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Abstract— Aerial robots are increasingly being utilized for
environmental monitoring and exploration. However, a key
challenge is efficiently planning paths to maximize the in-
formation value of acquired data as an initially unknown
environment is explored. To address this, we propose a new
approach for informative path planning based on deep rein-
forcement learning (RL). Combining recent advances in RL and
robotic applications, our method combines tree search with an
offline-learned neural network predicting informative sensing
actions. We introduce several components making our approach
applicable for robotic tasks with high-dimensional state and
large action spaces. By deploying the trained network during a
mission, our method enables sample-efficient online replanning
on platforms with limited computational resources. Simulations
show that our approach performs on par with existing methods
while reducing runtime by 8−10×. We validate its performance
using real-world surface temperature data.

I. INTRODUCTION

Recent years have seen an increasing usage of autonomous
robots in a variety of data collection applications, includ-
ing environmental monitoring [1–5], exploration [6], and
inspection [7]. In many tasks, these systems promise a more
flexible, safe, and economic solution compared to traditional
manual or static sampling methods [4, 8]. However, to fully
exploit their potential, a key challenge is developing algo-
rithms for active sensing, where the objective is to plan paths
for efficient data gathering subject to finite computational and
sensing resources, such as energy, time, or travel distance.

This paper examines the task of active sensing using an un-
manned aerial vehicle (UAV) in terrain monitoring scenarios.
Our goal is to map an a priori unknown nonhomogeneous 2D
scalar field, e.g. of temperature, humidity, etc., on the terrain
using measurements taken by an on-board sensor. In similar
setups, most practical systems rely on precomputed paths for
data collection, e.g. coverage planning [7]. However, such
approaches assume a uniform distribution of measurement
information value in the environment and hence do not allow
for adaptivity, i.e. closely inspecting regions of interest, such
as hotspots [1, 2] or anomalies [9], as they are discovered.
Our motivation is to find information-rich paths targeting
these areas by performing efficient online adaptive replan-
ning on computationally constrained platforms.

Several informative path planning (IPP) approaches for
active sensing have been proposed [1–3, 8, 10], which enable
adjusting decision-making based on observed data. However,
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Fig. 1: Our RL-based IPP approach applied in a temperature
mapping scenario. (Left) Our simulation setup using real-world
field temperature data. (Right) The temperature variable is projected
to the surface. Our approach adaptively plans a UAV’s path (evolv-
ing over time from blue to red) focusing on hotter regions (red).

scaling these methods to large problem spaces remains an
open challenge. The main computational bottleneck in IPP
is the predictive replanning step, since multiple future mea-
surements must be simulated when evaluating next candidate
actions. Previous studies have tackled this by discretizing
the action space, e.g. sparse graphs [10, 11]; however, such
simplifications sacrifice on the quality of predictive plans. An
alternative paradigm is to use reinforcement learning (RL)
to learn data gathering actions. Though emerging works in
RL for IPP demonstrate promising results [12, 13], they have
been limited to small 2D action spaces, and adaptive planning
to map environments with spatial correlations and large 3D
action spaces has not yet been investigated.

To address this, we propose a new RL-based IPP frame-
work suitable for UAV-based active sensing. Inspired by
recent advances in RL [14, 15], our method combines
Monte Carlo tree search (MCTS) with a convolutional neural
network (CNN) to learn information-rich actions in adaptive
data gathering missions. Since active sensing tasks are typi-
cally expensive to simulate, our approach caters for training
in low data regimes. By replacing the computational burden
of predictive planning with simple tree search, we achieve
efficient online replanning, which is critical for deployment
on mobile robots (Fig. 1). The contributions of this work are:

1) A new deep RL algorithm for robotic planning applica-
tions that supports continuous high-dimensional state
spaces, large action spaces, and data-efficient training.

2) The integration of our RL algorithm in an IPP frame-
work for UAV-based terrain monitoring.

3) The validation of our approach in an ablation study
and evaluations against benchmarks using synthetic
and real-world data showcasing its performance.

We open-source our framework for usage by the community.1

1github.com/dmar-bonn/ipp-rl
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II. RELATED WORK

Our work lies at the intersection of IPP for active sensing,
MCTS planning methods, and recent advances in RL.

