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Semi-Supervised Active Learning for Semantic
Segmentation in Unknown Environments

Using Informative Path Planning
Julius Rückin Federico Magistri Cyrill Stachniss Marija Popović

Abstract—Semantic segmentation enables robots to perceive
and reason about their environments beyond geometry. Most
of such systems build upon deep learning approaches. As au-
tonomous robots are commonly deployed in initially unknown
environments, pre-training on static datasets cannot always
capture the variety of domains and limits the robot’s percep-
tion performance during missions. Recently, self-supervised and
fully supervised active learning methods emerged to improve
robotic vision. These approaches rely on large in-domain pre-
training datasets or require substantial human labelling effort.
We propose a planning method for semi-supervised active learn-
ing of semantic segmentation that substantially reduces human
labelling requirements compared to fully supervised approaches.
We leverage an adaptive map-based planner guided towards
the frontiers of unexplored space with high model uncertainty
collecting training data for human labelling. A key aspect of
our approach is to combine the sparse high-quality human
labels with pseudo labels automatically extracted from highly
certain environment map areas. Experimental results show that
our method reaches segmentation performance close to fully
supervised approaches with drastically reduced human labelling
effort while outperforming self-supervised approaches.

Index Terms—Motion and Path Planning, Deep Learning for
Visual Perception, Semantic Scene Understanding

I. INTRODUCTION

PERCEIVING and understanding complex environments
is a crucial prerequisite for autonomous systems [1, 2].

At the same time, robots are increasingly utilised in diverse
terrains to execute various tasks, such as monitoring [3, 4],
search and rescue [5, 6], and precision agriculture [7]. Thus,
robotic perception systems need to adapt to novel domains
and terrains. However, classical deep learning-based semantic
segmentation systems are pre-trained on static datasets that
often fall short in covering the varying domains and semantics
encountered during real-world robot deployments.

This work examines the problem of semi-supervised active
learning to improve robotic vision within an initially un-
known environment. We aim to maximise the robot’s semantic
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Fig 1: Our semi-supervised active learning approach in an unknown
environment (top). We infer semantic segmentation (top-centre) and
model uncertainty (top-right) and fuse both in environment maps. The
robot re-plans its path (orange, top-left) to collect diverse uncertain
images. After each mission, we select sparse sets of pixels for human
and self-supervised labelling (bottom). Self-supervised labels are
rendered from low-uncertainty semantic map regions. Human labels
are queried for regions of cluttered model predictions.

segmentation performance while minimising human labelling
requirements. The robot re-plans paths online to collect in-
formative training data to re-train a semantic segmentation
model after a mission. We incorporate two sources of labels
for network re-training based on the collected data: (i) a human
annotator and (ii) automatically generated pseudo labels based
on a semantic environment map incrementally built online
during a mission.

To reduce human labelling effort, active learning methods
select the most informative images from a static pool of
unlabelled data [8–11]. Recent works combine active learning
with robotic planning to reduce the amount of labelled training
data in unknown environments [12–14]. However, these meth-
ods require time-consuming dense pixel-wise human-labelled
images to train semantic segmentation models. In parallel,
self-supervised active learning methods automatically generate
pseudo labels from semantic maps incrementally built during
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a mission [15–17]. Although these approaches do not rely on
human labels, their applicability to unknown environments
is limited since they require large labelled in-domain pre-
training datasets to produce high-quality pseudo labels without
systematic prediction errors.

The main contribution of this paper is a novel semi-
supervised informative path planning approach for robotic
active learning. Our approach bridges the gap between the
general applicability of fully supervised methods and low
human labelling requirements of self-supervised methods. A
key novelty of our adaptive planning method is combining
the selection of sparse and informative human-labelled train-
ing data and automatically generating highly certain pseudo
labels as shown in Fig. 1. We fuse semantic predictions and
Bayesian model uncertainty estimates [18] into environment
maps. Based on the model uncertainty map, our planner
adaptively collects images from high-uncertainty areas. Fol-
lowing recent works in semi-supervised learning, we select
only a sparse set of to-be-labelled informative pixels from each
image [19, 20]. To further improve model performance, we
automatically render highly certain pseudo labels based on the
semantic and model uncertainty maps. By combining human
and pseudo labels, we aim to maximise semantic segmentation
performance while reducing human labelling effort compared
to previous works in robotic active learning.

