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Zusammenfassung

IE zunehmende Weltbevolkerung und die unzureichende Nachhaltig-
keit herkdmmlicher Praktiken stellen erhebliche Herausforderungen
fiir unser landwirtschaftliches System. Um die steigende Nachfrage
zu decken und Ressourcen zu schonen, miissen Ertrage gesteigert und

gleichzeitig nachhaltige Methoden entwickelt werden.

Robotersysteme stellen eine potentiell nachhaltigere Alternative zu traditionel-
len landwirtschaftlichen Verfahren. Durch gezieltes Jaten statt flichendeckender
Besprithung koénnen sie den Einsatz von Agrochemikalien deutlich reduzieren.
Zudem iiberwachen sie kontinuierlich den Pflanzenzustand und liefern wertvolle
Daten, die Ziichter und Agronomen zur Entwicklung widerstandsfihigerer und

ertragreicherer Sorten nutzen konnen.

Roboter sind dabei auf leistungsfihige Perzeptionssysteme angewiesen, die préizise
Messungen im Feld ermoglichen. Diese Perzeptionssysteme nutzen oft datenge-
triebene Ansétze, die durch das Lernen aus manuell erstellten Annotationen von
Daten charakterisiert sind. Zur adaquaten Wahrnehmung ihrer Umgebung ist
es fur die Wahrnehmungssysteme erforderlich, auf umfangreiche Mengen anno-
tierter Daten zuzugreifen, die eine Vielzahl von Szenarien abdecken. Dazu geho-
ren unterschiedliche Pflanzenwachstumsraten, Lichtverhéaltnisse, Bodenbeschaf-
fenheiten sowie verschiedene Arten von Nutzpflanzen. Die hohen Kosten sowie
der erhebliche Zeitaufwand, die mit der Erstellung annotierter Daten verbunden
sind, stellen ein echtes Problem dar, welches den Einsatz von Robotersystemen
mafgeblich behindert. Um die Abhéngigkeit von manuell annotierten Daten zu
reduzieren, konnen wir Techniken entwickeln, die Vorwissen iiber Feldaufbau und

Pflanzeneigenschaften nutzen, um datengetriebene Ansétze zu trainieren.

Der wesentliche Beitrag dieser Arbeit liegt in der Entwicklung innovativer Wahr-
nehmungstechniken, die darauf abzielen, das Szenenversténdnis durch Roboter-
systeme zu optimieren. Dabei liegt ein besonderer Fokus auf der Minimierung
des Bedarfs an manuell annotierten Daten. In dieser Arbeit stellen wir einen me-

thodischen Ansatz zur Identifizierung von Unkraut, Nutzpflanzen, Einzelpflan-
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zen sowie Einzelblattern vor, der auf manuell annotierten Daten basiert. Wir
zeigen dann, wie Kenntnisse iiber die landwirtschaftliche Umgebung effektiv ein-
gesetzt werden konnen, um die Effizienz ohne zusétzliche annotierte Daten zu
erhohen. Danach stellen wir einen methodischen Ansatz zur Differenzierung zwi-
schen Nutzpflanzen und Unkraut sowie zur Identifizierung einzelner Pflanzen auf
den Feldern, wobei wir auf die Verwendung von Annotationen verzichten. Wir
werden darlegen, auf welche Weise die Segmentierung von einzelnen Blattern in
drei Dimensionen durch die gezielte Beriicksichtigung der Pflanzenstruktur op-
timiert werden kann. Darauf priasentieren wir unseren methodischen Ansatz zur
Generierung realistischer 3D Blétter mit definierten Langen und Breiten, um die
Leistungsfahigkeit der bestehenden Verfahren zur Schatzung diverser Merkmale

signifikant zu verbessern.

Insgesamt leistet diese Dissertationsschrift einen wesentlichen Beitrag zur Ana-
lyse landwirtschaftlicher Daten, indem sie verschiedene Aufgaben adressiert, die
vom semantischen Verstandnis von Nutzpflanzen und Unkrautern bis zur préazi-
sen Bestimmung von Blattmerkmalen, wie der Breite und Lénge der Blattspreite,
reichen. Die in dieser Arbeit prasentierten Ansétze der Bildverarbeitung tragen
dazu bei, die Identifizierung und Messung von Nutzpflanzen, einzelnen Pflan-
zen sowie einzelnen Blattern zu verbessern, wihrend gleichzeitig der Bedarf an
manuell beschrifteten Daten signifikant reduziert wird. Wir nutzen dabei vorhan-
denes Vorwissen, um die Effizienz bestehender Technologien zu optimieren und
automatisch annotierte Daten zu generieren, die fiir datengetriebene Ansétze von
Bedeutung sind. Durch unsere Mafinahmen verringern wir sowohl den Aufwand
als auch die Zeit, die fiir die Annotation eines Datensatzes zum semantischen Ver-
standnis erforderlich sind, auf weniger als die Hélfte. Dies stellt einen signifikanten
Fortschritt in Richtung eines effizienteren und robusteren Wahrnehmungssystems

fiir landwirtschaftliche Anwendungen dar.
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Abstract