IPP methods are gaining rapid traction in many active
sensing applications [1–3, 10]. In this area of study, our
work focuses on strategies with adaptive online replanning
capabilities, which allow the targeted monitoring of regions
of interest, e.g. hotspots or abnormal areas, in a priori
unknown environments [9]. Some methods focus on discrete
action spaces defined by sparse graphs of permissible actions
[10, 11]. However, these simplifications are not applicable as
the distribution of target regions requires online decision-
making as they are discovered. Our proposed algorithm
reasons about a discrete action space magnitudes larger while
ensuring online computability. In terms of planning strategy,
IPP algorithms can be classified into combinatorial [16, 17],
sampling-based [3, 10], and optimization-based approaches
[1, 2]. Combinatorial methods exhaustively query the search
space. Thus, they cannot plan online in large search spaces,
which makes them impractical for adaptive replanning.

Continuous-space sampling-based planners generate in-
formative robot trajectories by sampling candidate actions
while guaranteeing probabilistically asymptotic optimality
[3, 8]. However, their sample-efficiency is typically low
for planning with more complex objectives and larger ac-
tion spaces since many measurements need to be forward-
simulated to find promising paths in the problem space
[1, 18]. In our particular setup, considering spatial corre-
lations in a terrain over many candidate regions leads to
a complex and expensive-to-evaluate information criterion.
In similar scenarios, several works have investigated global
optimization, e.g. evolutionary algorithms [1, 2] or Bayesian
Optimization [8], to enhance planning efficiency. Although
these approaches deliver high-quality paths [1, 11], using
them for online decision-making is still computationally
expensive when reasoning about many spatially correlated
candidate future measurements.

In robotics, RL algorithms are increasingly being utilized
for search and rescue [19], information gathering [12],
and exploration of unknown environments [13]. Although
emerging works show promising performance, RL-based
approaches have not yet been investigated for online adaptive
IPP, instead being mostly restricted to environment explo-
ration tasks. To address this gap, we propose the first RL
approach for adaptively planning informative paths online
over spatially correlated terrains with large action spaces.

Another well-studied planning paradigm is MCTS [20,
21]. Recently, MCTS extensions were proposed for large
action spaces [22] and partially observable environments
[23]. Choudhury et al. [10] applied a variant of MCTS
to obtain long-horizon, anytime solutions in adaptive IPP
problems. However, these online methods are restricted to
small action spaces and spatially uncorrelated environments.

Inspired by recent advances in RL [14, 15], our RL-based
algorithm bypasses computationally expensive MCTS roll-
outs and sample-inefficient action selections with a learned

value function and an action policy, respectively. We extend
the AlphaZero algorithm by applying it to robotics tasks
with limited computational budget and low data regimes.
Related to our approach are RL methods which address
the exploration-exploitation trade-off at train time [24, 25].
However, our algorithm explicitly balances exploration and
exploitation at deploy time by combining a learned policy
with MCTS sampling-based planning in large action spaces.

III. BACKGROUND

We begin by briefly describing the general active sensing
problem and specifying the terrain monitoring scenario used
to develop our RL-based IPP approach.

A. Problem Formulation

The general active sensing problem aims to maximize
an information-theoretic criterion I(·) over a set of action
sequences Ψ, i.e. robot trajectories:

ψ∗ = argmax
ψ∈Ψ

I(ψ)

C(ψ)
, s.t. C(ψ) ≤ B, (1)

where C : Ψ→ R+ maps an action sequence to its associated
execution cost, B ∈ R+ is the robot’s budget limit, e.g. time
or energy, and I : Ψ → R+ is the information criterion,
computed from the new sensor measurements obtained by
executing ψ.

This work focuses on the scenario of monitoring a terrain
using a UAV equipped with a camera. Specifically, in this
case, the costs C(ψ) of an action sequence ψ = (ψ1, . . . , ψn)
of length n are defined by the total flight time:

C(ψ) =

n−1∑
i=1

c(ψi, ψi+1), (2)

where ψi ∈ R3 is a 3D measurement position above the
terrain the image is registered from. c : R3 × R3 →
R+ computes the flight time costs between measurement
positions by a constant acceleration-deceleration ±ua model
with maximum speed uv .