In sum, we make the following three key claims. First, our
approach drastically reduces the number of human-labelled
pixels compared to fully supervised active learning approaches
while preserving similar semantic segmentation performance
and outperforming self-supervised methods. Second, selecting
sparse human labels in a targeted way improves semantic
segmentation performance while minimising overall human
labelling efforts. Third, the uncertainty-aware generation of
pseudo labels further improves semantic segmentation per-
formance compared to using human labels only. We will
open-source our code for usage by the community at: https:
//github.com/dmar-bonn/ipp-ssl.

II. RELATED WORK

Our approach combines computer vision research aiming
to minimise human labelling effort for training semantic
segmentation models and informative path planning.

Active learning aims to select a minimal subset of infor-
mative to-be-labelled training data from a pool of unlabelled
data that maximises model performance. Some works estimate
uncertainty to access a sample’s information value [9, 21]
utilising methods such as Monte-Carlo dropout [9] or ensem-
bles [21]. These strategies select samples from a large pool
of unlabelled data. In contrast, our planning method exploits
Bayesian model uncertainty estimates [9] fused into an envi-
ronment map guiding the robot towards high-uncertainty areas
to incrementally collect samples during a mission.

Shin et al. [20] recently introduced an efficient label selec-
tion paradigm, which selects a sparse set of uncertain pixels
for human labelling to train semantic segmentation models.
Benenson and Ferrari [22] show that selecting sparse sets of
to-be-labelled pixels reduces human labelling effort compared

to dense pixel-wise human labels. Similarly, Xie et al. [19]
propose a to-be-labelled pixel or region selection criterion
for domain shift scenarios. In contrast to previous robotic
planning methods [12–14], which rely on dense pixel-wise
human labels, our work utilises a new sparse human label
selection strategy inspired by Xie et al. [19] to drastically
reduce human labelling effort.

Semi-supervised semantic segmentation methods build
upon a low budget of human-labelled training samples meth-
ods and improve model performance further by generating
pseudo labels from model predictions of unlabelled data [23,
24]. Our work leverages a low number of sparsely human-
labelled samples and combines them with automatically gen-
erated pseudo labels. In contrast to image-based pseudo label
methods [23, 24], our approach renders pseudo labels from a
semantic map in an uncertainty-aware fashion.

Informative path planning aims to maximise the collected
information in initially unknown environments subject to robot
constraints, such as mission time [4, 25, 26]. Traditional non-
adaptive approaches pre-compute static paths while adaptive
methods actively re-plan paths online based on collected
measurements [4, 27]. Our work focuses on adaptive methods
for active learning in semantic segmentation since they account
for varying semantics and changing model uncertainties after
network re-training.

Sampling-based techniques, such as receding-horizon plan-
ning for information gathering [27] or variants of Monte-
Carlo tree search [3, 28, 29], solve the informative path
planning problem in a computationally efficient way. Sim-
ilarly, optimisation-based strategies exploit algorithms such
as the covariance matrix adaptation evolution strategy [4, 7]
to directly maximise objective functions. Geometric methods
select potentially informative candidate robot poses at the
frontiers of explored and unknown space [25, 26]. The above-
mentioned works address informative path planning for clas-
sical exploration or monitoring tasks. In contrast, we develop
a geometric planning approach to improve robot vision using
semi-supervised active learning.

Recent works in active learning for semantic segmentation
using robotic platforms follow either the paradigm of self-
supervision without human labels [16, 17] or full human super-
vision for selected informative images requiring dense pixel-
wise labels [12–14]. Zurbrügg et al. [16] fuse 2D semantic
predictions of a pre-trained network into a 3D map to auto-
matically generate semantic labels for continual network re-
training. Similarly, Chaplot et al. [17] train a viewpoint selec-
tion policy with reinforcement learning in simulation to target
uncertain map parts. Despite not relying on human labels,
these self-supervised methods require large human-labelled in-
domain pre-training datasets in indoor scenes to produce high-
quality pseudo labels. Further, systematic prediction errors
prevent learning specific semantics [17]. In contrast, Blum
et al. [12] propose a local planner to collect pixel-wise human-
labelled data with high training data novelty [30]. Rückin et al.
[14] propose a general map-based planner for fully supervised
active learning to improve semantic segmentation. While these
works do not require large pre-training datasets, they still
depend on dense pixel-wise human labels for model training.

