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Active Learning in UAV-based Semantic Mapping
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Abstract—Unmanned aerial vehicles (UAVs) are frequently
used for aerial mapping and general monitoring tasks. Recent
progress in deep learning enabled automated semantic segmen-
tation of imagery to facilitate the interpretation of large-scale
complex environments. Commonly used supervised deep learning
for segmentation relies on large amounts of pixel-wise labelled
data, which is tedious and costly to annotate. The domain-specific
visual appearance of aerial environments often prevents the usage
of models pre-trained on publicly available datasets. To address
this, we propose a novel general planning framework for UAVs
to autonomously acquire informative training images for model
re-training. We leverage multiple acquisition functions and fuse
them into probabilistic terrain maps. Our framework combines
the mapped acquisition function information into the UAV’s
planning objectives. In this way, the UAV adaptively acquires
informative aerial images to be manually labelled for model
re-training. Experimental results on real-world data and in a
photorealistic simulation show that our framework maximises
model performance and drastically reduces labelling efforts. Our
map-based planners outperform state-of-the-art local planning.

Index Terms—Informative Path Planning, Active Learning,
Bayesian Deep Learning, Semantic Segmentation and Mapping

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) enable highly agile, low-
cost operations in various aerial imaging applications [1, 2],
such as precision agriculture [3, 4], wildlife conservation [2],
and urban planning [5–8]. Combined with advances in deep
learning for semantic segmentation through fully convolutional
neural networks (FCNs) [9, 10], deploying UAVs accelerates
automated scene understanding in large-scale and complex
aerial environments [11]. Classical deep learning-based se-
mantic segmentation models often used in this context are
usually trained on a static curated dataset in a supervised
fashion only once before deployment. This leads to two major
drawbacks. First, training a semantic segmentation model re-
quires enormous amounts of pixel-wise labelled images, which
is a repetitive and time-consuming process often executed by
costly domain experts. Second, visual appearance can differ
significantly between environments or change over time. Thus,
a critical requirement for robot autonomy is the ability to learn
about an environment by continuously improving the robot’s
semantic perception with minimal expert guidance.

In this work, we examine the problem of active learn-
ing (AL) in UAV-based semantic mapping. Our goal is to
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Fig. 1. Our general planning framework for active learning in UAV-based
semantic mapping deployed in a photo-realistic simulator [12] (top). We
compute an acquisition function, e.g. model uncertainty, and predict semantic
segmentation online (centre-right) and fuse both in terrain maps (bottom-
right). Our map-based planners replan a UAV’s path (orange, bottom-left) to
collect the most informative, e.g. most uncertain (yellow), images for network
re-training. Our approach reduces the number of images that must be manually
labelled to maximise semantic segmentation performance.

improve the robot’s vision capabilities in initially unknown
environments while minimising the total amount of human-
labelled data. To this end, our approach exploits ideas from
AL research and incorporates them into a new informative
path planning (IPP) framework. The framework replans the
UAV’s path online as new observations are collected to actively
target regions of informative training data. The newly gathered
images are labelled by a human annotator and used to re-train
an FCN, maximising its semantic segmentation performance.

Various AL methods for machine learning effectively reduce
the requirements for human-labelled training data [13–19].
Recently, AL approaches for deep learning models are gaining
attention [20–25]. These works develop acquisition functions
for selecting to-be-labelled training data to maximise model
performance. However, they cannot be directly applied to
robotic missions as they assume access to large pre-recorded
unlabelled in-domain data pools. An open problem is how to
leverage AL to improve robot perception with minimal expert
guidance when operating in initially unknown environments.
More recent AL works for aerial imagery consider the UAV
to be a passive data collection device to record static data
pools [2, 6]. In contrast, we aim to utilise the UAV’s decision-
making capabilities to improve its perception and, thus, its
reasoning about the environment for downstream tasks.
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The main contribution of this work is a novel and generally
applicable active planning framework linking ideas from AL
to robotic planning objectives, as illustrated in Fig. 1. The key
benefit of our approach is that it reduces human labelling effort
for continuous robotic perception improvement. We exploit
various model uncertainty and training data novelty estima-
tion techniques for deep learning models [26–28] and apply
them to semantic segmentation with a pre-trained FCN [29].
The inferred pixel-wise semantic labels and estimated model
uncertainty and novelty scores are fused sequentially into a
probabilistic terrain map as new observations are acquired.
As a key feature, our new IPP framework iteratively replans
the UAV’s path to collect the most informative, i.e. the most
uncertain or novel, images for labelling and model re-training
in a targeted fashion.

This article builds upon our previous conference paper [30].
In our previous work [30], we proposed an IPP approach
linking globally mapped model uncertainties to a robotic
planning objective for AL in UAV-based terrain monitoring.
This submission extends our previous method and generalises
experimental findings in the following ways. First, we intro-
duce a general IPP framework for AL in UAV-based semantic
mapping by linking various uncertainty- and representation-
driven acquisition functions to planning objectives, as opposed
to just utilising model uncertainties computed via Monte-
Carlo (MC) dropout. Second, we propose new terrain mapping
features to improve map-based planning compared to our con-
ference version. Third, we systematically evaluate mapping,
planners, and AL planning objectives on new datasets from
different domains and in a photorealistic simulator. We present
a thorough empirical analysis of combining AL acquisition
functions and IPP approaches, giving new insights into how
to connect AL and autonomous robotic decision-making.

In sum, we make the following four claims. First, our
active planning framework for AL in UAV-based semantic
mapping reduces the number of labelled images needed to
maximise segmentation performance compared to both tra-
ditionally used coverage and random walk data collection.
Second, probabilistic global mapping of gathered information
enhances map-based planning performance for AL. Third, our
map-based planners outperform state-of-the-art local planning
for AL [31]. Fourth, we demonstrate the generality of our
approach, showing that it significantly reduces labelling effort
in largely varying domains irrespective of the used uncertainty
estimation methods, planning strategies, and AL-based objec-
tives. We open-source our code for usage by the community
at: https://github.com/dmar-bonn/ipp-al-framework.

II. RELATED WORK

Our goal is to collect the most informative images to train
a semantic segmentation model with a minimal amount of
labelled data using UAVs in aerial mapping missions. Our
approach combines advances in AL with IPP. This section
overviews how our work is placed within these research areas.

A. Active Learning
Active learning aims to maximise model performance while

minimising labelled training data. It assumes the existence

of a large unlabelled data pool, then iteratively selects a
data point from the pool by maximising an acquisition func-
tion until a labelling budget is exceeded [13–16]. Settles et
al. [32] provide a comprehensive overview of AL approaches
for low-dimensional machine learning problems. Recent AL
approaches focus on training deep learning models from high-
dimensional inputs, e.g. images, where a single data point has a
negligible effect on model performance. AL methods for deep
learning collect a batch of data from the pool instead of single
data points, called batch-mode AL [20, 21, 33, 34]. However,
these strategies are not applicable in robotic settings since they
reason about which images from an existing large data pool
should be labelled. In contrast, we propose an IPP framework
for AL collecting new batches of to-be-labelled data directly
during a mission in initially unknown environments. We link
the AL acquisition function to an IPP objective, adaptively
guiding the UAV towards regions of informative training data.
Further, we answer the following two open research ques-
tions. First, how to incorporate recently proposed acquisition
functions [20, 31, 35] into our IPP framework and second, in
which ways planners, planning objectives, and terrain mapping
influence AL performance.

Uncertainty-based AL methods select data with the high-
est model uncertainty [17, 20, 34, 35]. Early methods use
Gaussian processes [17] or support-vector machines [34] to
quantify model uncertainty in tasks with low-dimensional
inputs. Measuring model uncertainty in deep neural networks
is computationally challenging due to their parameter space
dimensionality. One approach aims at estimating the model
uncertainty deterministically in a single forward pass. Al-
though computationally efficient, these methods are often not
well-calibrated in real-world vision tasks [28]. Alternatively,
Gal et al. [26] propose using dropout at test time, called
MC dropout, to efficiently approximate the Bayesian posterior
over the network parameters. They utilise MC dropout in
acquisition functions applied to image classification maximis-
ing model uncertainty [20]. Other works use neural network
ensembles for uncertainty estimation [27, 36]. Each network
is independently initialised and trained. Ensembles achieve
higher prediction performance and better calibration than MC
dropout [35, 37]. Further, recent advances make ensemble
training computationally more efficient [37, 38]. In this work,
we study the applicability of different uncertainty-based AL
objectives in a robotic planning context.

Representation-based AL methods maximise training data
diversity by selecting data points with novel representations
in feature space [21–23]. Generative adversarial network-
inspired approaches use a generator learning the joint data
representation, while the discriminator distinguishes labelled
and unlabelled data [22, 23]. Sener et al. [21] select a number
of data points, called a core-set, geometrically covering a data
pool in the model’s latent space with a minimal number of
data points. However, both approaches require large in-domain
data pools to learn rich representations of the data-generating
distribution. These methods are impractical in our scenario as
autonomous robots operate in unknown and visually varying
environments. In contrast, Blum et al. [31] propose a method
for quantifying data novelty in semantic segmentation tasks
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without access to large in-domain data pools by using kernel-
density estimation of unlabelled images in the network’s latent
space. They use this novelty estimation in a local planning
objective and apply it for AL in aerial semantic mapping. We
integrate their novelty estimation into new global map-based
planning objectives. We rigorously analyse its AL performance
using various global planning schemes and datasets, outper-
forming their local planning strategy.

