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Abstract— Knowing the distance to nearby objects is crucial
for autonomous cars to navigate safely in everyday traffic. In
this paper, we investigate monocular depth estimation, which
advanced substantially within the last years and is providing
increasingly more accurate results while only requiring a single
camera image as input. In line with recent work, we use
an encoder-decoder structure with so-called packing layers to
estimate depth values in a self-supervised fashion. We propose
integrating a joint pre-training of semantic segmentation plus
depth estimation on a dataset providing semantic labels. By
using a separate semantic decoder that is only needed for pre-
training, we can keep the network comparatively small. Our
extensive experimental evaluation shows that the addition of
such pre-training improves the depth estimation performance
substantially. Finally, we show that we achieve competitive
performance on the KITTI dataset despite using a much smaller
and more efficient network.

I. INTRODUCTION

Depth perception is a prerequisite for most autonomous
navigation systems. Monocular depth perception recently
reached levels of accuracy that rival active range sensing
methods, such as stereo vision or LiDAR-based range sens-
ing. Using only cameras to perform semantic interpretation
and depth perception is an alluring prospect due to reduced
cost, high resolution, and flexibility in the positioning of the
sensors. Moreover, most cars sold today are already equipped
with front-facing cameras and the usage of only cameras can
decrease the gap between regular cars and today’s prototypes
of self-driving cars that use a variety of additional sensors
to enable autonomy.

In this paper, we investigate pixel-wise depth estimation
using a single image at inference time as illustrated in Fig. 1.
Our approach is based on an encoder-decoder structure
using packing [12] that recently showed compelling results.
It is trained self-supervised using just pairs of images by
exploiting that reprojected pixels from one image into the
other image should be photometrically consistent if the
estimated depth is correct [44]. As a key benefit, training
can be performed without explicit ground truth depth as
a supervision signal—and this is in contrast to supervised
depth estimation approaches that mostly use LiDAR data [6],
[43].

Several of the recently proposed approaches suggest en-
hancing the accuracy of the predicted depth by using seman-
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Fig. 1: Using only the upper image as input, our approach produces
the depth map shown below. Color encodes here distance, where
warmer colors (yellow, orange) correspond to close objects and
colder colors (purple, blue) to objects at larger distances.

tic information [28], [13], [32], [27], [26], [23]. The main
idea is to use semantic cues to enable more consistent depth
estimates as certain categories like persons, motorcycles,
and cars tend to have certain sizes that can be exploited to
estimate the depth of such objects [21], [39].

These approaches, however, either need to perform the
semantic segmentation separately to guide the depth estima-
tion [13], [27], [26] or require semantic labels [32]. Both
options limit the applicability of these approaches in terms
of computational budget or manual labeling effort that is
needed to produce a sufficient amount of training data. In
robotics, having a lightweight architecture is of particular
interest as it allows to perform multiple tasks on the same
embedded processing unit and also increases the time a robot
can perform tasks without the need to recharge.

The main contribution of this paper is an approach to
improve the depth perception of an encoder-decoder network
by augmenting it only at training time. By using a joint pre-
training of semantic segmentation and depth estimation on
Cityscapes [2], we can achieve state-of-the-art performance
without increasing the computational budget through an
increased network size or additional labeling effort on the
KITTI Vision Benchmark [8]. The pre-training is performed
on Cityscapes that provides semantic labels. However, we
do not require semantic labels on the KITTI target data,
where the depth estimation network is finally fine-tuned.
Note that the key innovation of this paper does not derive
from the network itself but the strategy to pre-train the
network by augmenting it with an auxiliary network. The
auxiliary network is a semantic decoder used only for pre-
training and can be fully removed for deployment without



sacrificing the performance of the depth estimation network.
The remaining depth estimation network preserves the se-
mantic cues and thus delivers depth estimation performance
that was previously only possible with much larger networks
which are difficult to deploy in robots.

In this paper, we make the following claims: (i) We can
achieve on-par performance compared to the state of the
art in monocular depth estimation on the KITTI Vision
Benchmark by using our pre-training strategy without using
an additional segmentation network or semantic labels for
fine-tuning. (ii) We show that joint task-driven pre-training
of semantic segmentation and depth estimation is necessary
to achieve this performance and that joint pre-training is
superior to pre-training for depth estimation or semantic
segmentation only. We plan to publish our code.