HE growing world population and the unsustainability of common

farming practices are challenging our agricultural production system,

which has to cope with the increased demand for food, feed, fuel,

and fiber, without draining the natural resources, worsening climate
change, or compromising environmental biodiversity. We need to rethink our
whole farming system to increase the yield per area unit and improve the sus-
tainability of our methods.

Robotic systems have the potential to offer a more sustainable alternative
to standard practices. They can perform targeted weeding instead of uniformly
spraying the whole field, thus reducing the use of agrochemicals. Robots can also
continuously monitor the state of plants in the field, providing measurements that
breeders and agronomists can use to develop more resilient and high-throughput
crop varieties.

Robots need robust perception systems to provide accurate in-field measure-
ments. Such perception systems are usually data-driven approaches learning from
manually produced examples, also called labeled data. To correctly understand
their surroundings, the perception systems need access to vast amounts of labeled
data, covering all possible scenarios, i.e., different plant growths, light conditions,
soil textures, and crop species. The high cost and time required to produce la-
beled data are the bottlenecks that limit the adoption of robotic systems.

However, in the agricultural domain, we can exploit prior knowledge about
the fields” arrangements and the plants’ characteristics to enhance the abilities of
the perception systems, while simultaneously reducing the need for labeled data
for data-driven approaches.

The main contribution of this thesis is a set of novel perception techniques
to improve the scene understanding of robotic systems with a focus on reducing
the requirements for manually annotated data. First, we present an approach to
identify weeds, crops, single plants, and single leaves using manually annotated
data. Then, we show how to exploit the knowledge about the agricultural envi-
ronment to boost the performance of all tasks without additional annotated data.

Our third contribution is an approach to distinguish crops from weeds, and our



fourth contribution is an approach to identify single plants in the fields. Both of
them do not require annotated data. We then present how to improve single-leaf
segmentation in 3D exploiting the plant structure as the fifth contribution. Fi-
nally, we present our approach to generate realistic 3D leaves of known lengths
and widths to enhance the capabilities of existing trait estimation approaches.
In summary, this thesis contributes to the interpretation of agricultural data
for different tasks, from the semantic understanding of crops and weeds to the
estimation of leaf traits, such as the width and length of the leaf blade. The
computer vision approaches presented in this thesis allow for more accurate iden-
tification and measurement of crops, single plants, and single leaves with reduced
requirements for manually labeled data. We exploit the prior knowledge about
the agricultural domain to boost the performance of existing techniques and to
produce automatically annotated data to be used in data-driven approaches. We
cut to less than half the cost and time required to annotate a dataset for semantic
understanding, thus making a concrete step toward a more efficient and robust

perception system for farming tasks.
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Chapter 1
Introduction

HE world’s population is rapidly increasing and will reach 9 billion

people by 2050 according to recent United Nations projections [211].

Population growth and shrinking arable land due to urbanization and

unsustainable farming increase the demand for sustainable agricul-
tural technologies [68]. Climate change places additional pressure on sustainable
food production due to altered precipitation patterns, an increase in extreme
weather events, and the reduced reliability of traditional growing seasons. At the
same time, the agricultural sector is facing stricter regulations concerning water
usage, greenhouse gas emissions, and the impact on biodiversity loss. All these
challenges together with desertification, salinization, and soil erosion, pose a limit
to the common practice of expanding farmland. Thus, the problem of increasing
crop production has been recently addressed by developing new crop varieties
with higher yield and resistance to stress and diseases [200]. However, this alone
cannot meet the increasing demands of food, feed, fuel, and fiber, highlighting
the need for improved agricultural practices.