https://github.com/dmar-bonn/ipp-ssl
https://github.com/dmar-bonn/ipp-ssl
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Fig 2: During a mission, a semantic segmentation network predicts
pixel-wise semantics and model uncertainties from an RGB-D image.
Both are fused into an uncertainty-aware semantic environment map
(Sec. III-A). Our planner guides the collection of training data
for network re-training based on the robot state and map belief
(Sec. III-B). After a mission, the collected data is labelled using
two sources of labels: (i) a human annotator labels a sparse set of
informative pixels, and (ii) we automatically render pseudo labels
from the semantic map in an uncertainty-aware fashion.

Our approach combines the advantages of self- and fully
supervised approaches into a semi-supervised adaptive infor-
mative path planning framework. We maintain the general
applicability of fully supervised approaches while reducing
human labelling efforts in active learning for robotic vision.

III. OUR APPROACH

We present an adaptive informative path planning frame-
work for semi-supervised active learning in semantic segmen-
tation. Considering a robot equipped with an RGB-D sensor,
our goal is to collect images in an initially unknown envi-
ronment to improve semantic perception with minimal human
labelling effort. Fig. 2 summarises our framework. We predict
pixel-wise semantics and associated model uncertainties to
update a probabilistic semantic environment map (Sec. III-A).
Based on the robot pose, flight budget, and map belief, we plan
paths to adaptively collect training data in environment areas
of high model uncertainty (Sec. III-B). After a mission, we
select a sparse set of informative to-be-human-labelled pixels
in the collected images (Sec. III-C). We combine them with
pseudo labels automatically rendered from the online-built
semantic map in an uncertainty-aware fashion for network re-
training (Sec. III-D).

A. Probabilistic Semantic Environment Mapping

A crucial requirement for pseudo label generation and
adaptive planning is a probabilistic map capturing informa-
tion about the environment. We use a probabilistic multi-
layered semantic environment mapping to fuse geometric and
semantic information. The environment is discretised into
three voxel maps MG : V → {0, 1}W×L×H , MS : V →
{0, 1}K×W×L×H , MU : V → [0, 1]W×L×H defined over
W ×L×H spatially independent voxels V . MG captures the
geometric occupancy information, MS stores the semantics,
and MU stores the associated model uncertainties.

The semantic map MS consists of K layers with one layer
per class. At each time step, a new RGB-D image arrives.
The probabilistic semantic predictions and model uncertainties
are inferred using a semantic segmentation model and Monte-
Carlo dropout [13]. We project the depth image, semantic
predictions, and model uncertainties into the environment

using the intrinsics and extrinsics of the RGB-D sensor. The
geometric map MG and semantic map MS are recursively
updated by probabilistic occupancy grid mapping [31]. The
model uncertainty map MU is updated by maximum likeli-
hood estimation.

Additionally, we maintain a count map MT : V →
NW×L×H to track the occurrences in the human-labelled
training data utilised in our planning objective. As the semantic
segmentation model is re-trained after each robot mission,
the semantic predictions and model uncertainties change.
Following Rückin et al. [14], we re-compute the semantic
and model uncertainty maps after model re-training using
previously collected RGB-D images to obtain maximally up-
to-date map priors for informative planning.

B. Adaptive Informative Path Planning

Our planner is designed to collect new training data in ini-
tially unknown environments given mission budget constraints.
We aim to maximise the performance of a semantic segmen-
tation model with minimal human labelling effort after re-
training it on the collected training data. Our planning method
searches for a path ψ∗ = (p1, . . . ,pN ) ∈ Ψ with a variable
number N ∈ N of robot poses pi ∈ RD, i ∈ {1, . . . , N}, in
the set of potential paths Ψ, that maximises an information
criterion I : Ψ → R≥0:

ψ∗ = argmax
ψ∈Ψ

I(ψ), s.t. C(ψ) ≤ B , (1)

where I assigns an information value to each possible path
ψ ∈ Ψ and B ≥ 0 is the mission budget. C : Ψ → R≥0

defines the required budget to execute the path ψ.
At each time step t, we adaptively re-plan the next-best

robot pose p∗
t+1 to collect informative training data. We utilise

a geometric frontier-based planner [14, 32] guided by the
information criterion I . The information criterion estimates the
effect of a candidate training image recorded at a robot pose
on a semantic segmentation model’s performance. Based on
the geometric map belief Mt