II. RELATED WORK

Monocular depth estimation attracted a lot of interest from
the computer vision community and made rapid progress
in the last years with the advent of deep neural networks.
We therefore concentrate here on deep learning-based ap-
proaches that usually differ in the amount of needed super-
vision and data.

Overall, three different ways of learning depth have
been investigated: supervised, semi-supervised, and self-
supervised.

Supervised depth estimation uses ground truth depth
mostly acquired from active sensors like LiDAR and uses
these point clouds as labels to compute the training loss [6].
A common problem of fully supervised approaches [6] is
that relying on LiDAR information can lead to missing depth
labels on certain objects or image regions that generally can
only be detected poorly due to reflection or absorbance of the
LiDAR beams or cannot be sensed due to a limited vertical
field-of-view. For example, black cars usually lead to weak
returns and therefore supervised approaches struggle with
learning depth estimates for these particular objects.

Semi-supervised depth estimation represents a hybrid be-
tween self-supervised and supervised learning of depth. In
practice, the motivation is to use relatively cheap and widely
available LiDAR sensors that feature a very limited number
of laser beams (i.e., 4 to 8 compared to 64 or 128 that are
often used in the supervised case) and thus yield only some
ground truth labels in a limited area and the majority of depth
values must be determined in a self-supervised fashion [14].

Self-supervised learning of depth uses multiple images
(i.e. stereo pair and/or sequences of images) and computes
the loss using warping and the photometric loss. In this
case, no ground truth labels are required to estimate the
depth, which typically allows for much more data to be used
compared to supervised learning[12].

For depth estimation, the terms unsupervised (as for exam-
ple mentioned in [7], [44], [10]) and self-supervised learning
can be used interchangeably. The term self-supervised depth
estimation became later popular and replaced the term unsu-
pervised to some extend. In this paper, we focus exclusively
on self-supervised depth estimation which lately improved

Approach Data source Datasets Scale-aware

Scharstein et al. [38] - - X
Geiger et al. [9] - - X

Saxena et al. [36], [37] D Own X
Eigen et al. [4] D NYU + K X

Garg et al. [7] S K X
Konda et al. [25] S K X
Godard et al. [10] S C + K, 3D X

Zhou et al. [44] M K
Wang et al. [40] M C + K

Guizilini et al. [12] M + v C + K X

Ladicky et al. [28] D + Sem NYU + KS X
Ramirez et al. [32] S + Sem C + KS X
Guizilini et al. [13] M + v + Sem I, CS + K X
Kumar et al. [27] M + v + Sem CS + K X
Klinger et al. [23] M + v + Sem CS + K X
Kumar et al. [26] M + v + Sem CS + K X

Our approach S + M + Sem CS + K X

TABLE I: Comparison of our approach to related work with respect
to input source and data used grouped by the used input for training.
M: monocular, S: stereo, v: velocity, D: Depth, Sem: semantics, C:
Cityscapes, CS: Cityscapes with semantics, K: KITTI, KS: KITTI
with semantics, I: ImageNet pre-training. When data source is left
empty the approach is not a deep learning but a stereo image
matching approach.

to be on par or even slightly better than supervised methods
in some metrics [12].

In the stereo case, algorithms exploit two stereo images
as data source. By using calibrated cameras and a known
baseline, they can directly compute a scale-aware depth
map. While earlier approaches rely on non-differentiable
loss functions, which needed to be linearized using Taylor
expansion [7] or depended on local information in the stereo
images [25], more recent approaches make use of image
warping and bilinear sampling which is fully differentiable.
In particular, Godard et al. [10] have shown superior perfor-
mance through the introduction of new loss functions, which
are today’s state-of-the-art.

The monocular supervision was introduced for being able
to train on videos from a single camera. For retrieving
relative poses, which are needed for image warping, Zhou et
al. [44] add a network to estimate pose changes between two
consecutive frames of a video stream. With the estimated
pose change, they are able to treat the two images at
different time steps as a stereo pair but have to deal with
problems of a non-static environment. Due to the lack of
scale information during training they scale the depth maps
with the median of the ground truth. Guizilini et al. [12]
present a novel architecture for a depth estimation network
with the focus on preserving details in the result. This is
done by introducing Packing and Unpacking operations. To
allow a correct prediction of scaled depth maps, they also
add velocity as input to the pose estimation network by
controlling the amount of translation.