Agricultural robotic systems have the potential to tackle this issue by offering
solutions to enhance the efficiency and sustainability of agricultural practices. For
instance, weeding robots and aerial drones are already being deployed in the fields
to reduce the pressure on seasonal workers. These systems allow farmers to re-
duce their reliance on chemicals and broad-spectrum herbicides [147] by enabling
targeted applications based on real-time data about the crop and environmental
conditions. Additionally, they can assist farmers in making informed decisions
regarding irrigation and fertilization schedules [95], optimizing resource usage and
minimizing the environmental impact. Moreover, autonomous platforms can op-
erate continuously, thereby enabling scalable farming operations [[14] to meet the
growing global demand for food. Examples of such robotic platforms are illus-
trated in Fig. , showing both unmanned aerial vehicles (UAVs) and unmanned
ground vehicles (UGVs) as they are deployed in agricultural fields.



Figure 1.1: Examples of robotic platforms used in agriculture. The first row shows

UAVs equipped with different cameras flying over the crop fields. The second row
shows UGVs deployed in the fields. In the image on the left, we can see how the area
below the robot is isolated to control the light condition of the captured images.

A key factor to improve the efficiency and robustness of robotic systems in
agricultural environments is their ability to understand their surroundings by
interpreting sensor data, such as cameras providing color information (RGB) or
light detection and ranging (LiDAR) sensors. LiDAR sensors provide accurate 3D
geometry data, making them ideal for fruit picking and trait estimation. However,
they typically lack the color information required for monitoring the field. On
the other hand, RGB cameras can capture color, texture, and shape information,
making them the most common choice for monitoring purposes. The lack of 3D
data prevents their use for more articulate tasks such as harvesting, which requires
accurate information about the position of the fruit to be harvested. To efficiently
interpret RGB or LiDAR data, recent robotics platforms use neural networks
trained to perform the desired agricultural task, e.g., segmentation of crops and
weeds, instance segmentation of plants and leaves, or trait estimation. These
tasks are consecutive steps of the phenotyping process, which aims at identifying
the observable characteristics of plants. Semantic segmentation classifies each
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Human labelers must
process all data and provide Bottleneck!
the correct interpretation
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give the same interpretation
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Figure 1.2: In traditional pipelines, we gather data using sensors from robotic systems,
such as UAVs and UGVs. We must label all the data to train the neural network, which
is optimized to produce the desired output. Labeling the data is the bottleneck of
modern pipelines: it is time-consuming, expensive, and difficult to scale, and networks

often can’t generalize to unseen data after being trained on such annotations.

pixel in the image as soil, crop, or weed, and it is essential to enable automatic
weeding. Going one step further, instance segmentation distinguishes individual
instances of the same class, such as fruits, leaves, or plants. This enables fruit
counting, yield estimation, growth assessment, and field monitoring. Lastly, the
estimation of characteristics, such as leaf size, plant height, or fruit ripeness, is

essential for precision agriculture and breeding programs.

Data-driven approaches can show convincing performance but generally need
vast amounts of labeled data to achieve satisfactory performance. Data labeling is
a central part of the workflow of data-driven methods: it requires human workers
to analyze the sensor data and manually produce the supervision to train the
deep-learning approaches. The high cost and time required for labeling data
are bottlenecks in machine-learning approaches. We illustrate in Fig. @ the
general framework of fully supervised methods that require collecting the data,

having human labelers providing the correct interpretation for all the data, and



then training the network on such annotated datasets. Annotating 3D point
clouds usually takes hours for one single scan, since the difficulty of labeling in
three dimensions using 2D visualization tools adds up to the difficulty of the
task. However, labeling high-resolution RGB images is not less of a burden.
Bosilj et al. [20] report an average of three hours to label one single image for
semantic segmentation, while Weyler et al. [224] an average of two hours and a
half per image. Chebrolu et al. [32] report that annotators spent over 100 hours
labeling, and yet they still encountered generalization issues when they deployed
the model trained on their annotated dataset. It is clear that the costs scale
poorly considering that when field conditions, crop growth stages, and sensor

setups change the models still need to be re-trained.

In the literature, several paradigms have been proposed to reduce the cost and
labor associated with annotating datasets. One prominent approach is weakly-
supervised learning [245], which relies on sparser or incomplete annotations, such
as image-level labels [116], bounding boxes [91], or scribbles [242] instead of expen-
sive pixel-wise annotations. This technique reduced the annotation effort while
being compatible with common supervised learning techniques. A more radical
strategy is self-supervised learning [103], which aims to eliminate the annotations
from the paradigm designing tasks where the supervision can be derived from the
data itself. Once trained in such a way, the models usually need to be fine-tuned
over smaller labeled datasets to learn how to perform the final task. Another
widely studied paradigm is active learning [16], which has been used to distin-
guish the most informative samples to annotate from a bigger pool of unlabeled
data. This reduces the number of total labeled examples required to achieve the
same performance on the task. More recently, the rise of generative approaches,
such as diffusion models [46] and Generative Adversarial Networks [114], has en-
abled the creation of synthetic datasets. Such approaches generate high-quality
data along with their corresponding annotations, reducing or even eliminating

the need for manual annotations.