B. Terrain Mapping

We leverage the method of Popović et al. [1] for efficient
probabilistic mapping of the terrain. The terrain ξ ⊂ R2

is discretized by a grid map X while the mapped target
variable, e.g. temperature, is a scalar field ζ : ξ → R. The
prior map distribution p(ζ | ξ) ∼ N (µ−,P−) is given by a
Gaussian Process (GP) defined by a prior mean vector µ−

and covariance matrix P−. At mission time, a Kalman Filter
KF(µ−,P−, z, ψi) = µ+,P+ is used to sequentially fuse
data z ∈ Rm observed at a measurement location ψi with the
last iteration’s map belief p(ζ | ξ) ∼ N (µ−,P−) in order
to obtain the posterior map mean µ+, and covariance P+.
For further details, the reader is referred to [1].

C. Utility Definition for Adaptive IPP

In Eq. (1), we define the A-optimal information criterion
associated with an action sequence of n measurements [26]:

I(ψ) =

n∑
i=1

Tr(P−)− Tr(P+), (3)



where P− and P+ are obtained before and after applying
KF to the measurements observed along ψi, respectively.

We study an active sensing task where the goal is to gather
terrain areas with higher values of the target variable ζ, e.g.
high temperature. This scenario requires online replanning
to focus on mapping these areas of interest XI as they are
discovered, and is thus a relevant problem setup for our new
efficient RL-based IPP strategy. We utilize confidence-based
level sets to define XI [27]:

XI = {xi ∈ X | µ−i + βP−i,i ≥ µth}, (4)
where µ−i and P−i,i are the mean and variance of grid cell xi.
β, µth ∈ R+ are a user-defined confidence interval width
and threshold, respectively. Consequently, we restrict P−

and P+ in Eq. (3) to the grid cells xi ∈ XI as defined by
Eq. (4), noted as P−

XI
and P+

XI
respectively.

IV. APPROACH

This section presents our new RL-based IPP approach for
active sensing. As shown in Fig. 2, we iteratively train a CNN
on diverse simulated terrain monitoring scenarios to learn the
most informative data gathering actions. The trained CNN is
leveraged during a mission to achieve fast online replanning.

A. Connection between IPP & RL

We first cast the general IPP problem from Sec. III in
a RL setting. The value V (s) of a state s is defined as
V (s) = r(s, a, s′) + γV (s′), where γ ∈ [0, 1], and s′ is
the successor state when choosing a next action ψi+1 =
a ∼ π(s) according to the policy π(·). A state s is defined
by s = (sm, a

−), where sm ∼ N (µ−,P−) is the current
map state, and a− is the previously executed action, i.e. the
current UAV position. Consequently, s′ = (s′m, a) is defined
by s′m ∼ N (µ+,P+). In our work, the 3D action space
A is a discrete set of measurement positions. The reward
function r is defined as:

r(s, a, s′) =
Tr(P−

XI
)− Tr(P+

XI
)

c(a−, a)
. (5)

We set γ = 1, such that V (·) restores Eq. (1).

B. Algorithm Overview

Our goal is to learn the best policies for IPP offline to
allow for fast online replanning at deployment. To achieve
this, we bring recent advances in RL by Silver et al. [14, 15]
into the robotics domain. In a similar spirit, our RL algorithm
combines MCTS with a policy-value CNN (Fig. 2). At train
time, the algorithm alternates between episode generation
and CNN training. For terrain monitoring, episodes are gen-
erated by simulating diverse scenarios varying in map priors,
target variables, and initial UAV positions as explained in
Sec. IV-C. Each episode step from a state s is planned by
a tree search producing a target value V (s) given by the
simulator and a target policy π(s) proportional to the tree’s
root node’s action visit counts. V (s) and π(s) are stored in a
replay buffer used for CNN training. As described in Sec. IV-
E, we introduce a CNN architecture suitable for inference on
mobile robots. Further, Sec. IV-F proposes components for

low data regimes in robotics tasks, which are often expensive
to simulate.

Train network to predict action
policies and paths' utilities

Simulate terrain monitoring
episodes to gather train data

Policy Evaluation

Policy Improvement

Fig. 2: Overview of our RL-based IPP approach. We use a
CNN to predict policies and values guiding a tree search to find
informative paths for data gathering. The CNN is iteratively trained
in simulation to improve the policy and value estimates.

