use
occupancy grid maps F, for terrain mapping and confusion
matrix-based sensor noise as in [22], [32]. For continuous-
valued terrain features, we assume features F = [0,1]
with interesting thresholds fi,, such that Fr = [fin,1].
Simulated UAVs are equipped with sensors delivering point
measurements z; with Gaussian noise, mapped using Gaussian
processes as in [[1]], [8], [19], [22]. We distinguish between the
classical evaluation protocol of fixed mission hyperparameters
H = {fin,lcp} = {0.4,0.35} as in [1], [8], [22], [24], de-
noted as Static, and our more challenging scenario of randomly
sampled H with f;, € [0.0,0.8] and lgp € [0.15,0.55]
denoted below as Varying. This resembles the static mission
hyperparameters in expectation. The initial mission budget is
set to B = 100s, and initial robot positions py are sampled
at random. We assume actions a; € A representing relative
2D robot position changes on an equidistant grid as in [19],
[22], [24], [32]. To train and benchmark our approach, we
simulate ground truth feature fields F' with varying spatial
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TABLE I: Comparison of state-of-the-art map-specifically designed and trained methods to our map-
agnostic planning policy (RL-Ours) on simulated continuous- and discrete-valued terrain feature
monitoring missions. Best average performances are marked in bold, second-best average performances
are underlined if standard deviations in brackets overlap. Our map-agnostic policy performs best in case
of Varying user-defined mission hyperparameters and similar to state-of-the-art adaptive IPP methods

in case of Static mission hyperparameters.

Ground truth Ground truth

Approach Static H Varying H Replanning _—
Il Unc.)] MLL]| RMSE| I Unc.l MLL| RMSE| time [s])
RL-Ours  25.8 (0.17) 60.6 (0.22) -64.6 (0.12) 3.83 (0.08) 26.2 (0.65) 60.4 (0.64) -60.5 (0.59) 3.81 (0.07) 0.004
z RL-Base-C 26.1 (0.25) 59.6 (0.28) -66.2 (0.39) 3.67 (0.02) 24.0 (0.94) 64.2 (1.07) -48.4 (4.64) 5.51 (0.97) 0.004
§ MCTS 25.6 (0.09) 60.7 (0.08) -64.9 (0.52) 3.83 (0.16) 25.3 (0.41) 61.1 (0.24) -59.5 (0.70) 4.27 (0.22) 2.86
Z CMA-ES  23.1 (1.27) 63.0 (3.41) -60.1 (6.38) 5.45 2.67) 21.5 (1.44) 64.3 (2.32) -55.4 (5.52) 2.59 (0.85) 6.05
S CGreedy 24.5 (0.14) 62.0 (0.12) -62.0 (0.26) 4.11 (0.11) 25.2 (0.66) 61.7 (0.29) -58.0 (1.55) 4.35 (0.24) 0.05 Map belief Map belief
overage  15.3 (0.16) 75.5 (0.39) -28.0 (1.44) 10.8 (0.12) 13.4 (0.28) 77.1 (0.25) -30.6 (0.87) 9.93 (0.20) -
Il Unc.] mloUt F11 i) Unc.l mloU?T F11
RL-Ours  31.5 (0.12) 38.3 (0.76) 20.8 (0.26) 25.6 (0.19) 30.5 (0.12) 39.2 (0.42) 20.4 (0.17) 25.3 (0.12) 0.004
RL-Base-D  31.1 (0.09) 38.6 (0.43) 20.7 (0.14) 25.5 (0.09) 30.4 (0.57) 40.2 (0.95) 20.1 (0.29) 25.0 (0.26) 0.004 .
Q
o MCTS 30.7 (0.25) 41.9 (0.31) 19.5 (0.08) 24.5 (0.12) 30.8 (0.21) 41.2 (0.85) 19.8 (0.31) 24.7 (0.24) 1.95
.2 CMA-ES  29.6 (1.87) 43.2 (2.38) 19.2 (0.85) 24.2 (0.76)  30.0 (1.45) 42.4 (0.61) 19.5 (0.42) 24.4 (0.51) 3.75 . . . .
A Greedy 29.9 (0.24) 44.4 (0.83) 18.7 (0.26) 23.8 (0.22) 29.4 (0.17) 45.6 (0.59) 18.2 (0.22) 23.2 (0.22) 0.03 Unified belief Unified belief
Coverage  29.7 (0.46) 44.3 (0.37) 18.7 (0.12) 23.8 (0.12)  27.9 (0.24) 45.3 (0.37) 18.4 (0.12) 23.3 (0.08) - Fig. 3: Continuous (left) and dis-