B. Informative Path Planning

Informative path planning enables autonomous robots to
efficiently and actively explore initially unknown environments
subject to platform constraints, such as battery capacity [39].
IPP methods have been applied to various environmental mon-
itoring scenarios, including lake monitoring [40], underwater
inspection [41], infrastructure surface inspection [42], and
agricultural monitoring [43]. We distinguish between non-
adaptive approaches, which precompute paths before a mission
starts, e.g. coverage planning [44], and adaptive approaches,
which replan paths online as new data is collected [3, 40, 41].
We focus on adaptive methods as our goal is to collect
informative training data on-the-fly.

Combinatorial approaches solve IPP problems in a near-
optimal fashion [45–48]. However, they exhaustively query
the search space scaling exponentially in problem size, which
makes most of them impractical for online replanning. In
contrast, sampling approaches break the curse of dimen-
sionality to increase the computational efficiency of online
IPP [49, 50]. Hollinger et al. [49] propose receding-horizon
rapidly exploring information gathering algorithms to sample
motion plans. Choudhury et al. [50] combine MC planning
with cost-benefit rollouts to increase sampling efficiency.

Similarly, optimisation approaches directly optimise IPP
objectives [3, 40, 51]. Vivaldini et al. [51] utilise Bayesian
optimisation to choose a sequence of informative measurement
positions for UAV-based tree disease monitoring. In a similar
problem setup, Hitz et al. [40] leverage the covariance matrix
adaptation evolution strategy (CMA-ES) to optimise a se-
quence of measurement positions. Popović et al. [3] extend this
approach by introducing a greedily optimised initial sequence
of measurement positions, then using the CMA-ES to fine-tune
the initial solution resulting in more informative paths.

Geometric approaches collect candidate measurement posi-
tions for efficient exploration. The candidate maximising an
objective function is chosen as the most informative one [52–
54]. Gonzalez. et al. [54] choose the position maximising
the potentially visible unexplored space. Ghaffari et al. [52]
generate candidate positions along probabilistic frontiers of
explored space, greedily selecting the one which maximises
the expected information gain. Similarly, Cheng et al. [53]
train an agent choosing frontiers to minimise localisation
uncertainty and maximise information gain.

The above-mentioned works consider adaptive IPP for map-
ping environmental phenomena. In contrast, our framework
applies planning algorithms to the problem setting of improv-
ing robot vision with minimal human labelling effort. We
design new IPP objective functions to replan paths towards

informative training data as new observations are collected
and demonstrate their integration into map-based planners.

C. Informative Path Planning for Active Learning
Using autonomous robots to reduce manual labelling effort

for training deep learning models is a relatively unexplored
research area. Georgakis et al. [55] propose a framework
for active semantic goal navigation which uses ensembles to
estimate model uncertainty in their planning objective. Other
methods introduce self-supervised approaches to improve or
adapt the robot’s perceptions to new environments without
the need for manual labelling. Frey et al. [56] introduce
a self-improving continual learning framework for semantic
segmentation in indoor scenes without manual labelling by
generating pseudo-labels from 3D maps. Zurbrügg et al. [57]
extend this approach to an embodied agent autonomously nav-
igating towards high training data novelty viewpoints. Chaplot
et al. [58] suggest a similar self-supervised approach for
semantic segmentation in indoor scenes training an exploration
policy with reinforcement learning (RL) to target uncertain
3D map parts. The policy training depends on the simulation
environment and the currently trained network at the same
time. As RL performance degrades with simulation to real-
world gaps, this method requires the availability of realistic
domain-specific simulators and introduces policy re-training
costs after each network re-training. Further, as discussed by
Chaplot et al. [58], the approaches [56–58] rely on large la-
belled indoor datasets for pre-training a semantic segmentation
model to produce high-quality pseudo-labels in new indoor
scenes. If the pre-trained model misclassifies objects, these
errors not only prevent learning semantics but could even be
reinforced in the case of over-confident predictions. Zurbrügg
et al. [57] experimentally show that the expected model im-
provement strongly depends on the chosen pre-training dataset
and environment the robot is deployed in. Aerial mapping
missions, as in our problem setting, present much more visual
variability, with very little and often small pre-training datasets
being available, further exacerbating these issues. As the
environment and domain are initially unknown, these purely
self-supervised methods require enormous engineering work
to relax the above-mentioned assumptions and are not directly
applicable to our use case.

Most similar to our work is the local planning approach of
Blum et al. [31] for AL in semantic mapping. Their planning
objective aims to promote training data novelty in semantic
prediction tasks. We combine their ideas on novelty estimation
for AL with our previous work on IPP for AL [30]. In contrast
to Blum et al. [31], we propose a general and unified IPP
framework supporting probabilistic semantic mapping, vari-
ous acquisition functions, planning objectives, and map-based
planning algorithms. Further, we provide in-depth empirical
analyses and show that our map-based planners outperform
existing methods [30, 31].

III. OUR APPROACH

We present our general IPP framework for AL in UAV-
based semantic mapping. Our setup considers a UAV col-
lecting images of a flat terrain using a downwards-facing
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Fig. 2. Overview of our approach. We start with a pre-trained semantic segmentation network deployed on a UAV. During a mission, the network processes
RGB images to predict pixel-wise semantic labels, model uncertainties (Sec. III-A1), and novelty scores (Sec. III-A2), which are projected onto the terrain to
build global maps capturing these variables (Sec. III-B). Based on the current UAV position, budget, and posterior map state, our algorithm plans paths for
the UAV to collect informative training data for improving the network performance (Sec. III-C). After the mission, the collected images are labelled by an
annotator and used for network re-training. By guiding the UAV to collect informative training data, our pipeline reduces the human labelling effort.

RGB camera. Assuming no further prior knowledge about the
terrain, the goal is to autonomously collect informative training
data to improve the robot’s perception with minimal human
labelling effort. As shown in Fig. 2, our framework links
AL with planning objectives guiding the UAV to regions of
informative training data. As new data is collected, we utilise
a lightweight FCN to predict pixel-wise semantics. Further,
we estimate the pixel-wise model uncertainty associated with
the prediction and training data novelty of the collected image
and then fuse them into probabilistic terrain maps. The UAV
position, its remaining budget, and the current map state are
combined into new AL-based information objectives used to
replan the future path towards informative training data. A
key feature of our framework is its general applicability,
as it is agnostic to the chosen network and supports dif-
ferent uncertainty estimation techniques, mapping methods,
and map-based planners. The following subsections detail the
framework’s individual modules and the specific methods we
investigate in this work.

A. Active Learning Acquisition Functions

We first derive measures for an image’s information value
when a network is re-trained on this data. To this end, AL
works propose two main paradigms, uncertainty-based and
representation-based acquisition functions. We demonstrate
the generality of our approach using either paradigm.

We adapt the ERFNet encoder-decoder architecture pro-
posed by Romera et al. [29] depicted in Fig. 3 to our AL
use case. Although our framework is agnostic to the chosen
network architecture, the lightweight ERFNet is particularly
suitable for online robot deployment with limited compu-
tational resources. In the following, the model fW (·) is
parameterised by weights W and outputs a probability tensor
p(y | fW (z)) = softmax(fW (z)) ∈ [0, 1]K×w×h, where z
is the input RGB image with width w and height h, and y is
the pixel-wise semantic label over the K classes. The training
set contains N images Z = {z1, . . . ,zN} and semantic labels
Y = {y1, . . . ,yN}. Our network is trained to minimise cross-

Conv Dropout

Fig. 3. ERFNet architecture proposed by Romera et al. [29]. The network
takes an RGB image (left) as input and outputs semantic labels (right). We
utilise the network in our ensemble method to predict model uncertainty.

entropy with weight decay regularisation factor λ:

L(θ) = − 1

N

N∑
i=1

log p(yi |fW (zi)) + λ∥W ∥22 . (1)

The following subsections describe different methods to esti-
mate the information value of a candidate image for AL.

1) Bayesian Uncertainty-based Methods: We estimate
pixel-wise model uncertainty over the prediction p(y |fW (z))
as a measure for the informativeness of image z for re-
training [20, 26, 35, 59, 60]. We leverage advances in Bayesian
deep learning, transforming the deterministic ERFNet into a
probabilistic version [30]. We consider using two alternative
methods: Monte-Carlo (MC) dropout [26] and ensembles [35].
To measure model uncertainty, we utilise Bayesian active
learning by disagreement [60], which computes the mutual
information between the unknown labels y and the posterior
distribution over weights p(W |Z,Y ). However, the weights’
posterior is intractable for FCNs [26]. Thus, we approximate
the true posterior prediction [59]:

p̂(y | z,Z,Y ) =
1

T

T∑
i=1

softmax(fŴi(z)) , (2)

where we independently sample T weights Ŵi from a prior
weight distribution q(W ) performing MC integration.
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Fig. 4. Representation-based image novelty score [31]. An RGB image z
is passed through our ERFNet encoder and its latent vectors rz

i,j ∈ rz

are extracted along the channel dimension. We compute the cosine distance
between each rz

i,j and its k-nearest neighbors from the training representation
vector database. The resulting novelty image is upsampled to the spatial
dimensions of z. Last, we add all rz

i,j to the representation vector database.
Lighter colours indicate higher novelty, i.e. higher informativeness for AL.