Another line of research investigates the combination of
multiple tasks to improve the depth estimation. Ladicky et
al. [28] demonstrate how to independently improve the ac-



curacies of both semantic segmentation and depth estimation
with respect to their task. Guizilini et al. improved their
original approach [12] by adding semantic guidance [13].
However, using a separate network for the guidance increases
the overall number of parameters and consequently the
inference time. Recently, Klinger et al. [23] have proposed
to use semantics to mask potentially moving objects as
well as a joint training of depth and semantics with a
shared encoder. Kumar et al. [26] use a shared encoder and
provide guidance similar to Guizilini et al. [13], but without
the need of a separate network for semantic segmentation.
Tab. I summarizes the required supervision of the discussed
approaches with respect to available data or labels and the
employed datasets.

The geometric pre-training proposed by Wang et al. [41]
that exploits optical flow to pre-train a network for monocular
depth estimation is closely related to our work. They show
that their pre-training strategy yields superior accuracy. In
contrast, we are exploring pre-training via semantic segmen-
tation, which is orthogonal to the geometric pre-training.

Since CNNs showed state-of-the-art results on the Ima-
genet dataset [3], pre-training on Imagenet and fine-tuning
the trained model on a different task [33] quickly became
a tool to tackle tasks in different domains and with only
little training data. Despite being recently challenged by
He et al. [17], we could consistently observe substantial
improvement by using pre-training on Cityscapes either with
or without semantic labels in our experimental evaluation.

Pretext tasks [24] allow to learn a visual representation
self-supervised that can be then used to improve learning
a different task. Recently, contrastive learning for self-
supervised learning of visual representations showed promis-
ing results [1], [20], [16].

While regular pre-training, pretext tasks, and contrastive
learning are often different from the actual task to solve,
we employ pre-training on a similar dataset showing also
street scenes with the same objective of depth perception.
We show that joint pre-training of semantic segmentation
and depth estimation improves the performance compared to
only using one of them as pre-training.

Learning a shared representation to solve multiple tasks
often leads to better performance than training separate
networks for each task individually. Using a single large
backbone to drive multiple tasks is commonly applied for
different tasks [15]. In our case, we use a shared encoder for
semantic segmentation and depth estimation for pre-training
on Cityscapes and show increased performance when fine-
tuning only the depth estimation on the KITTI dataset.

Our work differs from earlier works on depth estimation
as we propose to use a task-driven pre-training including
semantics. Thus, we differ from the approach of Guizilini et
al. [13] and also Klinger et al. [23] by exploiting semantics
without the need for an additional network to guide the
depth estimation. In contrast to Ramirez et al. [32], we
show that pre-training with semantics alone already improves
performance without the need to provide labels for the target
dataset.

Tag Description Kernel Size Feature Size

RGB input image - 3×H×W

Shared Encoder

e1 2D conv Precomputation 5 32×H×W
e2 2D conv + Packing 7 32×H/2×W/2
e3 ResNet Block + Packing 3 64×H/4×W/4
e4 ResNet Block + Packing 3 128×H/8×W/8
e5 ResNet Block + Packing 3 256×H/16×W/16
e6 ResNet Block + Packing 3 512×H/32×W/32

Depth Decoder

d1 Unpacking (e6) 3 512×H/16×W/16
d2 2D conv (e5, d1) 3 512×H/16×W/16
d3 Unpacking 3 256×H/8×W/8
d4 2D conv (e4, d3) 3 256×H/8×W/8
d5 Invdepth (d4) - 1×H/8×W/8
d6 Unpacking 3 128×H/4×W/4
d7 2D conv (e3, d6, upsample(d5)) 3 128×H/4×W/4
d8 Invdepth (d7) - 1×H/4×W/4
d9 Unpacking 3 64×H/2×W/2

d10 2D conv (e2, d9, upsample(d8)) 3 64×H/2×W/2
d11 Invdepth (d10) - 1×H/2×W/2
d12 Unpacking 3 32×H×W
d13 2D conv (e1, d12, upsample(d11)) 3 32×H×W
d14 Invdepth (d13) - 1×H×W

TABLE II: Architecture based on PackNet [12] design for depth
estimation. We use D = 4 instead of 8 for packing in intermediate
operation and kernel size 3 for all unpacking operations. We
highlighted our changes to the architecture with bold text.

III. OUR APPROACH

We first discuss our approach for monocular depth es-
timation and then discuss our strategy for semantic pre-
training using an auxiliary decoder. As discussed before, our
emphasis in this paper lays on the pre-train strategy rather
than the network architecture itself.