G, we assign each voxel v ∈ V
to one of three disjoint sets of voxels VF ∪ VU ∪ VO = V
containing the free, unknown, and surface voxels, respectively.
To generate potentially informative robot pose candidates
pct+1 ∈ RD, we equidistantly sample poses pct+1 along the
frontiers of free and unknown space reachable within the
remaining mission budget. A frontier is a set of connected free
voxels in VF with neighbouring unknown voxels in VU [32].
The information value I(pct+1) of a candidate pose pct+1 is
defined as [16]:

I(pct+1) =
∑

v∈Img(pc
t+1)


0 , if v ∈ VF

cu , if v ∈ VU
Mt

U (v)
Mt

T (v)
, if v ∈ VO ,

(2)

where cu ∈ R ≥ 0 is a uniform model uncertainty prior
fostering exploration of unobserved environment areas, and
Img(pct+1) is a rendered 2D image of voxels visible from
pct+1 with resolution w′ × h′. We obtain Img(pct+1) by ray
casting into the geometric map belief Mt

G from pose pct+1.
While casting a ray from pct+1, only free voxels are treated
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as traversable. Unknown or occupied voxels are assumed to
be reflective. Pixels corresponding to rays that traverse only
free voxels are assigned zero information value as we assume
semantics are only assigned to surfaces. If a surface voxel
reflects a ray, its effect on semantic segmentation performance
after model re-training is estimated by its model uncertainty.
To trade-off between model uncertainty and training data
diversity, we normalise a voxel’s information value by its
number of occurrences in the training dataset.

C. Semi-Supervised Training

The main contribution of our approach is a semi-supervised
training strategy for improving the robot’s semantic percep-
tion. We utilise a semantic segmentation network fθ(z) =
p(y | z) ∈ [K × w × h] parameterised by θ to predict
the pixel-wise probabilities of K-class semantic labels y ∈
{1, . . . ,K}w×h given an input RGB image z of resolution w×
h. We follow Rückin et al. [13] to estimate pixel-wise model
uncertainties u ∈ [0, 1]w×h via Monte-Carlo dropout [18]. To
maximise model performance, we combine human labels Yl =
{y1

l , . . . ,y
Nl

l } of images Zl = {z1l , . . . , z
Nl

l } with pseudo
labels Yu = {y1

u, . . . ,y
Nu
u } of images Zu = {z1u, . . . , zNu

u },
where Nl and Nu are the numbers of human-labelled and
pseudo-labelled images. To reduce human labelling effort, we
consider a sparse set of human-labelled pixels yil and pseudo-
labelled pixels yiu. Each non-labelled pixel in some label yil or
yiu is assigned a void class Nv ∈ {1, . . . ,K}. During training,
we mask the loss with Iy ̸=Nv ∈ {0, 1}w×h, where Iy ̸=Nv is
zero for each pixel with class Nv . The model fθ is trained to
minimise the following cross-entropy loss function:

L(θ) = 1

Nlα

Nl∑
i=1

− log
(
fθ(z

i
l)

(yi
l ,:,:)

)
Iyi

l ̸=Nv+

1

Nuα

Nu∑
i=1

− log
(
fθ(z

i
u)

(yi
u,:,:)

)
Iyi

u ̸=Nv

(3)

where α ∈ N is the number of labelled pixels per image and
fθ(z)

(y,:,:) are the probabilities of ground truth semantics y.
Combining ideas from Shin et al. [20] and Xie et al. [19],

we propose a new model architecture-agnostic pixel selection
procedure for sparse human labels that trades off between label
informativeness and diversity. After each mission, for all newly
collected images zl recorded at planned poses maximising
Eq. (2), for each pixel (m,n), we predict semantic proba-
bilities p(y | zl)(:,m,n) and extract the maximum likelihood
label ỹl

(m,n) = argmaxk∈[K] p(y | zl)(k,m,n). We compute
each pixel’s region impurity score [19] as follows:

Rr(zl)
(m,n) = −

K∑
k=1

log

(
|Nk

r (m,n)|
(2r + 1)2

)
|Nk

r (m,n)|
(2r + 1)2

,

Nk
r (m,n) =

{
(i, j) ∈ Nr(m,n) | ỹl(i,j) = k

}
,

(4)

where Nr(m,n) = {(i, j) | |i−m| ≤ r, |j−n| ≤ r} is the set
of r-step neighboring pixels of (m,n). Intuitively, the region
impurity for human labelling a pixel is high whenever the
number of different classes predicted within the pixel’s r-step
neighbourhood is high, as a well-trained model should predict

locally non-cluttered semantics. In contrast to Xie et al. [19],
we do not greedily select the α pixels per image that maximise
region impurity. Instead, per image, we sample α pixels
uniformly at random from the β% pixels with the highest
region impurity to foster human label diversity. While α sets
the user-defined human labelling budget, β implicitly provides
a lower bound for a pixel’s information value. Experimentally,
we found that smaller values β ≤ 10% ensure informative
pixel selection, while β → 100% lead to inefficient random
pixel selection. Further, both region impurity and random
sampling are crucial for maximising model performance.

D. Self-Supervised Pseudo Label Generation

Similarly to self-supervised robotic active learning ap-
proaches [15, 16], after a mission is finished, we utilise
our incrementally online-built uncertainty-aware semantic map
(Sec. III-A) to generate pseudo labels Yu in a self-supervised
fashion. We record to-be-pseudo-labelled images zu ∈ Zu
equidistantly between two poses planned for collecting to-be-
human-labelled images (Eq. (2)) to maximise training data
diversity. Given a robot pose pu ∈ RD at which zu is
recorded, we render a pixel-wise probabilistic pseudo label
p(yu |pu,MS) ∈ [0, 1]K×w×h from the semantic map belief
MS at the image resolution w×h. Then, for each pixel (m,n),
we extract the maximum likelihood pseudo label y

(m,n)
u =

argmaxk∈[K] p(yu |pu,MS)
(k,m,n). Similarly, we render the

corresponding pixel-wise model uncertainty uu ∈ [0, 1]w×h

from the model uncertainty map MU . If a ray corresponding
to pixel (m,n) is not reflected by a surface voxel in MG, we
assign the void class y

(m,n)
u = Nv .

In contrast to previous works [15, 16], we only use a sparse
set of α pseudo-labelled pixels per image zu to train the
network via Eq. (3) to balance the human and pseudo label
supervision. We extend the approach of Shin et al. [20] to a
new pixel selection procedure for sparse pseudo labels yu that
trades off between semantic map uncertainty and pseudo label
diversity. After each mission, for all images zu collected in any
of the previous missions, we (re-)render pseudo labels yu and
model uncertainties uu based on the most recent map beliefs
MS and MU . Similar to the human-labelled pixel selection
(Sec. III-C), for each image, we sample α pixels (m,n) at
random from the β% pixels with the lowest map-based model
uncertainty u

(m,n)
u . Non-sampled pixels are assigned the void

class. We found that providing an implicit upper bound β
for model uncertainty yields higher semantic segmentation
performance than random sampling as it acts as a proxy to
the pseudo label quality. Further, β ≤ 10% usually ensures
moderate model performance improvements.

IV. EXPERIMENTAL RESULTS

Our experiments are designed to assess the performance of
our approach. They support the claims made in this paper.
First, we show that our method for selecting human-labelled
pixels outperforms state-of-the-art pixel selection methods in
our robotic planning context (Sec. IV-B). Second, we vali-
date that combining our uncertainty-aware pseudo labels with
human labels improves semantic segmentation performance
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Fig 3: Comparison of label selection methods with α = 1000
human-labelled pixels per image using our frontier planner on
ISPRS Potsdam. Frontier (yellow) and coverage (orange) planners
use densely labelled images indicating performance upper bounds.
Results are averaged over three runs. Shaded regions indicate one
standard deviation. Our proposed method (dark blue) outperforms
state-of-the-art pixel selection methods.

and drastically reduces the number of human-labelled pixels
compared to fully supervised approaches while maintaining
similar performance (Sec. IV-C). Third, our semi-supervised
active learning approach outperforms self-supervised active
learning approaches (Sec. IV-D).

A. Experimental Setup

Baseline & Dataset. We compare our frontier planner
against a coverage-based strategy that pre-computes paths
to maximise spatial coverage [14]. We evaluate our ap-
proach on the real-world 7-class ISPRS Potsdam orthomosaic
dataset [33] and simulate 10 subsequent unmanned aerial
vehicle (UAV) missions from 30m altitude with a mission
budget of 1800 s. The UAV uses a downwards-facing RGB-D
camera with a footprint of 400 px×400 px [14].