However, most of the existing approaches are designed for general-purpose
computer vision tasks in everyday scenes or autonomous driving datasets. Ap-
plying them directly to the agricultural domain often performs poorly due to
the large domain gap and the unique challenges posed by the agricultural en-
vironment [[104], such as crop variability, occlusions, and field-specific patterns.
Nevertheless, exploiting the contextual knowledge about agricultural fields — crop
type, growth stage, field layout, use of herbicides — offers the potential to improve
automatic labeling [131] or self-supervised learning techniques [187].

In this thesis, we tackle the problem of reducing the requirement for labeled
data while improving the performance of the tasks related to crop monitoring in

agricultural fields. Crop monitoring involves four key tasks: (i) distinguishing



1. INTRODUCTION

crops and weeds; (ii) segmenting crops into individual plants; (iii) segmenting
plants into individual leaves; and (iv) estimating leaf traits such as width and
length. These tasks are increasingly challenging to perform for a robot. Crops
and weeds can be very similar, and it is often hard to provide enough labeled
weeds for data-driven approaches since they are usually smaller and less present
in managed fields. The definition of a weed also varies by field; a plant considered
a weed in one setting may be a crop in another. Additionally, identifying crops
may be challenging since plants exhibit significant variations in size, shape, and
structure depending on the growth stage and environmental conditions. Data-
driven approaches often require retraining on labeled images of the new field,
growth stage, or environmental condition before deployment. In dense crop fields
of late growth stages, single plants are often difficult to identify because of oc-
clusions caused by the same or a neighboring plant. Moreover, crops may have
complex canopies that obscure individual plant boundaries. This affects both the
plant and leaf instance segmentation, leading to errors in sequent downstream
tasks like trait estimation and phenotyping.

Throughout this thesis, we propose new techniques to reduce the need for
labeled data for agricultural robotic systems with the final objective of improv-
ing the capabilities of their perception systems. This includes domain-specific
techniques to improve the instance segmentation performance on plant and leaf
instances, techniques to provide better initialization for networks performing se-
mantic and instance segmentation in 2D and 3D scenarios, techniques to improve
the automatic labeling of agricultural images for semantic and plant instance seg-
mentation, and finally techniques to generate synthetic labeled data to improve
the performance of trait estimation methods.

1.1 Main Contribution

The main contribution of this thesis is a set of novel techniques to improve the
semantic scene understanding in agricultural fields with the goal of reducing the
requirements for manually annotated data. Our proposed techniques range from
domain-specific pre-training for network initialization, to unsupervised label gen-
eration to train supervised approaches for agricultural perception tasks.

In Chapter H we present an approach to jointly perform semantic, plant in-
stance, and leaf instance segmentation of RGB images, exploiting the hierarchical
structure of the tasks and automatic domain-specific post-processing to enhance
our performance. In our experiments, we demonstrate the effectiveness of our
approach on multiple datasets of different crop species. Within this thesis, we
mainly focus on the domain-specific post-processing, that allows us to outper-
form state-of-the-art approaches and improve our predictions even if applied in



1.1. MAIN CONTRIBUTION

/ Phenotyping \

Where are the crops Where are single Where are single What is the Iengt.h, width,
and weeds? plants? leaves? and angle of this leaf?
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Figure 1.3: This thesis addresses the problem of reducing or automatizing the labeling
required for different phenotyping tasks. More specifically, in Chapter E, Chapter @,
and Chapter H we improve the performance of semantic, plant instance and leaf instance
segmentation reducing traditional labeling; in Chapter a and Chapter B we focus on
automatic labeling for semantic and plant instance segmentation; finally, in Chapter

we show how to automatically generate labeled data for leaf trait estimation.

the context of fully supervised training. This raises the question of how to reduce
the requirement for annotated data by exploiting more of the domain-specific
knowledge we have about agricultural fields.