A. Monocular Depth Estimation via an Encoder-Decoder

Our goal is to predict a depth map Dt ∈ RH×W from
a single color image It ∈ RH×W providing a depth value
for every pixel of It, where W and H corresponds to
the width and height of the image, respectively. To this
end, we leverage a neural network with an encoder-decoder
architecture. In line with Guizilini et al. [12], our network
is based on PackNet using packing and unpacking to get
more accurate depth estimates compared to downsampling
with pooling or strided convolutions and upsampling with
bilinear interpolation or transpose convolutions. However,
we reduce the number of output channels in the first two
convolutional layers and reduce the number of intermediate
convolution layers for packing. In total, this reduces the
number of parameters from 120.8 million to 67.7 million for
the encoder while it increases the decoder parameters from
6.7 million to 8.6 million. Tab. II provides explicit sizes of
the involved operations and sizes of the tensors resulting
from the operations. Using the tags, we explicitly provide
information on the skip connections.

The key idea of Godard et al. [10] is to exploit the fact
that a correctly estimated depth for a pixel should result in a
consistent appearance if one warps it into another image and
a differentiable loss to enable self-supervised learning. The
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Fig. 2: Conceptual overview of our methodology to train the
monocular depth estimation network. First, we pre-train the encoder
and depth decoder on Cityscapes, where we additionally add a
semantic segmentation decoder to capture semantic information in
the shared encoder. We then train the pre-trained network for the
task of monocular depth estimation on KITTI, where we do not
have semantic segmentation labels. At inference time, the trained
and fine-tuned network infers depth for a single image. Note that
for pre-training and training, we use two views with relative poses
between these views to train the network in self-supervised fashion.

other image can be the corresponding image from a stereo
pair I{l,r}t with known baseline or an image It+o, o 6= 0
from an image sequence with known poses. In the following,
we will speak of the source and target image of the warping
operation and do not distinguish if the image is from a stereo
image or an image sequence temporally before or after the
current timestamp t and simply denote it as I ′.

Let LP (It, Ît, Dt) be the pixel-wise loss given the input
image It and the reconstructed image Ît from warping image
I ′ into the target image It [44] defined as:

LP (It,Ît,Dt) =MA �ME �LA(It,Ît)+λLR(It,Dt), (1)

where � correspond to the element-wise multiplication of
matrices, also known in the literature as the Hadamard
product [18]. MA ∈ {0, 1}H×W and ME ∈ {0, 1}H×W rep-
resent binary masks to deal with ambiguous regions [11] and
reprojection artifacts [29], respectively.
LA(It, Ît) is the appearance matching loss and LR(It, Dt)

is an edge-aware depth regularization, which we introduce
in the following paragraphs. For training of the deep neural
network, we optimize the aggregated loss,

L(It, Ît) = N−1
∑
LP (It, Ît, Dt), (2)

where we sum over all entries of the pixel-wise loss
LP (It, Ît, Dt) and normalize it by N =

∑
MA � ME ,

which is the number of valid pixels as MA and ME are
binary masks with only 0 or 1 as entries.

More specifically, we compute the appearance matching
loss LA(It, Ît) with the structural similarity (SSIM) as
proposed by Wang et al. [42] in a weighted combination
with the absolute pixel differences given by:

LA(It, Ît) = α
1− SSIM(It, Ît)

2
+ (1− α)||It − Ît||, (3)

Tag Description Kernel Size Feature Size

Semantic Decoder

s1 Unpacking (e6) 3 512×H/16×W/16
s2 2D conv (e5, s1) 3 512×H/16×W/16
s3 Unpacking 3 256×H/8×W/8
s4 2D conv (e4, s3) 3 256×H/8×W/8
s5 Sem Ext (s4) - C×H/8×W/8
s6 Unpacking 3 128×H/4×W/4
s7 2D conv (e3, s6, upsample(s5)) 3 128×H/4×W/4
s8 Sem Ext (s7) - C×H/4×W/4
s9 Unpacking 3 64×H/2×W/2

s10 2D conv (e2, s9, upsample(s8)) 3 64×H/2×W/2
s11 Sem Ext (s10) - C×H/2×W/2
s12 Unpacking 3 32×H×W
s13 2D conv (e1, s12, upsample(s11)) 3 32×H×W
s14 Sem Ext (s13) - C×H×W

TABLE III: Semantic Decoder, where we use feature maps from
Tab. II. We use D = 4 for packing in intermediate operation and
kernel size 3 for all unpacking operations.

where α weights the impact of the structural similarity and
the photometric similarity.