Evaluation Metrics. We evaluate semantic segmentation
performance (dependent variable) over the number of human-
labelled training images or pixels (independent variable). We
use mean Intersection-over-Union (mIoU) [34] and pixel-wise
accuracy [35] to quantify semantic segmentation performance.
We run three trials per experiment and report the mean and
standard deviation performance curves.

Implementation Details. We use Bayesian ERFNet [13]
pre-trained on the Cityscapes dataset [34]. Re-training after
each mission starts from this checkpoint. The model is trained
until convergence on the validation set. We use a one-cycle
learning rate scheduler, a batch size of 8, and weight decay
λ = (1−p)/2N , where p = 0.5 is the dropout probability, and
N = Nl+Nu is the number of training images [9]. The human
and pseudo label pixel selection lower bounds are β = 5%,
and the r-neighborhood of the human label selection criterion
is set to r = 1. In practice, our approach allows for using any
user-defined model.

B. Targeted Human Label Selection

The first set of experiments shows that targeted human label
selection improves semantic segmentation performance and

TABLE I: Per-class IoU comparison of sparse label selection methods
with α = 1000 human-labelled pixels per image using our frontier
planner on ISPRS Potsdam. Dense uses dense pixel-wise human-
labelled images indicating the performance upper bound.

Method

M
is

si
on

Su
rf

ac
e

B
ui

ld
in

g

Ve
ge

ta
tio

n

Tr
ee

C
ar

C
lu

tte
r

Random

3

53.98 51.00 40.58 20.87 28.54 7.58
Unc-Rand 58.93 60.89 43.09 25.15 42.04 11.42
Reg-Imp 51.17 48.84 39.96 15.29 0.00 8.26
Ours 59.47 65.74 46.37 33.74 47.20 15.36

Dense 63.93 70.39 49.46 35.82 60.95 10.40

Random

6

59.16 63.30 43.33 31.62 44.68 11.63
Unc-Rand 61.87 68.99 42.50 29.80 52.57 16.60
Reg-Imp 60.19 69.61 46.68 30.83 59.49 12.59
Ours 65.99 72.83 51.56 41.16 61.07 15.53

Dense 71.08 77.72 53.14 45.80 68.81 17.56

Random

9

59.38 64.71 43.80 33.21 50.54 11.33
Unc-Rand 62.40 70.19 46.68 30.91 57.32 14.92
Reg-Imp 62.31 71.78 46.87 36.92 64.57 12.33
Ours 67.94 74.54 52.00 43.37 66.50 16.67

Dense 71.23 78.60 52.79 48.52 71.57 20.11

Input Ground truth Prediction Sparse Label Uncertainty

Fig 4: Qualitative results of our human label pixel selection method
on ISPRS Potsdam. Columns from left to right: RGB input, ground
truth, prediction, pixels selected for re-training, model uncertainty.
Selected pixels are expanded to their one-pixel neighbourhood for
visualisation. Our method selects pixels in areas of cluttered predic-
tions, often corresponding to misclassified regions.

reduces human labelling effort. We verify that our method
(i) outperforms state-of-the-art pixel selection methods in the
robotic planning context and (ii) improves semantic segmenta-
tion performance over non-targeted pixel selection with higher
gains for lower human labelling budgets. The experiments are
conducted using human labels only.

We compare our human-labelled pixel selection method
(Ours, Sec. III-C) against four pixel selection methods for
a low human labelling budget of α = 1000 ≈ 0.6% pixels
for each collected image by our frontier planner (Sec. III-B).
Namely: (i) sample α pixels from the β% most uncertain
pixels [20] (Unc-Rand); (ii) sample β% pixels at random,
then select the α most uncertain pixels [20] (Rand-Unc);
(iii) select α pixels uniformly at random (Random); and (iv)
select α pixels with the highest region impurity in an r-
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Fig 5: Comparison of our human label selection method (solid lines)
to random label selection (dashed transparent lines) over varying
labelling budgets α ∈ [100, 10000] px using our frontier planner on
ISPRS Potsdam. Results are averaged over three runs. Shaded regions
indicate one standard deviation. The performance gain of our method
drastically increases for lower labelling budgets.

neighborhood [19] (Reg-Imp), where r = 1 yields the best
results. Additionally, we show results for the Frontier and
Coverage planner utilising pixel-wise densely human-labelled
images [14] as an upper performance bound.