correlations as shown in [Fig. 3}top. Additionally, we evaluate
the performance on real-world orthomosaic fields F'.
Baselines. We consider state-of-the-art adaptive IPP meth-
ods performing online planning or offline-trained policy in-
ference. In contrast to our RL-Ours method, all baseline poli-
cies rely on map-specific planning state spaces. All methods
consider the current robot position and remaining budget in
their state. Continuous-valued terrain features are modelled
by directly using posterior mean and variance of the Gaus-
sian process as in [1]], [8], [19], [22f], [24]. Discrete-valued
terrain features are modelled by directly using the posterior
occupancy map and its entropy as in [22]], [32]. All baselines
reward map uncertainty reduction in approximated areas of
interest relying on hand-tuned confidence intervals as in []1]],
[8]], [22]. Based on these states and rewards, we implement
finite-horizon rollout-based MCTS [5]], [19], finite-length path
optimisation using the covariance matrix adaptation evolution
strategy (CMA-ES) (8], [22], and Greedy planning [22] as
online policy search methods. To offline-train RL-Base plan-
ning policies, we use RL assuming Static hyperparameters
and perform policy inference online [1f], [18[], [24], [32].
Further, we pre-compute lawnmower-like Coverage paths [7]]
commonly used in real-world monitoring deployments.
Evaluation metrics. All adaptive replanning performance
metrics are computed over areas of interest &; (Eq. (D))
after a mission is terminated. For continuous-valued mapping
missions, we compute the final covariance log-trace of map F,
normalised by the prior covariance log-trace of Fy (Unc.) and
root mean squared error (RMSE) as in [1]], [19]], [22], and
mean log loss (MLL) of Ft w.r.t. the ground truth feature
field F' as computed by Marchant and Ramos [16], Eq
(23). For discrete-valued mapping missions, we compute the
final Shannon entropy of map F, normalised by the prior
Shannon entropy of Fy (Unc.), and mean Intersection-over-
Union (mloU) and Fl-score of Ft w.r.t. the ground truth
feature field F' as in [18]], [22], [32]. Further, we compute
an information integral (II) as one minus the area under the

crete terrain feature fields (right).

normalised map uncertainty (Unc.) over budget curve. The
II captures the uncertainty reduction speed over the depleted
budget in a single metric. All metrics are averaged over 100
missions, repeated with three different random seeds. We
report mean and standard deviations over the three seeds.

B. Simulation Results

The first set of experiments shows that our single map-
agnostic adaptive IPP policy yields competitive performance
with state-of-the-art online policy search methods while sub-
stantially reducing replanning runtime. Further, our map-
agnostic policy outperforms state-of-the-art map-specifically
designed and offline-trained policies on various terrain mon-
itoring missions. We evaluate all methods in simulated
continuous- and discrete-valued terrain feature monitoring
scenarios as described in [Sec.V-Al We consider the classical
Static mission hyperparameter and our Varying mission hy-
perparameter evaluation protocol to benchmark adaptive IPP
approaches on challenging inter-mission variations.

summarises the results. In line with previous RL-
based adaptive IPP works, map-specifically designed RL-
Base-C and RL-Base-D policies outperform state-of-the-art
online policy search methods in their respective continuous-
and discrete-valued terrain feature monitoring missions with
Static hyperparameters they were trained on. Our single map-
agnostic RL-Ours policy shows competitive performance on
continuous- and discrete-valued monitoring missions with
Static hyperparameters compared to online policy search
methods and the RL-Base-C/D policies. Noticeably, our map-
agnostic policy outperforms the map-specific RL-Base-C/D
policies on Varying hyperparameters, causing larger inter-
mission variations. This verifies the advantage of our unified
policy being trained and conditioned on larger mission varia-
tions, while the RL-Base-C trained on Static hyperparameters
does not match the performance of online policy search.
Further, our map-agnostic policy outperforms the strongest
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TABLE II: Comparison of state-of-the-art map-specifically designed and trained methods to our map- #= f
agnostic planning policy (RL-Ours) on real-world continuous-valued surface temperature (Temperature- 7 H H