MC dropout and ensemble methods provide two alternative
approaches to construct the prior q(W ). In MC dropout,
dropout is applied independently to the weights W before
each of the T forward passes at test time. In the ensem-
ble method, we train T independently randomly initialised
ERFNet models with stochastic mini-batch gradient descent.
For further details on MC dropout and ensembles, we refer
to [26, 30] and [35], respectively. Following Gal et al. [20],
we approximate the mutual information using Eq. (2):

I(y,W | z,Z,Y ) ≈ −p̂(y | z,Z,Y )T log
(
p̂(y | z,Z,Y )

)
+

1

T

T∑
i=1

p(y | z, Ŵi)
T log

(
p(y | z, Ŵi)

)
, (3)

where log(·) is applied element-wise. Intuitively, model un-
certainty is high whenever the posterior prediction entropy is
high, while single prediction entropy is low, but disagreeing
with each other. We exploit this measure to guide the UAV
towards more informative areas, i.e. regions of high model
uncertainty. Note that our framework is agnostic to both, the
model uncertainty estimation method and the chosen network.

2) Representation-based Method: Inspired by recent AL
works [21–23], we study a representation-based planning
objective as an alternative to uncertainty-based objectives.
We deterministically quantify the network’s confidence in its
prediction by estimating the image’s novelty to the network
fW given training images and labels Z,Y [28, 31, 61, 62].
Intuitively, the image’s novelty is high whenever the network’s
latent representation of a new image z and training images Z
is dissimilar. Although confidence measures for classification
are well-known [61, 62], they are not directly applicable
for semantic segmentation as they do not provide pixel-wise
scores and are not invariant to object locations. Thus, we utilise
the novelty measure for semantic segmentation proposed by
Blum et al. [31].

We perform kernel-density estimation in the network latent
space by computing the average cosine distance between the
latent representations of image z and its k-nearest latent

representations of training images Z. We exploit the FCN’s
architecture, where the network fW (·) = dWd(eWe(·)) con-
sists of an encoder eWe parameterised by We, a decoder dWd

parameterised by Wd, and W = {We,Wd}. Specifically,
we extract representations eWe(z) = rz ∈ Rw

8 ×h
8 ×C after

the encoder’s last convolutional layer with spatial dimensions
downsampled by a factor of 8 compared to the image, and C
channel dimensions as induced by the ERFNet architecture.
Hence, rzi,j is a C-dimensional latent vector of the (i, j)-
th 8 × 8 pixels patch of image z. After model training, we
generate a database R = {rz1

1,1, ..., r
zN
w
8 ,

h
8

} of w
8 · h8 ·N patch-

wise representations of the training images Z. Given an image
z at inference time, its (i, j)-th novelty score is:

r(z)i,j =
1

k

∑
r∈NN(rz

i,j)

1−
∣∣∣∣ r⊤rzi,j
∥rzi,j∥2 ∥r∥2

∣∣∣∣ , (4)

where NN(rzi,j) is the set of k-nearest neighbors of rzi,j
in R with respect to the cosine distance. Intuitively, higher
novelty indicates higher informativeness of image z for re-
training. Fig. 4 provides a schematic of an image’s novelty
score computation. For more details, we refer to Blum et
al. [31].

A key feature of our framework is that it can easily be
adapted to other acquisition functions and FCNs. This work
shows its generality using the uncertainty- and representation-
based objectives with ERFNet, as described above.

B. Probabilistic Semantic Mapping

An important basis for our new planning objective functions
is our 2D multi-layer terrain map. This map captures global
semantics, model uncertainties, representation novelties, and
training data statistics to provide different sources of infor-
mation for informative planning. We propose a probabilistic
mapping module updating this information online as the
UAV collects new images of the terrain. To achieve this, we
utilise sequential probabilistic occupancy grid mapping [63]
to update each map layer when a new measurement arrives.
We discretise the terrain into three 2D maps GS : G →
{0, 1}K×W×L, GU : G → [0, 1]W×L, GR : G → [0, 1]W×L

defined over a grid lattice G with W×L spatially independent
cells capturing the discrete semantic classes, continuous model
uncertainties, and continuous novelty scores.

The semantic map GS consists of K independent layers
GSi : G→ {0, 1}W×L to map i ∈ [K] > 2 classes. Each grid
cell’s Gm,n random state follows a uniform prior distribution
Gm,nSi

∼ p(Gm,nSi
= 1) = 1

K . When a new image zt arrives
at time step t, the semantic predictions p̂(y | fW (zt)), see
Eq. (2), are projected to the flat terrain given the UAV position
pt ∈ R3 and camera intrinsics. We utilise standard occupancy
grid mapping for each layer i and cell Gm,n computing the
posterior belief Gm,nSi

∼ p(· |z1:t,p1:t):

l(Gm,nSi
| z1:t,p1:t) = l(Gm,nSi

| zt,pt)+
l(Gm,nSi

| z1:t−1,p1:t−1)− l(Gm,nSi
) ,

(5)

where l(·) are the log odds of the binary random variable,
p(Gm,nSi

| zt,pt) is given by the projected semantic predic-
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tions, p(Gm,nSi
| z1:t−1,p1:t−1) is the recursive map belief, and

p(Gm,nSi
) is the map prior.

The model uncertainties and novelties are stored in the maps
GU and GR with prior means µU,0 and µR,0 respectively. We
fuse projected uncertainties ut given by Eq. (3) and novelty
scores r(zt) given by Eq. (4) using maximum likelihood
estimation assuming normally distributed GU and GR. We
maintain a hit map H : G→ NW×L counting the total number
of times a grid cell was updated during a mission. Then, we
update the means µm,nU,t and µm,nR,t for a grid cell Gm,n by:

µm,nU,t = µm,nU,t−1 +
1

H(Gm,n)
(um,nt − µm,nU,t−1) ,

µm,nR,t = µm,nR,t−1 +
1

H(Gm,n)
(r(zt)

m,n − µm,nR,t−1) .
(6)

Last, we store a map T : G → NW×L to count how often
grid cells occur in the training data set to foster data diversity
in our proposed planning objectives. Note that the maps H(·)
and T (·) are different as the camera could provide a high-
frequency image stream for mapping while images only at the
planned measurement position are collected for training.

A key feature of our mapping approach is that we accumu-
late and update the information between missions by updating
the map prior. After each UAV mission, the network is re-
trained on the collected training data. Re-training changes the
semantic predictions, model uncertainty, and representation
novelty estimates. Thus, we store all previously collected data
and corresponding UAV positions. After re-training, we predict
semantics, model uncertainties, and representation novelties
of the stored data and sequentially fuse them according to
Eq. (5) and Eq. (6). Our informed map prior strategy enhances
map-based planning by avoiding exploring from scratch or
replanning with outdated terrain knowledge.

C. Informative Path Planning

We develop IPP algorithms to guide a UAV to adaptively
collect useful training data for our FCN. Our key idea is to link
acquisition functions introduced in Sec. III-A to planning ob-
jective functions. Our planning strategies use the probabilistic
terrain maps presented in Sec. III-B to guide the UAV online
towards informative training data in an unknown terrain.

In general, IPP algorithms optimise an information criterion
I : Ψ → R≥0 over paths ψ = (p1, . . . ,pP ) ∈ Ψ defined by
P measurement positions pi ∈ R3:

ψ∗ = argmax
ψ∈Ψ

I(ψ), s.t. C(ψ) ≤ B , (7)

where B ≥ 0 is the mission budget, e.g. flight time, and Ψ
is the set of all possible paths of length P . The function C :
Ψ → R≥0 defines the cost of executing a path ψ:

C(ψ) =

P−1∑
i=1

c(pi,pi+1) , (8)

where c : R3 × R3 → R≥0 computes the flight time between
two measurement positions assuming constant acceleration and
deceleration ±a, and maximum velocity v. The key insight of
our work is to couple the AL acquisition functions with IPP

(a) Image (b) Frontier (c) Sampling (d) Optimisation

Fig. 5. Our planning strategies for training data collection. Dark gray dots
and lines indicate candidate measurements and paths evaluated based on their
estimated information adding these images to the training set. Orange dots and
lines indicate the most informative chosen measurements and paths. Light gray
depicts unexplored terrain. In (c), black indicates the greedy initialisation, and
ellipses indicate the optimisation of candidate paths in continuous space.

information criteria I(·). This allows us to maximise model
performance and minimise the labelling effort resulting from
collecting images along a planned path ψ.

We propose four different replanning strategies in our
framework, one local image-based and three global frontier,
sampling and optimisation schemes with information criteria
I(·) optimising Eq. (7) given the current terrain map states.
The planners are illustrated in Fig. 5. In our experimental
evaluation, we compare each planner’s performance in terms
of segmentation performance over the total labelling cost.