C. Episode Generation at Train Time

The most recently trained CNN is used to simulate a fixed
number of episodes. An episode terminates when the budget
B is spent or a maximum number of steps is reached. In
each step from state s, a tree search is executed for a certain
number of simulations as described in Sec. IV-D. The policy
π(s) is derived from the root node’s action visits N(s, a):

π(s)a =
N(s, a)1/τ∑

a′∈AN(s, a′)1/τ
, (6)

where A is the set of next measurement positions reachable
within the remaining budget b. τ is a hyper-parameter
smoothing policies to be uniform as τ→∞ and collapsing to
argmaxa∈A π(s)a as τ→0. The action is sampled from a ∼
π(s) and the next map state is given by KF(·,P−, ·, a) =
s′m. r and b are given by Eq. (5) and c(a−, a) respectively.
The tuple (s, a,π(s), V (s), b) is stored in the replay buffer.

D. Tree Search with Neural Networks

As shown in Fig. 3, a fixed number of simulations is
executed by traversing the tree. Each simulation terminates
when the budget or a maximal depth is exceeded. The tree
search queries the CNN for policy and value estimates p, v
at leaf nodes with state s(l) and stores the node’s prior
probabilities P (s(l)) = p. The probabilistic upper confidence
tree (PUCT) bound is used to traverse the tree [28]:

PUCT(s, a) = Q(s, a)

+ Pa(s)

√
N(s)

1 +N(s, a)

(
c1 + log

[
N(s) + c2 + 1

c2

])
, (7)

where Q(s, a) = r(s, a, s′)+γ·V (s′) is the state-action value
and N(s) =

∑
a′∈AN(s, a′) is the visit count of the parent

node s. c1, c2 ∈ R+ are exploration factors. We choose the
next action a = argmaxa′∈A PUCT(s, a’).

As the reward has no fixed scale, in Eq. (7), we min-max
normalize Q(s, a) to Q̃(s, a) ∈ [0, 1] across all a ∈ A in s.
To enforce exploration, similarly to Silver et al. [14], we add
Dirichlet-noise to P (s(r)) of the root node with state s(r):

P (s(r)) = (1− ε)π(s(r)) + εη, (8)
where ε ∈ [0, 1], and the noise η ∼ Dir(δ), δ > 0.

E. Network Architecture & Training

The CNN fθ(s) = (p, v) is parameterized by θ predicting
a policy p and value v. Input to the CNN are (a) the min-max



Fig. 3: Tree search with a CNN. The colored gradients represent
the map state at each node and the arrows indicate how these map
states evolve as potential measurement are taken. (1) The predicted
policies p steer traversing the tree, and (2) the predicted values
v avoid expensive high-variance rollouts at leaf nodes. (3) The
predicted value is used to update the parent nodes’ value estimates.

normalized current map covariance P−
XI

; (b) the remaining
budget b ≤ B normalized over B; (c) the UAV position a−

normalized over the bounds of the 3D action space A; and
(d) a costs feature map C of same shape as P−

XI
with C[i, :

] = c(ai, a), subsequently min-max normalized. Note that
the scalar inputs are expanded to feature maps of the same
shape as P−

XI
. Additionally, we input a history of the previous

two covariance, position, and budget input planes.

Fig. 4: Our policy-value CNN architecture. We leverage an
ERFNet encoder [29] with 10 residual blocks providing shared
representations for the policy and value prediction. Both heads
consist of three convolutional blocks and global average pooling
to make the CNN input size-agnostic. Last, fully connected layers
project to a policy vector (Softmax) and single positive scalar value
(Softplus). Feature map dimensions are w.r.t. 10×10 grid maps X .

As visualized in Fig. 4, the CNN has a shared encoder.
We leverage Non-bottleneck-1D blocks proposed by Romera
et al. [29] to reduce inference time. The encoder is fol-
lowed by two separate prediction heads for policy and
value estimates. Both heads consist of three blocks with
2D convolution, batch norm, and SiLU activations. The last
block’s output feature maps in each head are flattened to
fixed dimensions by global average and max pooling before
applying a fully connected layer. This reduces the number of
parameters and ensures an input size-agnostic architecture.
The CNN parameters θ are trained with stochastic gradient
descent (SGD) on mini-batches of size 96 to minimize:
l(s) = α · (V (s)− v)2 − β · π(s)T log p+ λ · ‖θ‖2, (9)

where the loss coefficients α, β, λ ≥ 0 are hyperparameters.
SGD uses a one-cycle learning rate over three epochs [30].

F. AlphaZero in Low Data Regimes

Adaptive IPP with spatio-temporal correlations is expen-
sive to simulate. Opposed to fast-to-simulate games such as
Go or chess [15], real-world robotics tasks are often limited
in the number of simulations and episodes at train time.