1/2) and discrete-valued urban (Potsdam) and rural (RIT-18) semantic terrain datasets. Best average = =
performances are marked in bold, second-best average performances are underlined if standard deviations _
in brackets overlap. Our map-agnostic policy performs similarly to state-of-the-art adaptive IPP methods. | Aot
i «
Approach Temperature-1 Temperature-2 Potsdam [11] RIT-18 [[12] Temperate-1 Temperature-2
1 Unc.) k) Unc.) 1 Unc.] 1t Unc.| i/
RL-Ours  25.4 (0.31) 62.2 (0.09) 27.6 (0.26) 58.6 (0.22) 32.9 (1.92) 35.8 (3.10) 31.7 (1.25) 39.9 (0.64) up S
RL-Base 24.6 (0.62) 63.1 (0.46) 26.7 (0.14) 60.6 (0.85) 31.9 (1.82) 36.4 (2.24) 32.2 (0.31) 39.6 (0.59) il R
MCTS 25.3 (0.22) 61.9 (0.21) 27.7 (0.49) 58.4 (0.49) 31.7 (0.45) 40.8 (0.93) 30.7 (0.50) 42.2 (0.17) : , -~
Greedy  25.2 (0.46) 62.4 (0.45) 27.1 (0.43) 58.9 (0.29) 29.8 (0.29) 44.0 (0.66) 29.7 (0.45) 46.0 (0.54) Potsdam RIT-18
Coverage 14.7 (0.34) 75.9 0.08) 15.8 (0.84) 73.4 (0.98) 29.3 (0.60) 44.6 (0.17) 29.7 (0.62) 45.4 (0.91)

Fig. 4: Real-world datasets.

MCTS adaptive IPP method on missions with Varying hyper-
parameters while substantially reducing replanning runtimes
at deployment. This shows we can successfully train a sin-
gle adaptive IPP policy applicable and well-performing in
monitoring scenarios with larger inter-mission variations in
user-defined hyperparameters and terrain map representations.
shows simulated ground truth feature fields F' with
paths planned based on our unified belief FI,t over initially
unknown non-shaded and red areas of interest £, derived from
mission-specific map beliefs F, with yellow indicating a high
probability of interesting areas according to FLt.

C. Results on Real-World Datasets

The experiments on real-world orthomosaics are designed
to show that our single unified policy trained in simulation
performs similarly to state-of-the-art adaptive IPP methods
on previously unseen real-world terrain datasets. We compare
our map-agnostic policy (RL-Ours) to map-specifically de-
signed online non-learning-based planning methods and map-
specifically designed and trained policies (RL-Base-C/D). We
consider two continuous-valued surface temperature orthomo-
saics of crop fields near Bonn, Germany, mapped using Gaus-
sian processes, where high surface temperatures above 25°C
are interesting. Further, we execute discrete-valued semantic
monitoring of an urban area in Potsdam, Germany [11]] and
a rural area [[12] (RIT-18), mapped using occupancy maps,
where vegetation features are of interest. Orthomosaic datasets
are illustrated in All RL-based policies are trained in
simulation as in and deployed on the real-world
datasets without adaptation.

[Tab. 11l summarises the results. In line with state-of-the-
art methods, our map-agnostic policy consistently outperforms
traditionally used non-adaptive Coverage paths, showcasing
the advantages of adaptive online replanning. Notably, in
most scenarios, our map-agnostic policy outperforms Greedy
planning and performs similarly to MCTS planning while
substantially reducing replanning runtimes. Furthermore, our
map-agnostic policy performs comparably to map-specifically
designed and trained learning-based RL-Base-C/D policies.
Generally, we observe an expected small performance degra-
dation of RL-based policies compared to their performance
in simulated missions due to simulation to real-world dataset
gaps [13]. While our single map-agnostic policy is applied
to all real-world dataset missions, each baseline requires

TABLE III: Integration of our map-agnostic adaptive IPP formulation
(ours) into state-of-the-art online policy search methods. Best average
performances are marked in bold, second-best average performances
are underlined if standard deviations in brackets overlap. Our map-
agnostic formulation unifies existing adaptive IPP methods while
consistently maintaining or improving performance over previous
map-specific formulations for continuous- (prev-C) and discrete-
valued (prev-D) terrain feature monitoring missions.