The edge-aware depth regularization loss LR(It, Dt) aims
at reducing the noise in depth estimation in low textured
regions by leveraging gradients of the predicted depth map
Dt and the image It [10]. Assuming that the depth gradient
is low in low textured regions and edges appear at larger
gradients in the input image It, we compute the depth
gradients ∂xDt and ∂yDt and weight them by the gradients
of the images ∂xIt and ∂yIt:

LR(It, Dt) = |∂xDt|e−|∂xIt| + |∂yDt|e−|∂yIt| (4)

The mask MA ensures that we only account for pre-
dictions that are unambiguous [11]. Ambiguous predictions
can arise from moving objects that are visible at different
locations in It and I ′ or low-textured regions resulting pos-
sibly in infinite depth predictions. To this end, we determine
the pixel-wise mask by considering all corresponding source
images I ′ ∈ S and the reconstructed images Ît from warping
image I ′ into target image It:

MA = min
I′∈S
LA(It, Ît) < min

I′∈S
LA(It, I

′) (5)

Finally, the mask ME is used to filter invalid projections
and ensures that only pixels are considered that result in
a valid projection into the target image [29]. This mask is
analytically computed by checking if a pixel can be projected
into the target image.

B. Semantic Pre-training via an Auxillary Decoder

For the semantic pre-training, we augment the architecture
by an additional decoder that is structurally similar to the
depth decoder. We mirror the number of output channels
of the encoder and concatenate the corresponding feature
maps from the encoder as a skip connection between the
encoder and decoder. The semantic decoder produces pixel-
wise logits for the pixel-wise classification with a 1×1
convolution. Note that the semantic decoder can be simply
removed without affecting the other parts of the network.
Fig. 2 shows conceptually our pre-training strategy with a



shared encoder and separate decoders for depth estimation
and semantic segmentation. We summarize the actual struc-
ture of the decoder in Tab. III, where we use intermediate
feature maps from the encoder specified in Tab. II. Since
the depth and semantic decoder share an encoder, we can
update the weights of the encoder via backpropagation [34]
such that the encoder produces downsampled features that
encode information about the depth and semantics at the
same time. Hence, the pre-trained features capture not only
information for predicting depth, but also semantic and
contextual information to predict pixel-wise semantic classes.

Our hypothesis is that semantics help the network to learn
representations that enable better depth prediction, since
semantics play also an important role in human perception.
Knowing the class of an object, such as car or pedestrian,
makes it possible to estimate the size of an object from
a single view and allows humans to estimate distances
of faraway objects. The learned size of objects is besides
other visual cues heavily exploited by the human perception
system [21], [39], and can be therefore also be derailed
if the expected size does not match the perceived object
size [5]. The perceived object size exploiting experience or
priors about typical objects, allows us humans to confidently
navigate around obstacles even if we only use a single eye.

In sum, we use pre-training on a dataset providing pixel-
wise semantic information and combine this with self-
supervised depth estimation to guide the optimization process
on the target dataset. As our experiments will show, pre-
training with both semantics and depth estimation via a
shared encoder leads to substantial improvements compared
to only depth or semantic pre-training.

IV. EXPERIMENTAL EVALUATION

The central idea of the paper is to improve monocu-
lar depth estimation performance by leveraging semantic
information—but only during a pre-training step on a dataset
providing semantic labels and not during the actual training
phase. We present our experiments to show the influence of
the proposed semantic pre-training and to support our key
claims, which are: (i) We are able to achieve on-par perfor-
mance compared to the state of the art in monocular depth
estimation on the KITTI Vision Benchmark by using our pre-
training strategy without using an additional segmentation
network or semantic labels for fine-tuning. (ii) We show that
joint task-driven pre-training of semantic segmentation and
depth estimation is necessary to achieve this performance
and that joint pre-training is superior to pre-training for depth
estimation or semantic segmentation only.

A. Datasets

We evaluate our approach on the KITTI Vision Bench-
mark [8]. We use the splits provided by Eigen et al. [4] with
the pre-processing and removal of static frames proposed
by Zhou et al. [44]. Overall, this results in 39,810 training
images, 4,424 images for validation and 697 images for
testing. In line with other approaches, i.e., [32], [10], [11],

[23], [12], [13], [26], we crop the distance at 80m to have
comparable results.