Fig. 3 summarises the semantic segmentation performance
of the different pixel selection methods. In line with previous
fully supervised approaches [12, 14], the Frontier planner
(yellow) using densely labelled images achieves the highest
performance outperforming the non-adaptive Coverage plan-
ner (orange). Notably, our method (dark blue) shows the
fastest improvement and highest final mIoU of ≈ 52.5% of
all pixel selection methods, significantly outperforming the
second-best Reg-Imp method (green) reaching ≈ 49% final
mIoU. Particularly, our human label selection matches the
final performance of the Coverage planner using only ≈ 0.6%
of the labelled pixels. Table I shows the superior per-class
performance of our human label selection method, verifying
its ability to select sparse but informative human labels for
different semantics. Fig. 4 displays images collected during
a mission, onboard semantic predictions, and corresponding
human-labelled pixels selected with our method.

Fig. 5 shows the semantic segmentation performance of
our targeted pixel selection method (solid lines) compared to
randomly selecting human-labelled pixels (dashed transparent
lines) over varying human labelling budgets. Noticeably, for
budgets α ≤ 2000 px ≈ 1.3%, our pixel selection method
clearly outperforms random pixel selection. Favourably, the
performance gain of our pixel selection method over random
pixel selection drastically increases with lower human la-
belling budgets. For an extremely low budget of α = 100 px ≈
0.06%, our targeted pixel selection method leads to a high
final performance gain of ≈ 20% mIoU.

C. Uncertainty-Aware Pseudo Label Generation

The second set of experiments shows that uncertainty-aware
generation of pseudo labels improves semantic segmentation
performance. We validate that (i) our pseudo label selection
method outperforms other selection strategies, (ii) combining

Fig 6: Comparison of pseudo label selection methods with α = 1000
human- and pseudo-labelled pixels per image using our frontier
planner on ISPRS Potsdam. Frontier (yellow) and coverage (orange)
planners use densely labelled images indicating performance upper
bounds. Results are averaged over three runs. Shaded regions indicate
one standard deviation. Our method (dark blue) outperforms other
pseudo label selection methods.

Fig 7: Comparison of our human label selection only (dashed trans-
parent lines), and combined with our pseudo label selection (solid
lines) over varying labelling budgets α ∈ [100, 2000] px per image
using our frontier planner on ISPRS Potsdam. Results are averaged
over three runs. Shaded regions indicate one standard deviation. Using
our pseudo labels consistently improves performance.

our human label selection with our pseudo label selection con-
sistently improves semantic segmentation performance across
varying labelling budgets, and (iii) our semi-supervised ap-
proach drastically reduces the number of human-labelled pix-
els compared to fully supervised approaches while maintaining
similar performance. The experiments are conducted using our
human label selection method.

We compare our uncertainty-aware pseudo label selection
(Ours, Sec. III-D) against two other pseudo label selection
methods for a low human labelling budget of α = 1000 px ≈
0.6% per image. Namely: (i) we re-distribute the pseudo
labels’ class distribution to the true class distribution estimated
by the human labels using per-class model uncertainty thresh-
olds to select on average α pixels per image [23] (Dist-Align),
and (ii) we randomly select α pixels per image (Random). We
compare against using α human-labelled pixels per image only
(Human-Only) and using the Frontier or Coverage planners
leveraging dense human labels.

Fig. 6 summarises the performance of the different methods.
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Fig 8: Qualitative results of our pseudo label generation on ISPRS
Potsdam. Left to right: RGB input, ground truth, pseudo label,
pixels selected for re-training, model uncertainty. Selected pixels
are expanded to their one-pixel neighbourhood for visualisation. Our
method selects low-uncertainty pixels to minimise label errors.

Combining human labels with pseudo labels improves perfor-
mance over sparse human labels only (green). This verifies
our concept of leveraging both sparse human supervision and
self-supervised pseudo labels to maximise performance. Our
uncertainty-aware pseudo label selection method (dark blue)
achieves ≈ 1− 2% mIoU higher than other methods (purple,
red). Particularly, our semi-supervised approach outperforms
the Coverage planner using only ≈ 0.6% of the human-
labelled pixels. Fig. 8 shows qualitative results for our method
after mission completion.