As a first way to answer this question, in Chapter @ we present a set of
novel augmentation techniques for agricultural images that enables a domain-
specific pre-training. Our pre-training allows us to exploit the large amounts
of unlabeled data captured on agricultural fields to effectively pre-train deep-
learning approaches for different perception tasks reducing the annotated data
required to reach the same performance to 25% of the original dataset size. We
investigate the importance of each augmentation and their application’s order,
comparing against commonly used general-purpose large pre-training datasets.
Our techniques boost the results over all the investigated scenarios and produce
a valuable initialization technique for deep-learning approaches in the agricultural
domain. In order to have a common pre-training for different perception tasks,
we are not able to use all of our prior knowledge, e.g. information about the
spatial arrangement of the field is crucial for semantic segmentation but not for
leaf instance segmentation. Thus, we decide to focus on single tasks to better
exploit all relevant information of the fields.

We proceed following the phenotyping tasks illustrated in Fig. @, starting
from answering the question “Where are the crops and weeds?”, i.e. performing
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semantic segmentation. In Chapter H we present our approach to automatically
generate semantic labels for posed RGB images. We use the posed images to
enhance the spatial consistency of the generated labels, enabling the detection
of multiple crop rows in single images. We leave the areas where we are most
likely to commit errors unlabeled. This, coupled with an uncertainty-aware deep-
learning framework and the knowledge of the class imbalance between crops and
weeds, enables us to boost the performance of our semantic segmentation without
the requirement for manually annotated images. We experimentally demonstrate
that our approach can produce reliable semantic labels on different crop species
and that using our annotated datasets can improve the generalization capabilities

of fully supervised learning approaches.

We then tackle the problem of separating the crops into single instances, i.e.,
performing plant instance segmentation. The fourth contribution of this thesis,
presented in Chapter B, is a domain-specific instance segmentation technique to
obtain plant instances from a partial instance segmentation that can be provided
by large general-purpose vision-language models or from graph-based heuristic
methods. Our approach uses domain knowledge to improve the performance
of the partial instance segmentation, allowing the heuristics-based method to
outperform all other heuristics-based approaches, and improving the predictions
of the vision-language models without the need for further annotated images.
Our experiments show that our domain-specific method produces accurate plant
instances for different crop species without the need for extensive training or
manual labels. We also show different strategies to use our generated labels
to boost and improve the generalization capabilities of fully supervised learning
methods while reducing the requirement for labeled data.

While all the contributions up to this point allow performing segmentation
tasks crucial for plant phenotyping, most of the robotics platforms need access
to 3D information to be able not only to analyze but also to intervene in the
fields. On top of that, the lack of depth information in 2D images prevents
the extraction of accurate phenotypic traits. Thus, we decided to perform leaf
instance segmentation in the 3D domain. In Chapter H we present our pre-training
approach for 3D leaf instance segmentation. We pre-train our network for the leaf
instance segmentation task, optimizing the network for a similar task, exploiting
our knowledge about the plant structure. Additionally, we propose novel 3D
data augmentation to enhance the robustness of our approach against occlusions
caused by other leaves and plants, and distortions caused by the wind. Our
experiments confirm that our pre-training improves the results while reducing
the need for labeled data.

The 3D leaf instance segmentation is the last crucial step that allows for
the estimation of leaf traits, such as the leaf blade length and width. These
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traits are linked to crop growth, productivity, and pest resistance. Our last
contribution presented in Chapter E, is an approach to automatically generate a
labeled dataset of leaf point clouds and associated leaf blade length and width. We
use this dataset to fine-tune several off-the-shelf trait estimation approaches. Our
experiments validate that our generated dataset allows for more accurate trait
estimation of real-world data compared to datasets generated by other means or
manual measurements of the traits that are usually per plot, i.e., per sub-area of
the field and not for each leaf.

To summarize, we propose several novel methods to improve the vision capa-
bilities of robotic systems performing phenotyping tasks in agricultural environ-
ments. In Fig. @, we present a schematic overview of the contributions of this
thesis, focusing on how we exploit prior domain knowledge to reduce the need for
manually annotated datasets or to tackle the problem of generating such labels
in an automatic fashion.
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1.2 Publications

Parts of this thesis have been published in the following peer-reviewed conference

and journal articles:

o G. Roggiolani, F. Magistri, T. Guadagnino, J. Weyler, G. Grisetti, C. Stach-
niss, and J. Behley. On Domain-Specific Pre-Training for Effective Seman-
tic Perception in Agricultural Robotics. In Proc. of the IEEE Intl. Conf. on

Robotics & Automation (ICRA),2023. DOI: 10.1109/ICRA48891.2023.10160624.