For pre-training, we use the Cityscapes dataset [2] consist-
ing of 5,000 images split into 2,975 training, 500 validation,
and 1,525 test images providing pixel-wise annotated seman-
tic labels for the training and validation set. We use the pro-
vided stereo images to jointly train the depth decoder self-
supervised and the provided annotations to train the semantic
decoder supervised. Due to the different image sizes of the
KITTI and Cityscapes images, we use a center crop with a
size of 2048 × 640 to obtain a comparable aspect ratio. The
cropping is followed by a resizing step to the image size of
the KITTI Vision Benchmark, i.e., 1242 × 375.

We employ the commonly reported metrics for depth
prediction, see Eigen et al. [4] for further details.

B. Implementation Details and Parameters

We use PyTorch [31] for the implementation of our
approach. In line with Guizilini et al. [12], we use Adam [22]
with β1 = 0.9, β2 = 0.999 and a starting learning rate of
2 · 10−4 for the optimization and halve the learning rate
every 12 epochs when training on the KITTI dataset. We
augment the data while training as follows: With a chance
of 50%, we change brightness, contrast, saturation, and hue
by random values in the range of ±0.2, ±0.2, ±0.2 and ±0.1
respectively and flip the image horizontally.

Both, the appearance matching loss LA(It, Ît) and edge-
aware loss LR(It, Dt) are evaluated at multiple scales as
proposed by Godard et al. [11]. When using monocular
images as input (M in Tab. IV), we use the timestamps
t− 1 and t+ 1 for calculating the loss function. For stereo
images (S in Tab. IV), we use the other stereo image at
the same timestep. The smoothness scaling λ is chosen as
0.002 and when using depth and semantics at the same time
we scale the semantic loss by the factor 0.1 to achieve
loss values of roughly the same magnitude. For the SSIM
loss, we choose C1 = 0.012 and C2 = 0.032 in line with
earlier approaches [10], [12]. For combining the SSIM and
the absolute pixel differences for the self-supervised loss we
use a weighting factor α = 0.85 [10], [11], [12], [13]. We
use the post-processing of Godard et al. [10]. In contrast to
other approaches [12], [13], [23], [26], [27] that mostly use
PoseNet [19], we estimate poses between images with ORB
SLAM 2 [30] offline.

With the smaller 640× 192 resolution, the training of the
whole network was done using a single Nvidia Quadro RTX
5000. For the high (and native KITTI) 1280×384 resolution,
we used four Nvidia GeForce RTX 2080 Ti GPUs and had
to split a batch into one sample for each GPU in order
to not run out of VRAM. Both small and high-resolution
training used a batch size of 4. Overall, we pre-trained our
network for 100 epochs on the Cityscapes dataset and fine-
tuned for 40 epochs on the KITTI Vision Benchmark. For
training with the auxiliary decoder, we use a pixel-wise
cross-entropy loss that ensures that the encoder gets updated
with a weighted contribution from the semantic and depth
decoder via backpropagation.



Res Approach Data source Dataset Lower is better ↓ Higher is better ↑
Abs Rel Sqr Rel RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

64
0×

19
2

Zhou et al. [44] M C + K 0.190 1.836 6.565 0.275 0.718 0.901 0.960
Ramirez et al. [32] S + Sem CS + KS 0.143 2.161 6.526 0.222 0.850 0.939 0.972
Godard et al. [11] M I + K 0.115 0.903 4.863 0.193 0.877 0.959 0.981
Godard et al. [11] M + S I + K 0.109 0.849 4.764 0.201 0.874 0.953 0.975
Klinger et al. [23] M + v + Sem I + CS + K 0.113 0.835 4.693 0.191 0.879 0.961 0.981
Kumar et al. [26] M + v + Sem CS + K 0.109 0.718 4.516 0.180 0.896 0.973 0.986

Guizilini et al. [12] M + v C + K 0.108 0.803 4.642 0.195 0.875 0.958 0.980
Kumar et al. [27] M + v + Sem CS + K 0.107 0.721 4.564 0.178 0.894 0.971 0.986

Guizilini et al. [13] M + v + Sem I + CS + K 0.102 0.698 4.381 0.178 0.896 0.964 0.984