Fig. 7 shows the performance using our human-labelled
pixel selection method only (dashed transparent lines) and
combining it with our uncertainty-aware pseudo labels (solid
lines) over varying human labelling budgets α ∈ [0.06, 1.25]%
per image using our frontier planner. Combining sparse hu-
man and pseudo labels consistently improves performance by
≈ 2 − 3% mIoU across varying budgets. This validates the
superior performance of our semi-supervised approach over
using sparse human labels only. Further, our semi-supervised
approach rapidly closes the final performance gap to the fully
supervised frontier planner proposed by Rückin et al. [14]
(dashed black line). The fully supervised approach reaches
a maximum performance of ≈ 57.5% mIoU while our semi-
supervised approach reaches ≈ 56% mIoU with only ≈ 0.6%
of the human-labelled pixels. This shows that our semi-
supervised approach requires two magnitudes fewer human-
labelled pixels while reaching performance similar to previous
fully supervised approaches.

D. Semi- vs. Self-Supervised Robotic Active Learning

The third set of experiments shows that our semi-supervised
active learning framework outperforms self-supervised ap-
proaches by a large margin under varying human labelling
budgets for model pre-training and model re-training in the
unknown environment.

Similar to self-supervised approaches for robotic continual
learning and domain adaptation [15, 16], we utilise our frontier

Fig 9: Comparison of our semi-supervised (solid lines) and a self-
supervised approach (dashed transparent lines) with varying numbers
of human-labelled pixels during deployment and densely human-
labelled images for pre-training. Results are averaged over three runs
on ISPRS Potsdam. Shaded regions indicate one standard deviation.
Our semi-supervised approach outperforms the self-supervised ap-
proach for all labelling budget configurations.

planner to guide uncertainty-driven training data collection
and exploit the online-built map to generate dense pseudo
labels. Current self-supervised approaches only work with
pre-trained semantic segmentation models deployed in similar
environments [15–17]. Although our semi-supervised method
works in a completely unknown environment (Sec. IV-C),
for comparing to self-supervised methods, we relax these
assumptions and consider small amounts of densely human-
labelled pre-training data randomly sampled from the de-
ployment environment. Each approach starts with the same
model checkpoint trained on the sampled pre-training data.
Similar to the experience replay method of self-supervised
approaches [15, 16], to achieve performance improvements in
the self-supervised approach, the human-labelled pre-training
data is additionally used for model re-training after a mission
is completed.

Fig. 9 shows the semantic segmentation performance of
our semi-supervised approach (solid lines) compared to the
self-supervised approach (dashed lines) on ISPRS Pots-
dam with varying numbers of human-labelled pre-training
data {16, 32}. For all human labelling budgets α ∈
{100, 500} ≈ {0.06, 0.3}% and all pre-training data budgets,
our semi-supervised active learning approach outperforms
self-supervision by a large margin. With a small number
of 16 pre-training images and little human supervision of
α = 100 during the missions, our semi-supervised approach
achieves higher final performance than the self-supervised
approach with 32 pre-training images. Further, irrespective of
the number of pre-training images, self-supervision fails to
improve its performance after five missions. This suggests that
semi-supervised active learning is necessary for maximally
improving semantic segmentation in unknown or partially
known environments. Although self-supervision benefits from
minimal labelling requirements during deployment, it is in-
herently limited by its lack of knowledge and systematic
prediction errors in unknown environments [17].
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V. CONCLUSIONS AND FUTURE WORK

We proposed a novel adaptive informative path planning
approach for semi-supervised active learning in robotic se-
mantic perception with minimal human labelling effort. Our
main contribution is a method for selecting sparse sets of
informative pixels for human labelling and combining them
with automatically generated pseudo labels rendered from an
online-built uncertainty-aware semantic map. Our experimen-
tal results show that our sparse human-labelled pixel selection
method outperforms state-of-the-art pixel selection methods.
Combining human labels with pseudo labels further improves
performance. Our semi-supervised approach drastically re-
duces human labelling effort compared to fully supervised
methods while preserving similar performance and outper-
forming purely self-supervised approaches. Despite those en-
couraging results, future work could develop new methods to
generate human labelling queries, e.g. by utilising foundation
models [36], and automatically extract pseudo labels.
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