In the following, we exemplarily present our planning objec-
tives with respect to the globally mapped model uncertainties
GU,t at a time step t (Sec. III-A1). In case of the representation-
based objective (Sec. III-A2), we substitute the uncertainties
GU,t with novelties GR,t, see Eq. (6). This variable can also
be changed to capture other AL acquisition functions.
Local planner. Our local image-based planner follows the
direction of the highest estimated training data information in
the image recorded at the current UAV position. Specifically,
we choose the direction of the image edge e∗zt

with the highest
average AL value normalised by the current training data
counts Tt(pt) in the grid’s subset spanned by the camera field
of view from position pt projected to the flat terrain. This
way, we select neighboring informative images while locally
fostering training data diversity. Then, p∗

t+1 is reached by
taking a predefined step size towards the direction of edge
e∗zt

at a fixed altitude. This resembles the planner proposed
by Blum et al. [31] and generalises it to any AL objective.
Frontier-based planner. Our global geometric planner guides
the UAV towards frontiers of the explored terrain with the
highest AL objective in the terrain map. We use the hit map
H(·) to identify exploration frontiers. Particularly, we greedily
choose the next-best measurement position p∗

t+1 from a set
of candidate positions pct+1 equidistantly sampled along the
frontiers at a fixed altitude. As the planner acts greedily,
optimising Eq. (7) reduces to selecting the path ψ∗ = (p∗

t+1):

p∗
t+1 = argmax

pc
t+1

I((pct+1)) = argmax
pc
t+1

∥GU,t(pct+1)∥1
∥Tt(pct+1)∥1

, (9)

where GU,t(pct+1) and Tt(p
c
t+1) are the globally mapped

model uncertainties and training data counts within the camera
field of view from position pct+1, and ∥·∥1 is the norm
summing all elements in these subsets. This way, our frontier
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planner trades off both exploration of unknown space for data
diversity and focusing on regions potentially valuable for AL.
Optimisation-based planner. Our optimisation-based planner
selects a path ψ∗

t+1 over a fixed horizon of multiple time steps.
We utilise a two-step approach for efficient online replanning
inspired by Popović et al. [3]. First, we greedily select a path
ψgt+1 of length P over a grid above the terrain. Second, we use
an optimisation procedure to fine-tune ψgt+1 in the continuous
UAV workspace and return the next-best path ψ∗

t+1.
First, we iteratively select a path ψgt+1 = (pgt+1, . . . ,p

g
t+P ),

where each measurement position pgt+i, i ∈ {1, . . . , P}, is
greedily chosen over a sparse lattice F of discrete candidate
positions pc at a fixed altitude:

pgt+i = argmax
pc∈F

∥GU,t(pc)∥1
c(pt+i−1,pc)∥Tt+i−1(pc)∥1

, (10)

where Tt+i−1(p
c) is the subset of the forward-simulated

training data count map given by the camera field of view
at position pc. The forward simulation of the current map Tt
based on the previously selected positions (pgt+1, . . . ,p

g
t+i−1)

is crucial as one cannot forward-simulate model uncertainties.
Forward-simulating Tt linearly decreases uncertainty with the
number of a grid cell’s training set occurrences. This fosters
data diversity and terrain exploration.

Second, we refine the greedy positions of ψgt+1 in parallel
in the continuous UAV workspace. To this end, we initialise
an optimisation procedure with the greedy solution ψgt+1 and
extend Eq. (10) to an information criterion I(·) evaluating
candidate paths ψot+1 = (pot+1, . . . ,p

o
t+P ):

I(ψot+1) =

∑P
i=1∥GU,t(pot+i)∥1

c(pot+i−1,p
o
t+i)∥Tt+i−1(pot+i)∥1

. (11)

The candidate path ψ∗
t+1 = (p∗

t+1, . . . ,p
∗
t+P ) maximising

Eq. (11) is chosen and measurement position p∗
t+1 is executed.

We found that normalising AL information of a path by its
execution costs leads to more efficient budget allocation. This
planning strategy supports any optimisation algorithm, which
can optimise objective function Eq. (11).
Sampling-based planner. Our sampling-based planner utilises
Monte-Carlo tree search (MCTS) [64] to optimise a next-
best measurement position p∗

t+1 in a non-myopic fashion. We
simulate a number of future paths ψt+1 = (pn1

t+1, . . . ,p
nP

t+P )
of length P at a fixed altitude. Each tree node ni at depth
i ∈ {0, . . . , P} is uniquely defined by its state Sni =
{pni

t+i, T
ni
t+i, B̄

ni} consisting of a measurement position pni
t+i,

forward-simulated training data count map Tni
t+i along the

tree’s traversed path to node ni, and remaining mission budget
B̄ni . The tree’s root node n0 is defined by Sn0 = {pt, Tt, B},
where pt, Tt and B are the current UAV position, training
data count map, and mission budget. At each node, the
planner selects the next position from a discrete set of actions
with different step sizes and orientations. While traversing
the search tree, we use the upper confidence bound bandit
algorithm [64] to choose a child node. When reaching a leaf
node, we roll out the path by sampling actions uniformly at
random in each subsequent node until the remaining budget
is exceeded or path length P is reached. A simulated path’s

(a) Coverage pattern (b) Global random walk (c) Local random walk

Fig. 6. Examples of paths planned by the baseline strategies on ISPRS
Potsdam [5]. Orange lines show paths planned in one mission, black crosses
indicate collected training images, and gray areas depict unexplored terrain.

information I(ψt+1) is computed by summing rewards along
subsequent parent and child nodes ni, ni+1 given by:

R(ni, ni+1) =
∥GU,t(pni+1

t+i+1)∥1
c(pni

t+i,p
ni+1

t+i+1)∥T
ni
t+i(p

ni+1

t+i+1)∥1
. (12)

Note that Tni
t+i(p

ni+1

t+i+1) are the training data occurrences at
the child node’s position assuming the training data count after
collecting a measurement at the parent’s node position. This
way, the reward estimates the next position’s information value
given the map state at replanning time t+i. After simulating a
number of paths ψt+1, we select the root’s child node n1 with
the highest average information value and the UAV moves to
its associated measurement position pn1

t+1.
To show that our approach supports various planning al-

gorithms, we proposed the four diverse planners above and
showcase their integration into our modular framework. Fur-
ther, we highlight that our planning strategies are agnostic to
the acquisition functions introduced in Sec. III-A.

IV. EXPERIMENTAL RESULTS

Our experiments evaluate our proposed method and show
the benefits of our mapping module (Sec. IV-B), Bayesian
ensemble (Sec. IV-C), and AL planning objective functions
(Sec. IV-D). We verify our planning framework’s generality
and analyse its AL performance on vastly differing real-
world aerial datasets and in a photo-realistic simulator against
classical coverage and random walk exploration data collection
(Sec. IV-E). We conduct a sensitivity analysis validating the
framework’s robustness to the choice of model architecture,
pre-training schemes, and UAV starting positions (Sec. IV-F).
Our framework consistently maximises semantic segmenta-
tion performance while minimising human labelling effort.
Notably, our experiments show that our map-based planners
outperform the local planning strategy for AL proposed by
Blum et al. [31], which, to the best of our knowledge, is the
only directly comparable approach to date.

A. Experimental Setup

Baselines. We compare our planning framework against three
baselines: a traditionally-used coverage-based collection strat-
egy [44], and two random walk-based exploration planners.

The coverage strategy precomputes a static path maximising
the area covered by the UAV to foster spatial coverage of
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TABLE I
ENVIRONMENT, SENSOR, AND UAV MISSION PARAMETERS FOR THE THREE DATASETS IN OUR EXPERIMENTS

Dataset Type Classes Task Area [m×m] FoV [px×px] GSD [cm/px] Altitude [m] Budget [s] Test Images

Potsdam [5] Orthomosaic 7 Urban 900×900 400×400 15.0 30 1800 3500
RIT-18 [7] Orthomosaic 6 Land Cover 261×568 400×400 8.0 15 400 3500

Flightmare [12] Unity/Gazebo 10 Industrial 150×130 480×720 8.3 20 150 1000

(a) ISPRS Potsdam (b) RIT-18 (c) Flightmare

Fig. 7. Comparison of AL performance of our three baseline planning approaches with MC dropout inference (a) on the ISPRS Potsdam dataset [5], (b) on
the RIT-18 dataset [7], and (c) in the photo-realistic Flightmare UAV simulator [12]. Steeper curves indicate better AL performance. We compare our planning
strategies to the best-performing baseline in each setting: coverage on ISPRS Potsdam and the global random walk on RIT-18 and in Flightmare.

training data. We precompute lawnmower-like patterns before
each mission starts, alternate the pattern’s orientations, and
vary the step size between measurement positions.

We consider two random walk exploration planners, local
and global planning. Similar to the local planner, the local
exploration planner chooses for a given UAV position one
of the four image edges at random and follows the edge
direction with predefined step size. The global exploration
planner randomly selects a UAV position in the continuous
space above the terrain, similar to our map-based planners. For
better budget management, we sample a step size uniformly
at random between a minimum and maximum radius around
the UAV, then also set its heading uniformly at random.

This way, both exploration planners aim to foster data
diversity while handling the budget properly. As they resemble
the action spaces of the planners introduced in Sec. III-C, we
can study the influence of our action space design and verify
that our active planners maximise AL performance beyond
random effects. Fig. 6 exemplifies the paths planned by all
three baselines on the ISPRS Potsdam dataset [5].
Datasets. We evaluate our planning framework on two real-
world orthomosaic datasets and in a photorealistic physics-
based UAV simulator resembling real-world deployment con-
ditions. Detailed environment, sensor, and UAV mission set-
tings are shown in Table I. Below, we highlight the key
differences between the three scenarios.