Ours [A] S C 0.351 3.214 8.650 0.396 0.462 0.767 0.902
Ours [B] S C + K 0.119 0.947 5.011 0.213 0.855 0.946 0.974
Ours [C] S + M K 0.124 0.933 5.045 0.213 0.842 0.945 0.975
Ours [D] S + M C + K 0.114 0.864 4.861 0.202 0.862 0.952 0.978

Ours [E] S + Sem CS 0.301 3.004 8.606 0.327 0.534 0.837 0.951
Ours [F] S + Sem CS + K 0.112 0.836 4.793 0.204 0.868 0.951 0.976
Ours [G] S + M + Sem CS-D + K 0.110 0.788 4.735 0.197 0.866 0.954 0.980
Ours [H] S + M + Sem CS + K 0.106 0.778 4.690 0.195 0.876 0.956 0.979

12
80
×

38
4 Klinger et al. [23] M + Sem CS + K 0.107 0.768 4.468 0.186 0.891 0.963 0.982

Guizilini et al. [12] M + v C + K 0.104 0.758 4.386 0.182 0.895 0.964 0.982
Guizilini et al. [13] M + v + Sem I + CS + K 0.100 0.761 4.270 0.175 0.902 0.965 0.982

Ours [I] S + M + Sem CS + K 0.100 0.690 4.377 0.187 0.884 0.961 0.981

TABLE IV: Self-supervised Depth Estimation Performance evaluated on the KITTI Vision Benchmark: Distances of up to 80 m
are evaluated. For values marked with ↓ lower is better with 0.0 being the perfect result and for ↑ higher is better with 1.0 being the
perfect result. Data source: monocular (M), stereo (S), velocity (v), semantic segmentation (S). Dataset: Cityscapes (C), Cityscapes with
both semantic segmentation and depth information (CS), Cityscapes with only semantic information, but without depth information (CS-D),
ImageNet (I), KITTI (K), KITTI with semantic segmentation (KS).

C. Depth Estimation

We first compare our approach and our pre-training strat-
egy with prior work on self-supervised monocular depth
estimation and focus here on related work that also exploit
semantic information using guidance [13], [23], [27]. We
show the results of our experiments in Tab. IV, where we
included different configurations of our approach [A]-[I]
with different setups for pre-training. Fig. 3 shows some
qualitative results in comparison to the state of the art in
monocular depth perception using self-supervised training.
In the remainder of this subsection, we investigate three
key questions for our experimental study in more detail. We
investigate the effect and potential of pre-training on different
data sets but also the proposed task-driven semantic pre-
training for monocular depth estimation. Here, we mainly
investigate our reduced architecture and highlight the relative
gains. The proposed pre-training strategy could be equally
applied to the larger architectures or other approaches. How-
ever, we relate our results also to other state-of-the-art self-
supervised approaches for monocular depth estimation.

Q1. Does pre-training improve performance? We first
compare our approach with and without pre-training on
Cityscapes using our network without an auxiliary semantic
decoder. Here, we can see that a pre-trained network without
fine-tuning [A] cannot get satisfactory results and that fine-
tuning [B] improves this substantially. When we add se-
quence of images [D] instead of just stereo pairs, we can fur-
ther improve the results. We hypothesize that the gap (0.114
vs. 0.108 in absolute relative error) between our network
[D] and the architecture of Guizilini et al. [12] results from
the difference in the size of the architectures. Nevertheless,
we can confirm that pre-training on Cityscapes [D] improves

depth estimation performance on KITTI, since only training
on KITTI [C] without pre-training is substantially worse than
training with pre-training [D]. Thus, several approaches [12],
[44] adopted pre-training on Cityscapes.

Q2. Does semantic pre-training improve performance?
The main hypothesis of our work is that combining se-
mantics with depth estimation for pre-training improves
depth estimation performance. A pre-trained network, which
trained depth and semantic segmentation [E] is better than a
network trained only with depth information [A]. The same
holds for fine-tuning the pre-trained network discarding the
semantic decoder [F] also improves over fine-tuning with
just depth estimation [B]. Note that training both, semantic
and depth, at the same time seems to be important, since
only training depth [D] and only semantics [G] neither
lead to the best performance. When we now combine the
task-driven semantic pre-training with self-supervision from
stereo images and monocular images, we can also see an
improvement from 0.114 [D] to 0.106 [H] in absolute relative
error. Thus, we conclude that pre-training with semantics
consistently outperforms training with just depth estimation.