Policy PP Varying H
ik Unc.| MLL| RMSE|
Greed prev-C  25.2 0.66) 61.7 (0.29) -58.0 (1.55) 4.35 (0.24)
2 y ours 25.3 (0.41) 61.3 (0.42) -59.0 (0.73) 4.15 (0.16)
% MCTS prev-C  25.3 (0.24) 61.1 (0.24) -59.5 (0.70) 4.27 (0.22)
g ours  27.0 (0.42) 59.6 (0.26) -63.8 (0.34) 4.00 (0.24)
o
&) -C  21.5 (1.44) 64.3 (2.32) -55.4 (5.52) 2.59 (0.85
_pgq prev (1.44) (2.32) (5.52) (0.85)
CMA-ES ours 21.8 (2.25) 64.5 (1.97) -54.1 (5.67) 2.73 (1.26)
k) Unc.) mloUT  FI171
Greed prev-D  29.4 (0.17) 45.6 (0.59) 18.2 (0.22) 23.2 (0.22)
y ours 30.5 (0.33) 44.5 (0.19) 18.6 (0.00) 23.6 (0.05)
Q
I} MeTs  Prev-D 308 (021) 41.2 085) 19.8 (0.31) 24.7 (0.24)
,g ours 31.4 (0.78) 41.0 (0.96) 19.8 (0.31) 24.7 (0.31)

30.0 (1.45) 42.4 (0.61) 19.5 (0.42) 24.4 (0.51)

g prev-D
CMA-ES 29.6 (1.33) 41.6 (0.37) 19.7 (0.21) 24.6 (0.42)

ours

two map-specific versions before deployment. Overall, these
results highlight the advantages of our map-agnostic policy,
validating its performance on unseen real-world terrain data
while facilitating deployment.

D. Map-Agnostic Online Adaptive IPP Policy Search

The next set of experiments aims to answer if we can easily
integrate our map-agnostic adaptive IPP formulation into state-
of-the-art online non-learning-based policy search methods
without planning performance loss. We show that our map-
agnostic adaptive IPP formulation unifies existing adaptive
IPP methods while maintaining or improving performance in
various terrain monitoring missions.

To showcase the general applicability of our approach, we
integrate our map-agnostic adaptive IPP formulation (ours)
with the greedy, MCTS and CMA-ES algorithms described
in using our state formulation in and

reward function in [Eq. (8)| for policy search. We compare
it to previously used map-specific adaptive IPP formulations
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for continuous- (prev-C) and discrete-valued terrain feature
monitoring (prev-D) resembling our baselines in
Tab. Il summarises the planning performances .Our map-
agnostic adaptive IPP formulation consistently performs on
par with adaptive IPP formulations specifically designed for
continuous- and discrete-valued monitoring missions, irrespec-
tive of the policy search method. Notably, in some scenarios,
our map-agnostic formulation even improves the average plan-
ning performance of policy search algorithms. These results
verify that our method successfully integrates with state-of-
the-art adaptive IPP methods without requiring map-specific
adaptation. This way, our approach contributes to unifying the
broad family of adaptive IPP approaches.

VI. CONCLUSION

We proposed a novel map-agnostic formulation of the
adaptive informative path planning (IPP) problem for terrain
monitoring. Our adaptive IPP formulation is generally appli-
cable to various continuous- or discrete-valued terrain feature
monitoring missions. Our main contribution is a planning state
space unifying different map representations. Based on our
formulation and a newly introduced reward function, we show
how to train a single adaptive IPP policy for terrain moni-
toring missions with varying map representations and user-
defined areas of interest. Our experimental results show that
our single learned policy performs similarly to state-of-the-
art map-specifically designed and trained non-learning- and
learning-based adaptive IPP methods on simulated and real-
world terrain datasets. Our map-agnostic formulation easily
integrates with state-of-the-art online policy search methods
for adaptive IPP while maintaining performance.
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