First, we use the large 7-class urban aerial ISPRS Potsdam
orthomosaic dataset [5]. This dataset is characterised by a
dense spatial distribution of classes, such that the coverage
and exploration baselines can collect visually and semantically
different features easily. We sample 4000 train, 1000 valida-
tion, and 3500 test images uniformly at random from non-
overlapping regions in the orthomosaic. We use the ISPRS
Potsdam dataset for the main experiments evaluating our

mapping module (Sec. IV-B), Bayesian ensemble (Sec. IV-C),
and planning objectives (Sec. IV-D).

Second, we evaluate our approach on the land cover RIT-
18 orthomosaic dataset [7] consisting of semantics covering
large connected areas, e.g. asphalt, vegetation, and lake, and
local regions, e.g. building, with six classes in total. As the
RIT-18 dataset does not provide different orthomosaics for
training and testing, we evaluate the UAV’s vision capabilities
by sampling the test set from the same area. In contrast to
the ISPRS Potsdam dataset, this does not allow us to draw
conclusions about the model’s generalisability, but about its
performance in the deployed environment only. This is still a
crucial skill for autonomous robot deployment. Our evaluation
protocol on RIT-18 resembles that of Blum et al. [31].

Last, we test our framework in Flightmare, a photorealistic
simulator with a physics engine for emulating UAV dynamics
simulation [12]. We deploy a UAV in the provided ‘Industrial’
environment introducing 10 semantic classes of different spa-
tial distributions, e.g. hangar, container, road, fence, and pipe.
The scene covers a dense area leading to compactly distributed
semantics easily explorable by the baseline approaches. As the
‘Industrial’ terrain is small, we evaluate the UAV’s semantic
segmentation performance in the deployed environment only.

We perform a study comparing the AL performance of the
baseline strategies in Fig. 7. On the ISPRS Potsdam dataset,
the coverage pattern is the superior baseline, while the global
random walk exploration performs best on the RIT-18 dataset
and in the Flightmare simulator. Note that, while MC dropout
is used in Fig. 7 to predict semantic segmentation, we found
that similar results hold true for deterministic network and
ensemble inference. For visual clarity, we only compare our
framework to the baselines with the strongest AL performance.
Evaluation Metrics. Our AL planning pipeline aims to
maximise semantic segmentation performance with minimal
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human labelling effort, i.e. minimal training data. In line with
the standard in AL literature [8, 16, 19–21, 24, 31, 33–
35, 60], our key evaluation metrics assess semantic seg-
mentation performance (dependent variable) over the number
of collected training images (independent variable). Higher
semantic segmentation performance thanks to newly added
images indicate better AL, and thus, planning performance. We
choose mean Intersection-over-Union (mIoU), per-pixel accu-
racy, and per-pixel F1-score to access semantic segmentation
performance. mIoU is used in popular semantic segmentation
benchmarks [65, 66]. It is defined as mIoU = TP

TP+FP+FN ,
where TP , FP , TN , and FN are the true and false positives,
and true and false negatives. Per-pixel accuracy acc and F1-
score f1 are typically used in classification benchmarks [67].
They are defined as acc = TP

TP+FP+TN+FN and f1 =
2TP

2TP+FP+FN . RIT-18 and Flightmare have strongly imbal-
anced class distributions. Thus, we use the F1-score instead of
accuracy for these scenarios. Note that, as training datasets are
incrementally collected while exploring an initially unknown
environment, the training image distribution changes during
deployment as new visual features or semantics are discovered.
Hence, the training image distribution could differ from the
true image distribution, which could lead to non-monotonic
model improvement. To make model performance trends easier
to follow, we additionally fit trend lines for the experiments
conducted on the ISPRS Potsdam and Flightmare datasets. As
performance trends are less regular on the RIT-18 dataset due
to the more challenging exploration of semantics, we show
piecewise linear line plots for these experiments.
Training Procedure. We utilise a lightweight Bayesian
ERFNet for semantic segmentation as described in Sec. III-A.
The model is pre-trained on the Cityscapes dataset [66] to
start experiments and training after each of the 10 subsequent
data collection missions from the same checkpoint. This also
avoids catastrophic forgetting and accumulating train time. We
re-train the model until convergence with batch size 8 and
weight decay λ = (1 − p)/2N in Eq. (1), where p = 0.5
is the dropout probability, and N is the number of training
images [20]. All other model hyperparameters follow the
standard ERFNet [29], not tuned for maximal performance in
our setting, and kept fixed with changing datasets and planners.
Planning Hyperparameters. Our optimisation-based planner
leverages the CMA-ES procedure as it has been shown to yield
competitive performance in terrain monitoring tasks [3, 40].
We fix a set of hyperparameters for all planners with rea-
sonable length scales on the ISPRS Potsdam dataset, i.e.
UAV step sizes, minimum and maximum action space radii,
grid discretisation, and initial CMA-ES covariance. Only
these hyperparameters dependent on the aerial dimensions
are scaled accordingly with changing environment sizes. The
scale-independent hyperparameters, e.g. number of MCTS
simulations, are set in line with prior works [3, 64]. We fix the
UAV’s starting position to the top-left corners of each terrain.
Planning Strategies. We outline our planning strategies in de-
tail in Sec. III-C. In our experiments, we refer to the planners
in the legends as follows: the local planner is named Local,
the frontier-based planner is named Frontier, the optimisation-
based planner is named Optimisation, and the sampling-based

Fig. 8. Comparison of AL performance with a Bayesian model uncertainty-
based planning objective estimated by MC dropout and computing informative
prior maps before each mission starts. All active planners exceed the coverage
baseline’s performance (yellow) with less training data as shown by the dashed
lines. Our map-based planners outperform the local planner (purple).

t = 1 t = 2 t = 3 t = 4

Fig. 9. Examples of paths planned on ISPRS Potsdam using the frontier-
based planning strategy with (top) and without (bottom) our approach for
precomputing informative prior maps. The priors are computed before each
of four subsequent missions, with the UAV starting in the top-left corner.
As shown by the planned paths (orange lines) and measurement positions
(black crosses), using informative priors facilitates spatial exploration across
missions and leads to more targeted training data collection within missions.

planner is named Sampling. The baseline approaches are
referred to as follows: the coverage pattern is called Coverage,
and the local and global random walk exploration strategies
are abbreviated with Rand-Glo and Rand-Loc.

B. Informative Mapping

The first set of experiments analyses the performance of
our approach. It (i) verifies the superior AL performance
of our planning framework over the baselines; (ii) shows
that our global map-based planners outperform state-of-the-art
local planning; and (iii) quantifies the benefit of our mapping
module for the global map-based planners. The experiments
are evaluated on the ISPRS Potsdam dataset [5]. To focus on
evaluating the effect of our mapping module (Sec. III-B) on
the map-based planners, we fix Bayesian model uncertainty as
our planning objective estimated with MC dropout (Eq. (3)).
Map priors are recomputed before each mission starts to allow
for maximally informed global planning.
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(a) Frontier-based planner (b) Optimisation-based planner (c) Sampling-based planner

Fig. 10. Comparison of effects of our mapping module using our framework. The planners consistently benefit from recomputing informative map priors
before a mission starts (purple). The performance gain of mapping a continuous RGB sensor stream (blue) instead of only mapping images at planned
measurement positions (orange) is less significant. Combining both continuous sensor streams and informative map priors (yellow) also leads to consistent
performance improvements. In particular, our informative mapping approach drastically improves the greedy frontier-based strategy.

Fig. 8 summarises the AL performance with the informed
mapping strategy for each planner. All planners reach higher
final prediction performance than the coverage baseline (yel-
low). This supports the claim that our framework is generally
applicable to different planning algorithms. Further, it suggests
that active replanning is key to efficiently improving robot
vision. Notably, our global map-based planners (orange, blue,
green) exceed the coverage baseline’s maximum prediction
performance (≈ 55% mIoU, black dashed line) after ≤ 250
labelled images (dashed green line), while the baseline requires
≈ 500 labelled images (yellow dashed line) to reach this
performance. Particularly, for the uncertainty-based objective,
our map-based planners show stronger AL performance than
the local planner (purple) proposed by Blum et al. [31] as the
map-based planners’ performances upper-bound the local plan-
ner’s performance for any fixed number of labelled images.
In contrast to local planning, map-based planners drastically
reduce training data requirements and tend to achieve higher
final prediction performance.

To better understand the benefits of our active planning
framework, Fig. 11 exemplarily compares the per-class AL
performance of the map-based frontier planner (dashed lines)
to the coverage baseline (solid lines) in the ISPRS Potsdam
scenario. Our active frontier-based planning strategy shows
higher AL performance in almost all classes, irrespective of
their training data support. Interestingly, the ‘car’ class (blue)
has lower training data support than the ‘tree’ (green) and
‘vegetation’ (red) classes but shows stronger IoU performance,
even with non-targeted coverage planning. However, active
planning improves the ‘car’ prediction performance even faster
than the non-targeted baseline showing the benefit of our
framework for classes with little training data support. Further,
although the ‘tree’, ‘background’ (orange), and ‘vegetation’
classes have high training data support, they are difficult
to distinguish as their visual appearance from a top-down
view depends on the image resolution, altitude, and season.
This leads to challenging predictions, which may be partially
attributed to data instead of model uncertainty, which cannot
be explained away with more training data [59]. Thus, not
all classes with high training data support benefit to the
same extent from active planning. At the same time, although

Fig. 11. Comparison of per-class AL performance of map-based frontier
vs. coverage planning with a Bayesian model uncertainty-based planning
objective estimated by MC dropout and computing informative prior maps
before each mission starts. The frontier planner outperforms the coverage
baseline (yellow) in almost all classes as our framework can capture complex
task-dependent inter-class and intra-class model uncertainties.

the ‘building’ class (yellow) has high training data support
and is reliably detected by both planners, the frontier-based
planner still shows faster performance improvement as our
framework can account for the differing visual appearance
and geometry of office buildings, historical buildings, and
townhouses. Overall, the results suggest that our framework
can capture complex task-dependent inter-class and intra-class
model uncertainties, which are too complex to capture with a
single training data support heuristic, leading to superior AL
performance over non-targeted baselines.