A major shortcoming of the original AlphaZero algorithm
[15] is that the policy targets in Eq. (6) merely reflect the tree
search exploration dynamics. However, the raw action visit
counts N(s, a) do not necessarily capture the gathered state-
action value information for a finite number of simulations.
Hence, with only a moderate number of simulations per
episode step, AlphaZero tends to overemphasize initially
explored actions in subsequent training iterations, leading
to bias in training data and thus overestimated state-action
values. As Eq. (7) is also guided by Q(s, a), the overem-
phasis on initially explored actions induces overfitting and
low-quality policies. Next, we introduce methods to solve
these problems and increase efficiency of our RL algorithm.

To avoid overemphasizing random actions in the node se-
lection, a large exploration constant c1 in Eq. (7) is desirable.
However, in later training iterations, increasing exploitation
of known good actions is required to ensure convergence.
Thus, we propose an exponentially decaying exploration
constant c(i)1 = max(c

(start)
1 ·λic1 , c

(min)
1 ), where i ∈ N is the

training iteration number, c(start)1 >0 is the initial constant,
λc1 > 0 is the exponential decay factor, and c

(min)
1 > 0 is

the minimal value. Similarly, for the Dirichlet exploration
noise in Eq. (8) defined by δ, we introduce an exponentially
decaying scheduling δ(i) = max(δ(start) ·λiδ, δ(min)), where
δ(start) > 0 is the initial value, λδ > 0 is the exponential
decay factor, and δ(min) > 0 is the minimal value. A high
δ(start) around 1 leads to a uniform noise distribution η
avoiding overemphasis on random actions. However, δ(i)

should decrease with increasing i to exploit the learned π(s).

Next, we propose an increasing replay buffer size w to
accelerate training. Similar to our approach, adaptive replay
buffers are known to improve performance in other RL
domains [31]. On the one hand, a substantial amount of data
is required to train the CNN on a variety of paths. On the
other hand, the loss (Eq. (9)) initially shows sudden drops
when outdated train data leaves the replay buffer. Thus, in
early training stages, a small w improves convergence speed.
Larger w in later training stages help regularize training and
ensure train data diversity. Hence, w is adaptively set to:

w(i) = min

(⌊
w(start) +

i

w(step)

⌋
, w(max)

)
, (10)

where w(start) ∈ N+ and w(max) ∈ N+ are the initial and
maximum window sizes. The window size is increased by
one each w(step)∈N+ training iterations.

Moreover, we adapt two techniques introduced by Wu
[32] for the game of Go. First, forced playouts and policy
pruning decouple exploration dynamics and policy targets.
While traversing the search tree, underexplored root node
actions a are chosen by setting PUCT(s(root), a) =∞ in
Eq. (7). In Eq. (6), action visits N(s(root), a) are subtracted
unless action a led to a high-value successor state. Second,
in regular intervals in the encoder, and as the first layers of
the value and policy head, we use global pooling bias layers.
This enables our CNN to focus on local and global features
required for IPP. Further details are discussed by Wu [32].



Variant 33% Tr(P ) ↓ 67% Tr(P ) ↓ 100% Tr(P ) ↓ 33% RMSE ↓ 67% RMSE ↓ 100% RMSE ↓ Runtime [s] ↓

Baseline as in Sec. IV 73.61 31.83 12.44 0.15 0.09 0.05 0.64
(i) w/ fixed off-policy window 83.25 50.17 24.68 0.16 0.12 0.09 0.68
(i) w/ fixed exploration constants 95.27 39.46 21.86 0.20 0.11 0.08 0.65
(i) w/o forced playouts + policy pruning 79.23 28.53 22.62 0.18 0.09 0.07 0.66
(ii) w/o global pooling bias blocks 103.58 45.78 31.44 0.19 0.11 0.10 0.64
(ii) 5 residual blocks in encoder 82.90 29.94 17.94 0.16 0.08 0.07 0.55
(ii) w/o input feature history 102.40 40.48 31.33 0.20 0.10 0.09 0.66

TABLE I: Ablation study results. We systematically (i) remove components, and (ii) change the CNN architecture to quantify their
impact. Remaining uncertainty Tr(P ) and RMSE in the map state are evaluated after 33%, 67%, and 100% spent effective mission time.
Our approach as proposed in Sec. IV achieves the fastest and most stable reductions in uncertainty and RMSE over the mission time.