Q3. How does image resolution affect the result? When
we visually compare the semantic segmentation results of the
low resolution of 640× 192, with the result from the high-
resolution images of 1280× 384, we can see that small ob-
jects, like poles, are often not correctly segmented due to the
low resolution of the image. Thus, we investigated the effect
of different image resolutions and found that the semantic
segmentation drastically improves with high-resolution im-
ages. This improvement in the semantics can also be ob-
served with the depth estimation performance, denoted as [I]
in Tab. IV. Combining all three, the self-supervision via high-



Image Ours PackNet [12] Monodepth2 [11]

Fig. 3: Qualitative results of our approach and previous approaches (images taken from [12]). Important to note are the different resolution
of the images. Our images and PackNet [12] are computed at 1280× 384 and Monodepth2 [11] at 1024× 320.

Stereo Mask +1/− 1 Abs Rel ↓ Sqr Rel ↓ RMSE ↓ RMSElog ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

X X 0.116 0.864 4.869 0.201 0.860 0.953 0.979
X 0.110 0.837 4.782 0.201 0.870 0.953 0.978
X X 0.112 0.836 4.793 0.204 0.868 0.951 0.976
X X 0.108 0.815 4.707 0.195 0.874 0.956 0.980
X X X 0.106 0.778 4.690 0.195 0.876 0.956 0.979

TABLE V: Results of ablation study for evaluating impact of different kinds of inputs and data source for the self-supervised training.
Using stereo images together with monocular images before and after the current image with masking of dynamics and invalid reprojections
provides the best results. All images have a resolution of 640× 192.

resolution stereo and consecutive monocular images together
with our task-driven semantic pre-training strategy leads
to competitive depth estimation results compared to other
approaches using semantics via guidance [13]. However,
we achieve this performance without direct supervision by
semantic labels at training time on the targeted dataset [32],
[35] or without requiring a separately trained network that
provides guidance [13], [26] at inference time.

D. Ablation Study

Finally, we investigate, which data source or input is
needed to attain the reported depth estimation performance
in self-supervised depth estimation. To this end, we provide
an ablation study removing different inputs, which is shown
in Tab. V. As can be seen from the table, masking helps
mainly with monocular sequences, since here moving objects
can cause more problems compared to stereo vision where
these effects do not occur as the stereo images are taken at
the same point in time. Furthermore, stereo images provide
us with accurate pose information as we can exploit the
fixed baseline of the employed stereo setup and this appears
to guide the monocular depth estimation better. Finally,
using all available inputs and masking provides the best
performance.

E. Runtime and Memory

We compare the inference runtime and memory re-
quirement for our network and the semantically-guided
PackNet[13]. Using a Nvidia Geforce 2080 Ti and images
with the highest resolution (1280 × 384), we achieve an
average inference time of 172 ms per sample over Eigen’s
split [4]. The inference time is increased to 355 ms if the full
network from Guizilini et al. [13] is used (i.e. D = 4 (ours)
vs. D = 8). Thus, without considering the semantic guidance

network [13], our network is already by approx. factor 2.07
faster. Unfortunately, the exact architecture of the semantic
guidance network is not yet released and only specified as
Feature Pyramid Network (FPN) with ResNet backbone [13].
Therefore, we do not include it in the comparison but would
like to emphasize that the factor is likely to increase in
our favour since the semantics are needed before depth
estimation. Please note that all inference times include post-
processing [10]. Without post-processing, our performance
drops by around 2%, however, needs only 91 ms (D = 4)
and 177 ms (D = 8), respectively.

In terms of memory consumption, our network has 76M
parameters (i.e. 291.1MB with float32), while PackNet
(D = 8) without semantic guidance network has 129M
parameters (i.e. 494.3MB with float32 or 70% more
memory). As described above, we expect an additional 20 to
30 million parameters if we would include semantic guidance
(i.e., 96% to 109% more parameters than our network).

V. CONCLUSION

We proposed an approach for monocular depth perception
building on top of a recently proposed architecture that
uses a task-driven semantic pre-training. We show that by
jointly pre-training semantic segmentation and monocular
depth estimation, we can attain state-of-the-art performance
despite using a smaller network. In contrast to recent work
that uses semantic guidance by exploiting a separate semantic
segmentation network, we can reach the same levels of
performance without increasing the computation budget of
our approach. Our experimental results also show that be-
sides our pre-training strategy, also usage of high-resolution
images is needed to attain these levels of performance.
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