To support the claim that our new mapping module is im-
portant for the planning framework’s performance, we perform
an ablation study to measure its effect on our map-based
planners. We consider two mapping setups where the UAV
either maps training images at planned measurement positions
only (pointwise sensor) or maps the images continuously as
it moves (continuous sensor stream). Fig. 10 displays the
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AL performance of our map-based planners (i) recomputing
informative prior maps before each mission starts based on
previously collected data and the re-trained network (purple),
(ii) mapping a continuous RGB image stream (blue) instead
of mapping training images at planned measurement positions
only (orange), and (iii) combining both informative prior maps
and mapping continuous sensor streams (yellow).

All map-based planners show better AL performance with
recomputed map priors as they exploit already mapped hetero-
geneous terrain information. This suggests that mapping and
updating knowledge collected across missions with re-trained
networks, i.e. changing vision capabilities, is key to strong
planning performance. In contrast, mapping more information
during a single mission with a fixed network is less crucial.
Mapping a continuous image stream instead of mapping train-
ing data information at planned measurement positions only
leads to performance improvements for the greedy frontier-
based planner, while both non-greedy planners do not benefit
from mapping more information during a mission. Accord-
ingly, combining both mapping continuous sensor streams and
recomputing map priors leads to higher AL performance of the
frontier-based and optimisation-based planner. The sampling-
based planner does not show a performance gain when com-
bining mapping of continuous sensor streams and recomputing
map priors. Particularly, our greedy frontier-based planning
strategy shows significant improvements by leveraging the
informative mapping procedure. Our non-greedy optimisation-
and sampling-based planners are more robust to less informed
map priors, perhaps because they utilise non-myopic planning
along multiple waypoints, while the frontier-based planner
only reasons about the next waypoint. Qualitatively, Fig. 9
verifies that informative prior maps for frontier-based planning
leads to more efficient terrain exploration across missions and
targeted data collection within missions resulting in higher
model performance with fewer training images.

C. Bayesian ERFNet Ensemble Study

The second experiment shows that our Bayesian ensemble
provides reliable uncertainty estimates for AL planning ob-
jectives. Moreover, the ensemble achieves higher prediction
performance than non-Bayesian and Bayesian ERFNet with
MC dropout, presented in our prior work [30].

To confirm that our Bayesian ensemble of ERFNets deliv-
ers informative model uncertainties for planning and yields
superior prediction performance, we train an ensemble on the
ISPRS Potsdam dataset [5] with 4000 training images and
compare it to the Bayesian ERFNet with MC dropout devel-
oped in our previous work [30] and a deterministic ERFNet.
Qualitatively, Fig. 12 verifies high model uncertainty of our
ensemble in misclassified or hard-to-predict regions. Thus, the
ensemble’s model uncertainties provide reliable information
for planning objectives.

To assess our Bayesian ensemble’s prediction capabilities
and computational efficiency for online inference on UAVs,
we study its performance with varying numbers of ERFNet
models T = {2, . . . , 8} in Fig. 13. We compare the ensem-
ble’s performance to the deterministic ERFNet [29] using a

Input Ground truth Prediction Error Uncertainty

Fig. 12. Qualitative results with our ensemble of T = 8 ERFNets trained
on ISPRS Potsdam. Columns from left to right: RGB input, ground truth,
prediction, error image (negative prediction log-likelihood), model uncertainty
(Eq. (3)). High model uncertainty (yellower) in misclassified regions (whiter)
validates that our ensemble provides consistent uncertainty estimates as a basis
for an AL planning objective in our framework.

Fig. 13. Performance of our Bayesian ensemble with varying number T of
ERFNets (blue), deterministic ERFNet (orange), and Bayesian ERFNet with
T = 50 MC dropout samples [30] (black, dashed) on ISPRS Potsdam. For
T = 8, the ensemble improves mIoU by 4.96% (middle) and reduces ECE
by 7.09% (right) over a deterministic ERFNet, and improves mIoU by 0.90%
and reduces ECE by 1.68% over the Bayesian ERFNet with MC Dropout.

single forward pass and to our Bayesian ERFNet utilising
T = 20 MC dropout samples for converging to maximal
performance [30]. To quantify the reliability of estimated
uncertainties, we measure model calibration using the expected
calibration error (ECE) metric [68]. Intuitively, model cali-
bration is high, i.e. ECE low, when the model’s probabilistic
predictions match its accuracy on a test set.

For T = 8 models, our ensemble (blue) improves seg-
mentation performance by 4.96% mIoU and ECE by 7.09%
over the deterministic ERFNet (orange). Additionally, for
T = 8 models, our ensemble improves segmentation per-
formance by 0.90% mIoU and ECE by 1.68% compared
to the Bayesian ERFNet with MC dropout. Overall, as the
number of models increases, segmentation performance and
calibration both improve. Favourably for online inference,
with T ≈ 6 models, performance gains already converge.
Further, the Bayesian ensemble performs on par with the
Bayesian ERFNet (T = 20 MC dropout samples) already
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Fig. 14. Comparison of AL performance with a Bayesian model uncertainty-
based planning objective estimated by an ensemble of T = 4 ERFNets
and computing informative prior maps before each mission starts. All active
planners exceed the coverage baseline’s performance with less training data.
Our global map-based planners outperform the local planning scheme.

with T = 3 ERFNet models. Thus, our ensemble requires
substantially fewer forward passes (≈ 6×), i.e. compute
resources, at deployment to achieve the same performance. At
train time, the ensemble’s compute requirements scale linearly
with the number of models T , while the MC dropout Bayesian
ERFNet has constant compute requirements. However, training
is performed offline, hence it is not time-critical. For details
about efficient ensemble training, we refer to Huan et al. [38].

D. Comparison of Planning Objectives

Our third set of experiments shows that Bayesian model
uncertainty-based objectives guarantee strong AL performance
irrespective of the uncertainty estimation technique. Further,
it verifies that our general framework supports various AL
acquisition function paradigms, including representation-based
and uncertainty-based objectives.

As we show in this experiment, Bayesian model uncertainty-
based planning objectives outperform baselines with different
uncertainty estimation techniques. We investigate our Bayesian
ensemble’s AL performance on the ISPRS Potsdam dataset.
For a fair assessment, we evaluate the coverage baseline
with ensemble inference. Fig. 14 summarises the results
using our Bayesian ensemble of T = 4 ERFNets for all
planning approaches. All planners show better performance
than the coverage baseline (yellow), which confirms the in-
tuition that active planning for AL benefits from Bayesian
model uncertainty-based objective functions. Similar to our
MC dropout-based uncertainty estimation in Fig. 8, map-
based planners (orange, blue, green) achieve higher prediction
performance with fewer training images compared to the local
planner (purple), further illustrating the advantage of map-
based planning in our framework.

To further support our framework’s generality under vari-
ous uncertainty-based objective functions, we investigate its
performance using a classical non-Bayesian entropy-based ac-
quisition function [20, 28]. Given an image z and a model with

Input Ground truth Prediction Error Uncertainty

Fig. 15. Qualitative results of a deterministic ERFNet trained on ISPRS
Potsdam. Columns from left to right: RGB input, ground truth, prediction,
error image (negative prediction log-likelihood), prediction entropy. High
entropy (yellower) is only weakly correlated with high errors (whiter).

Fig. 16. Comparison of AL performance with a non-Bayesian entropy-based
planning objective over a deterministic forward pass and computing informa-
tive prior maps before each mission starts. The frontier-based, optimisation-
based, and local planner outperform the coverage baseline’s AL performance.

deterministic parameters W , p(y | z,W ) is the maximum
likelihood estimate over labels y. Then, the prediction entropy

H(y) = −p(y | z,W )⊤log
(
p(y | z,W )

)
(13)

is highest when the prediction is uniform, i.e. most uncer-
tain. Qualitatively, Fig. 15 shows that non-Bayesian entropy is
weakly correlated with prediction errors as it fails to estimate
globally calibrated uncertainties.

We replace the Bayesian model uncertainty, see Eq. (3),
with the entropy of a deterministic forward pass. For a fair
comparison, the coverage baseline uses a deterministic forward
pass as well. As shown in Fig. 16, the optimisation-based,
frontier-based and local planners outperform the baseline,
while the sampling-based planner performs similarly to the
baseline. In line with results for Bayesian model uncertainty-
based objectives, the optimisation-based and frontier-based
planners show high prediction performance with substantially
fewer training images compared to the local planner.
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(a) Frontier (b) Optimisation (c) Sampling

Fig. 17. Comparison of AL performance of uncertainty-based planning
objectives on ISPRS Potsdam. Our Bayesian uncertainty-based objectives
(blue, yellow) tend to perform better than the non-Bayesian entropy-based
objective (orange). The Bayesian ensemble (yellow) achieves the highest AL
performance across the planning strategies.