G. Planning at Mission Time

Replanning is performed after each map update. Using the
trained CNN, we perform tree search from the current state
s, choosing action a from π(s) with τ → 0 in Eq. (6), i.e.
a = argmaxa∈A π(s)a. Since π(·) steers the exploration,
the tree search is highly sample-efficient. This way, the
number of tree search simulations is greatly reduced to allow
fast replanning. Note that policy noise injection and forced
playouts at the root are disabled to improve performance.

V. EXPERIMENTAL RESULTS

This section presents our experimental results. We first
validate our RL approach in an ablation study, then assess its
IPP and runtime performance in terrain monitoring scenarios.

A. Experimental Setup

Our simulation setup considers terrains ξ with 2D discrete
field maps X with values between 0 and 1, randomly split in
high- and low-value regions to create regions of interest as
defined by Eq. (4). We model ground truth terrain maps of
40×40 m and r×r [m], r ∈ R, resolution. The UAV action
space of measurement locations is defined by a discrete 3D
lattice above the terrain ξ. The lattice mirrors the g× g grid
map X on two altitude levels (8 m and 14 m), resulting in
2 · g2 actions. The missions are implemented in Python on a
desktop with a 1.8 GHz Intel i7, 16 GB RAM without GPU
acceleration to avoid unfair advantages in inference speed of
our CNN. We repeat the missions 10 times and report means
and standard deviations. Our RL algorithm is trained offline
on a single machine with a 2.2 GHz AMD Ryzen 9 3900X,
63GB RAM, and a NVIDIA GeForce RTX 2080 Ti GPU.

We use the same altitude-dependent inverse sensor model
as Popović et al. [1] to simulate camera measurement noise,
assuming a downwards-facing square camera footprint with
60◦ FoV. The prior map mean is uniform with a value of
0.5. The GP is defined by Matérn 3/2 kernel with length
scale 3.67, signal variance 1.82, and noise variance 1.42 by
maximizing log marginal likelihood over independent maps.
The threshold µth = 0.4 defines regions of interest.

We set the mission budget B = 150 s, the UAV initial
position to (2, 2, 14) m, the acceleration-deceleration ±ua =
2 m/s2 with maximum speed uv = 2 m/s. At train time,
each episode randomly generates a new ground truth map,
map priors from a wide range of GP hyperparameters and
UAV start positions, such that our approach has no unfair
overfitting advantage. We evaluate map uncertainty with

Tr(P+) and the root mean squared error (RMSE) of µ+

in regions of interest to assess planning performance. Lower
values indicate better performance. In contrast to earlier work
[1, 2, 10], the remaining budget does not only incorporate the
path travel time, but also the planning runtime, as relevant
for robotic platforms with limited on-board resources. We
refer to the spent budget B as the effective mission time.

B. Ablation Study

This section validates the algorithm design and CNN
architecture introduced in Sec. IV. We perform an ablation
study comparing our approach to versions of itself (i) re-
moving proposed training procedure components, and (ii)
changing the CNN architecture. We assume a resolution of
r= 4 m resulting in a 10×10 grid map X with A of 200
actions. Note that the results do not depend on the actual size
of X and A. We generate a small number of 280 episodes in
each iteration and terminate training after 40 iterations. Each
tree search is executed as described in Sec. IV-G with 10
simulations and exploration constants c(start)1 =15, c

(min)
1 =

4, λc1 = λδ = 0.8, δ(start) = 1.0, δ(min) = 0.3, c2 = 10000.
Table I summarizes our results. We evaluate map uncertainty
and RMSE over the posterior map state after 33%, 67%, and
100% effective mission time, and average planning runtime.

As proposed in Eq. (10), the training procedure considers
a replay buffer with adaptive size w(start) = 1, w(step) =
2, w(max) = 10. Convergence speed, and thus performance,
improves compared to a fixed-size buffer w(i) =10. Also, our
proposed exploration constants scheduling scheme improves
plan quality by stabilizing the exploration-exploitation trade-
off compared to fixed constants c(i)1 = 4, δ(i) = 0.3. Further,
the results show the benefits of including a history of the two
previous map states and UAV positions in addition to their
current values. Interestingly, reducing the encoder depth from
10 to 5 blocks and removing forced playouts both perform
reasonably well, but still lead to worse results in later mission
stages. This suggests that deeper CNNs and forced playouts
facilitate learning in larger grid maps and longer missions.
Similarly, global pooling bias blocks help learning global
map features, which benefits information-gathering.