Input Ground truth Prediction Error Novelty

Fig. 18. Qualitative results of a deterministic ERFNet trained on the ISPRS
Potsdam dataset [5]. Columns from left to right: RGB input, ground truth,
prediction, error image (negative prediction log-likelihood), representation
novelty (Eq. (4)). High novelty scores (yellower) in case of rare visual
cues, such as the helipad (bottom row), suggest that our representation-based
objective provides useful information for AL planning scenarios.

Fig. 17 shows the effect of non-Bayesian entropy-based
(orange) and Bayesian model uncertainty-based planning ob-
jectives estimated by either MC dropout (blue) or an ensemble
(yellow) on the planners’ performances. Particularly, the map-
based planners achieve higher AL performance using Bayesian
model uncertainty-based objectives irrespective of the uncer-
tainty estimation technique. Although the non-Bayesian ob-
jective yields competitive performance with multiple planners
in early missions, generally, the Bayesian ensemble method
leads to the best AL results. This could be due to two reasons.
First, the ensemble shows higher prediction power (Fig. 13).
Second, as suggested by our qualitative results (Fig. 15), non-
Bayesian uncertainty is weakly calibrated, which results in a
less informative planning objective.

To confirm that our framework is applicable to
representation-based acquisition functions, we utilise the
novelty score shown in Eq. (4) computed over the latent
space of a deterministic ERFNet in our planning objective.
For a fair assessment, we also utilise a deterministic ERFNet
for the coverage baseline. Qualitatively, Fig. 18 visualises the

Fig. 19. Comparison of AL performance with representation-based novelty
objective and computing informative prior maps before missions start. All
planners outperform the baseline (yellow) with fewer training images.

representation novelties of a network trained and tested on
disjoint areas of ISPRS Potsdam. Although the novelties do
not correlate strongly with prediction errors (whiter), high
novelty (yellower) is assigned to rare visual cues, such as
the helipad (bottom row), which could be an informative
objective to collect diverse training images.

Fig. 19 depicts the AL results using representation novel-
ties in the planning objective. All adaptive planners achieve
higher segmentation performance than the coverage baseline
(yellow). Further, our map-based optimisation (orange) and
frontier (blue) planners require fewer training images than the
local planner (purple) to reach high prediction performance.
This validates that our framework generally supports various
acquisition function paradigms and ensures higher AL per-
formance than the baseline approaches, irrespective of the
planning objective. Our experiments suggest that the map-
based planners outperform the local planner more significantly
using Bayesian uncertainty objectives. This could be due to
the better-calibrated Bayesian uncertainty estimates (Fig. 13)
leading to more informative planning objectives.

E. Other Scenarios

The fourth set of experiments suggests that (i) our planning
framework reduces the number of labelled images required
to maximise segmentation performance across substantially
different environments, and (ii) our global map-based planning
strategies outperform state-of-the-art local planning in most
cases, irrespective of the chosen planning objective.

We support these claims with an evaluation of our frame-
work on the RIT-18 dataset [7] and in the Flightmare simu-
lator [12]. The RIT-18 semantics cover large areas leading to
challenging exploration. The Flightmare simulator resembles
real-world UAV control over an easy-to-explore photorealistic
industrial terrain with strong random walk baseline perfor-
mance. We access the framework’s performance using the
Bayesian model uncertainty estimated with MC dropout, see
Eq. (3), and the representation novelty score given by Eq. (4).

Fig. 20 summarises our planning results on the RIT-18
dataset [7]. Note that non-monotonic model performance
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(a) Bayesian model uncertainty-based objective

(b) Representation-based novelty objective

Fig. 20. AL results on the RIT-18 dataset [7] using informative prior maps
with (a) the Bayesian model uncertainty objective estimated by MC dropout
(Eq. (3)), and (b) the representation novelty objective (Eq. (4)). All map-based
planners significantly outperform the random walk baseline (yellow). In most
cases, our map-based planners lead to substantially higher AL performance
than the local planning strategy (purple).

improvements on RIT-18 are expected as semantics cover
large areas leading to challenging exploration influencing the
training class distribution. All map-based planning strategies
show significantly higher final segmentation performance than
the random walk baseline (yellow), irrespective of the chosen
planning objective. This confirms that our framework reduces
human labelling effort while maximising segmentation per-
formance over vastly differing terrains. Particularly, in most
cases, our map-based planners require fewer training images
to achieve segmentation performance on par or higher than
the local planner (purple). Notably, the local planner performs
worse than the baseline using Bayesian model uncertainty
showing that our map-based planners are more generally
applicable than the local planner.

Fig. 21 illustrates our planning results in the Flightmare
simulator [12]. All planners using the Bayesian model un-
certainty objective show higher AL performance than the
random walk baseline (yellow). Using the representation-based
objective, only our two map-based optimisation (orange) and
sampling (green) planners result in higher final prediction per-

(a) Bayesian model uncertainty-based objective

(b) Representation-based novelty objective

Fig. 21. AL results in the Flightmare simulator [12] using informative prior
maps with (a) the Bayesian model uncertainty objective (Eq. (3)), and (b) the
representation novelty objective (Eq. (4)). All planners outperform the random
walk baseline (yellow) using the Bayesian model uncertainty objective. Using
the representation novelty objective, only our map-based optimisation and
sampling planners show higher final prediction performance than the baseline.

formance than the baseline. Combined with the RIT-18 results
(Fig. 20), this suggests that our Bayesian model uncertainty-
based objectives are more robustly applicable across varying
terrains compared to the representation novelty score proposed
by Blum et al. [31]. One possible explanation could be that
Bayesian model uncertainty is more strongly correlated with
the prediction errors, as indicated by our qualitative results in
Fig. 12 and Fig. 18. In most cases, our map-based planners
show higher AL performance in both terrains than local
planning. This verifies that our map-based planners are crucial
for informative data collection, while local planning is not
robustly applicable to varying terrains and planning objectives.

F. Sensitivity Analysis

The fifth set of experiments analyses our framework under
various task-dependent design choices. It (i) verifies our frame-
work’s AL performance with varying UAV starting positions;
(ii) validates our framework’s robustness to different pre-
training schemes; and (iii) showcases our framework’s appli-
cability and superior performance over baselines with different
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(a) ISPRS Potsdam dataset

(b) RIT-18 dataset

Fig. 22. Comparison of AL performance on the (a) ISPRS Potsdam dataset [5]
and (b) RIT-18 dataset [7] with the Bayesian model uncertainty-based planning
objective estimated by MC dropout and computing informative prior maps
before each mission starts. Results are averaged over three different UAV
starting positions. Shaded regions indicate one standard deviation. Our map-
based planners consistently outperform the baseline approaches (yellow) and
local planning (purple) on both datasets with less training data while showing
less sensitivity to the UAV starting position.

model architectures. The experiments are evaluated on the
ISPRS Potsdam [5] and RIT-18 [7] datasets using the Bayesian
model uncertainty-based planning objective estimated by MC
dropout. If not stated otherwise, we utilise the Bayesian
ERFNet (Sec. III-A) pre-trained on Cityscapes [66].

Fig. 22 summarises the AL performance for each planner
averaged over three different starting positions at the top-left,
top-right, and bottom-right corners of the ISPRS Potsdam and
RIT-18 datasets. All our map-based planners, on average, reach
higher AL performance than the coverage baseline (yellow)
and local planner (purple) on both datasets. In contrast, the
local planner, on average, does not perform better than the
coverage baseline on the ISPRS Potsdam dataset, as indicated
by their largely overlapping means and standard deviations.
Further, as indicated by the large standard deviations of the
local planner and random walk baseline (yellow) on the RIT-18
dataset, the local planning and random walk AL performances
heavily depend on the UAV starting position in challenging to
explore terrains. This verifies that our map-based planners are

(a) ISPRS Potsdam dataset

(b) RIT-18 dataset

Fig. 23. Comparison of AL performance on the (a) ISPRS Potsdam dataset [5]
and (b) RIT-18 dataset [7] with the Bayesian model uncertainty-based planning
objective estimated by MC dropout and computing informative prior maps
before each mission starts. Results are averaged over three differently pre-
trained Bayesian ERFNets. Shaded regions indicate one standard deviation.
Our map-based planners, on average, outperform the baseline approaches
(yellow) and local planning (purple) on both datasets with less training data,
irrespective of the pre-training scheme.

robust to varying UAV starting positions, while local planning
and the baselines are sensitive to the UAV starting position.

Fig. 23 summarises the AL performance for each planner
averaged over three differently pre-trained Bayesian ERFNets.
Each mission starts from the top-left corner of the ISPRS Pots-
dam and RIT-18 datasets with Bayesian ERFNet being ran-
domly initialised, pre-trained on the Cityscapes dataset [66], or
pre-trained on the Flightmare dataset [12]. Note that the stan-
dard deviations are mainly a result of the randomly initilised
models having, as expected, weaker prediction performance
than the pre-trained models irrespective of the planning ap-
proach. All our map-based planners, on average, show stronger
AL performance than the baseline approaches (yellow) and
the local planner (purple) on both datasets. Particularly, on
the RIT-18 dataset, the local planner fails to outperform the
random walk (yellow) irrespective of the pre-training scheme.
These findings validate our map-based planners’ robustness to
varying model pre-training schemes.