C. Comparison Against Benchmarks

Next, our RL algorithm is evaluated against benchmarks.
We set a resolution r = 2.5 m, hence X is a 15× 15
grid, and A has 450 actions. Our approach is compared
against: (a) uniform random sampling in A; (b) coverage



Fig. 5: Evaluation of our approach against benchmarks. On average, our RL approach ensures the fastest uncertainty and RMSE
reduction in regions of interest over mission time. Solid lines indicate means over 10 trials, and shaded regions indicate the standard
deviations. Note that there is inherent variability due to the randomly generated hotspot locations. However, our method ensures stable
performance over changing environments. Further, replanning runtime is reduced by a factor of 8−10×. The planned path (evolving over
time from blue to red) validates the adaptive behavior of our approach exploring the terrain with focus on the high-value region (green).

path with equispaced measurements at a fixed 8 m altitude;
(c) MCTS with progressive widening [22] for large action
spaces and a generalized cost-benefit rollout policy proposed
by Choudhury et al. [10]; (d) a state-of-the-art IPP framework
using the Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) proposed by Popović et al. [1]. All planners
consider a 5-step horizon. We set CMA-ES parameters to
45 iterations, 12 offsprings, and (4, 4, 3) m coordinate-wise
step size to trade-off between performance and runtime. The
permissible next actions of MCTS are reduced to a radius
of 11 m around the UAV to be computable online, resulting
in ∼ 115 next actions per move. For a fair comparison, we
trained our approach on this restricted action space, which
is still much larger than studied in prior work [10, 11].

Fig. 5 reports the results obtained using each approach.
Our method substantially reduces runtime, achieving a
speedup of 8 − 10× compared to CMA-ES and MCTS.
This result highlights the improved sample-efficiency in our
tree search and confirms that the CNN can learn informative
actions from training in diverse simulated missions. Random
sampling performs poorly as it reduces uncertainty and
RMSE in high-value regions only by chance. The coverage
path shows high variability since data-gathering efficiency
greatly depends on the problem setup, i.e. hotspot locations
relative to the preplanned path. Our approach outperforms
this benchmark with much greater consistency.

D. Temperature Mapping Scenario

We demonstrate our RL-based IPP approach in a photore-
alistic simulation using real-world surface temperature data.
The data was collected in a 40×40 m crop field nearby
Forschungszentrum Jülich, Germany (50.87◦ lat., 6.44◦ lon.)
on July 20, 2021 with a DJI Matrice 600 UAV carrying a
Vue Pro R 640 thermal sensor. The UAV executed a coverage
path at 100 m altitude to collect images, which were then
processed using Pix4D software to generate an orthomosaic
representing the target terrain in our simulation as depicted in
Fig. 1-left. The aim is to validate our method for adaptively
mapping high-temperature areas in this realistic setting.

For fusing new data into the map, we assume altitude-
dependent sensor noise as described in Sec. V-A. The terrain
is discretized using a uniform 2.5 m resolution. We compare
our RL-based online algorithm against a fixed 8 m altitude

Fig. 6: Real-world scenario. (Left) Surface temperature of a crop
field used for the conducted real-world experiments. (Right) Our
RL approach ensures fast uncertainty reduction in high-temperature
regions (red) outperforming traditionally used coverage paths.

lawnmower path as a traditional baseline. Our approach is
trained only on synthetic simulated data as shown in Fig. 5.

Fig. 1-right shows the planned 3D path above the terrain
using our strategy. This confirms that our method collects
targeted measurements in hotter areas of interest (red) by
efficient online replanning. This is reflected quantitatively
in Fig. 6-right as our approach ensures fast uncertainty
reduction while a coverage path performs worse as it cannot
adapt mapping behaviour. These results verify the successful
transfer of our model trained in simulation to real-world data
and demonstrate its benefits over a traditional approach.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposes a new RL-based approach for online
adaptive IPP using resource-constrained robots. The algo-
rithm enables sample-efficient planning in large action spaces
and high-dimensional state spaces, enabling fast information
gathering in active sensing tasks. A key feature of our
approach are components for accelerated learning in low data
regimes. We validate the approach in an ablation study, and
evaluate its performance compared to multiple benchmarks.
Results show that our approach drastically reduces planning
runtime, enabling efficient adaptive replanning. Future work
will investigate extending our algorithm to multi-robot teams
and dynamically growing maps. We plan to conduct real-
world field experiments to validate our method.
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