Fig. 24 summarises the AL performance of our planning
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Fig. 24. Comparison of AL performance on the ISPRS Potsdam dataset [5]
using a Bayesian version of U-Net [10] pre-trained on the Flightmare
dataset [12]. The Bayesian model uncertainty-based planning objective is
estimated by MC dropout, and informative prior maps are computed before
each mission starts. Our map-based optimisation (orange) and frontier (blue)
planners outperform coverage (yellow) and local planning (purple), while the
sampling planner (green) performs on par with local planning.

framework utilising a Bayesian variant of U-Net [10]. We
extend the U-Net architecture by adding dropout layers after
each convolutional block with a dropout probability of 10% to
perform MC dropout for computing the Bayesian uncertainty-
based planning objective. We conduct experiments with the
Bayesian U-Net pre-trained on the Flightmare dataset [12]
using the ISPRS Potsdam dataset starting each mission from
the top-left corner. All active planners exceed the maximum
semantic segmentation performance of the coverage base-
line (yellow) with less than half of the training images.
This confirms the effectiveness of active planning for AL
irrespective of the chosen model architecture. Further, our
map-based frontier (blue) and optimisation (orange) planners
outperform local planning (purple), while the sampling planner
(green) performs on par with local planning. This showcases
strong AL performance of our map-based planners and the
applicability of our framework to different model architectures.

V. CONCLUSION AND FUTURE WORK

This paper proposed a novel and unified planning frame-
work for active learning in aerial semantic mapping to improve
a robot’s semantic perception with minimal expert guidance.
A key aspect of our work is to link our planning objectives to
active learning acquisition functions, enabling us to adaptively
replan the robot’s paths towards regions of informative training
data. To ensure maximally informed online decision-making,
our global planning algorithms leverage a sequentially updated
probabilistic terrain map capturing semantics and acquisition
function information. The framework is generally applicable
to aerial robotic missions as it provides diverse acquisition
functions, proposes various planning algorithms, is agnostic
to the model architecture, and can be easily extended to other
acquisition functions and planners.

Our experimental results show that our framework reduces
the human labelling effort and maximises segmentation perfor-
mance across varying terrains compared to traditionally used

coverage and random walk data collection. Further, our map-
based planners outperform state-of-the-art local planners used
in active learning. The results also verify the benefit of our
mapping module for the active learning performance. Overall,
our findings demonstrate how active learning combined with
online planning enables efficient training data collection to
improve robotic perception in initially unknown environments.

Future work concerns integrating varying altitudes into
the planning algorithms and estimating the resulting data
uncertainty to select multi-view consistent informative training
data. To further reduce human labelling effort, combining
the supervised AL paradigm with self-supervised training
and continual learning across different terrains could be a
promising avenue for future research.
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[3] M. Popović, T. Vidal-Calleja, G. Hitz, J. J. Chung, I. Sa, R. Siegwart,
and J. Nieto, “An Informative Path Planning Framework for UAV-based
Terrain Monitoring,” Autonomous Robots, vol. 44, no. 6, pp. 889–911,
2020.

[4] A. C. Rodrı́guez, S. D’Aronco, K. Schindler, and J. D. Wegner, “Map-
ping Oil Palm Density at Country Scale: An Active Learning Approach,”
Remote Sensing of Environment, vol. 261, p. 112479, 2021.

[5] ISPRS. (2018) 2D Semantic Labeling Contest. [Online].
Available: https://www.isprs.org/education/benchmarks/UrbanSemLab/
semantic-labeling.aspx

[6] G. Lenczner, A. Chan-Hon-Tong, B. Le Saux, N. Luminari, and
G. Le Besnerais, “DIAL: Deep Interactive and Active Learning for
Semantic Segmentation in Remote Sensing,” IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, vol. 15, pp.
3376–3389, 2022.

[7] R. Kemker, C. Salvaggio, and C. Kanan, “Algorithms for Semantic
Segmentation of Multispectral Remote Sensing Imagery Using Deep
Learning,” ISPRS Journal of Photogrammetry and Remote Sensing
(JPRS), vol. 145, pp. 60–77, 2018.

[8] D. Tuia, F. Ratle, F. Pacifici, M. F. Kanevski, and W. J. Emery, “Active
Learning Methods for Remote Sensing Image Classification,” IEEE
Trans. on Geoscience and Remote Sensing, vol. 47, no. 7, pp. 2218–
2232, 2009.

[9] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for
semantic segmentation,” in Proc. of the IEEE/CVF Conf. on Computer
Vision and Pattern Recognition (CVPR), 2015, pp. 3431–3440.

[10] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional Net-
works for Biomedical Image Segmentation,” in Proc. of the Int. Conf. on
Medical Image Computing and Computer-Assisted Intervention, 2015,
pp. 234–241.

[11] A. Garcia-Garcia, S. Orts-Escolano, S. Oprea, V. Villena-Martinez, and
J. G. Rodrı́guez, “A Review on Deep Learning Techniques Applied to
Semantic Segmentation,” arXiv preprint arXiv:1704.06857, 2017.

[12] Y. Song, S. Naji, E. Kaufmann, A. Loquercio, and D. Scaramuzza,
“Flightmare: A Flexible Quadrotor Simulator,” in Proc. of the Conf. on
Robot Learning (CoRL), 2021, pp. 1147–1157.

[13] Y. Freund, H. S. Seung, E. Shamir, and N. Tishby, “Selective Sampling
Using the Query by Committee Algorithm,” Machine Learning, vol. 28,
no. 2, pp. 133–168, 1997.

[14] D. D. Lewis and W. A. Gale, “A Sequential Algorithm for Training
Text Classifiers,” in Proc. of the Int. ACM-SIGIR Conf. on Research
and Development in Information Retrieval, 1994, pp. 3–12.

[15] C. Campbell, N. Cristianini, A. Smola et al., “Query Learning with
Large Margin Classifiers,” in Proc. of the Int. Conf. on Machine Learning
(ICML), 2000.



ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON ROBOTICS, AUGUST 23, 2023 17

[16] S. Tong and D. Koller, “Support Vector Machine Active Learning
with Applications to Text Classification,” Journal on Machine Learning
Research (JMLR), vol. 2, no. Nov, pp. 45–66, 2001.

[17] A. Kapoor, K. Grauman, R. Urtasun, and T. Darrell, “Active Learning
with Gaussian Processes for Object Categorization,” in Proc. of the
IEEE/CVF Int. Conf. on Computer Vision (ICCV), 2007, pp. 1–8.

[18] X. Li and Y. Guo, “Adaptive Active Learning for Image Classification,”
in Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern
Recognition (CVPR), 2013, pp. 859–866.

[19] Z. Wang and J. Ye, “Querying Discriminative and Representative Sam-
ples for Batch Mode Active Learning,” ACM Transactions on Knowledge
Discovery from Data (TKDD), vol. 9, no. 3, pp. 1–23, 2015.

[20] Y. Gal, R. Islam, and Z. Ghahramani, “Deep Bayesian Active Learning
with Image Data,” in Proc. of the Int. Conf. on Machine Learning
(ICML). PMLR, 2017, pp. 1183–1192.

[21] O. Sener and S. Savarese, “Active Learning for Convolutional Neural
Networks: A Core-Set Approach,” in iclr, 2018.

[22] S. Sinha, S. Ebrahimi, and T. Darrell, “Variational Adversarial Active
Learning,” in Proc. of the IEEE/CVF Int. Conf. on Computer Vision
(ICCV), 2019, pp. 5972–5981.

[23] S. Ebrahimi, W. Gan, D. Chen, G. Biamby, K. Salahi, M. Laielli,
S. Zhu, and T. Darrell, “Minimax Active Learning,” arXiv preprint
arXiv:2012.10467, 2020.

[24] L. Yang, Y. Zhang, J. Chen, S. Zhang, and D. Z. Chen, “Suggestive
Annotation: A Deep Active Learning Framework for Biomedical Image
Segmentation,” in Proc. of the Int. Conf. on Medical Image Computing
and Computer-Assisted Intervention, 2017, pp. 399–407.

[25] F. Zhdanov, “Diverse Mini-batch Active Learning,” arXiv preprint
arXiv:1901.05954, 2019.

[26] Y. Gal and Z. Ghahramani, “Dropout as a Bayesian Approximation:
Representing Model Uncertainty in Deep Learning,” in Proc. of the
Int. Conf. on Machine Learning (ICML), 2016, pp. 1050–1059.

[27] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and Scalable
Predictive Uncertainty Estimation Using Deep Ensembles,” Proc. of the
Conf. on Neural Information Processing Systems (NIPS), 2017.

[28] J. Postels, M. Segu, T. Sun, L. D. Sieber, L. Van Gool, F. Yu, and
F. Tombari, “On the practicality of deterministic epistemic uncertainty,”
in Proc. of the Int. Conf. on Machine Learning (ICML), 2022, pp.
17 870–17 909.

[29] E. Romera, J. M. Álvarez, L. M. Bergasa, and R. Arroyo, “ERFNet:
Efficient Residual Factorized ConvNet for Real-Time Semantic Segmen-
tation,” IEEE Trans. on Intelligent Transportation Systems (ITS), vol. 19,
no. 1, pp. 263–272, 2018.

[30] J. Rückin, L. Jin, F. Magistri, C. Stachniss, and M. Popović, “Informative
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