e G. Roggiolani, M. Sodano, F. Magistri, T. Guadagnino, J. Behley, and
C. Stachniss. Hierarchical Approach for Joint Semantic, Plant Instance,
and Leaf Instance Segmentation in the Agricultural Domain. In Proc. of
the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2023. DOLI:
10.1109/ICRA48891.2023.10160918

o G. Roggiolani, F. Magistri, T. Guadagnino, J. Behley, and C. Stachniss.
Unsupervised Pre-Training for 3D Leaf Instance Segmentation. IEEE Robotics
and Automation Letters (RA-L), 8(11):7448-7455, 2023. DOI: 10.1109/
LRA.2023.3320018

e G. Roggiolani, J. Riickin, M. Popovi¢, J. Behley, and C. Stachniss. Un-
supervised Semantic Label Generation in Agricultural Fields. Frontiers in
Robotics and Al 12:1548143, 2025. DOI: 10.3389/frobt.2025.1548143

o G. Roggiolani, B. N. Beiley, J. Behley, and C. Stachniss. Generation of
Labeled Leaf Point Clouds for Plants Trait Estimation. Plant Phenomics,
7(3):100071, 2025. DOI: 10.1016/j.plaphe.2025.100071.

e G. Roggiolani, J. Behley, and C. Stachniss. Plant-Specific VLMs Refine-
ment for Plant Instance Segmentation. wunder review at Information Pro-
cessing in Agriculture

Additionally, I have been involved in the following data publications during
my doctorate together with other researchers. This dataset paper is not directly

part of this thesis, but has been used in the experimental evaluations:

o J. Weyler, F. Magistri, E. Marks, Y.L.. Chong, M. Sodano, G. Roggiolani,
N. Chebrolu, C. Stachniss, and J. Behley. Phenobench: A large dataset
and benchmarks for semantic image interpretation in the agricultural do-
main. [EEFE Trans. on Pattern Analysis and Machine Intelligence (TPAMI),
46(12):9583-9594, 2024
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1.3 Open-Source Contribution

With the idea of facilitating reproducible and unbiased evaluation of new research
ideas, in addition to the previously mentioned journal and conference publica-
tions, we made several open-source contributions including datasets and source

code of our implementations:

e The code for our hierarchical joint semantic, plant, and leaf segmentation
is available at:
https://github.com/PRBonn/HAPT,

e The code for our domain-specific pre-training is available online at:

https://github.com/PRBonn/agri-pretraining,

e The code for our unsupervised semantic segmentation pipeline is available
online at:

https://github.com/PRBonn/umsemlabag,

e The code for our unsupervised plant instance segmentation is available on-
line at:
https://github.com/PRBonn/PlantInstGen,

e The code for our 3D leaf instance segmentation pre-training is available
online at:
https://github.com/PRBonn/Unsupervised-Pre-Training-for-3D

—Leaf-Instance-Segmentation,

o The code for generating labeled leaf point clouds for traits estimation is
available online at:
https://github.com/PRBonn/3DLeafLabGen

o The semantic, plant, and leaf instance segmentation dataset PhenoBench
is available online at:

https://www.phenobench.org/.
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Chapter 2

Related Work

OBOTIC applications in agriculture aim at improving field monitoring

and interventions diminishing the use of agricultural chemical inputs

and production costs [172,214]. Over the last years, we have seen

significant progress in the application of vision-based methods for
several tasks in real agricultural settings, such as semantic segmentation, instance
segmentation, and trait estimation. The task of semantic segmentation requires
providing a pixel-wise classification of the input image [47]. In the agricultural
setting, this could mean assigning a class between soil, crop, or weed to each pixel.
The next step is to separate the pixels of each class into individual instances,
assigning a unique identifier to each object in the scene [75], for example to every
single plant or leaf. Both tasks are critical for helping farmers and breeders gain
a better understanding of the crop phenotype in their fields. Phenotyping refers
to the computation of traits of the crops, such as the plant height, the length and
width of leaves, the number of leaves, or the plant density [113,220]. Only a deep
semantic understanding of the agricultural field enables the estimation of relevant
traits used by farmers and breeders for in-field intervention [112], potentially by
a robotic system [171].

The first visual methods for segmentation were heuristics-based approaches
for images, leveraging statistical and geometrical properties to separate the image
into semantically related regions. One of the earliest methods was proposed by
Otsu et al. [[164], where they segment the image into foreground and background
using an automatic threshold. Several approaches [23,[158,[170] start from user-
defined initial seeds and expand them in regions of similar features, allowing for
segmenting multiple areas in the same image. To overcome the need for initial
seeds, Lloyd et al. [135] as well as Tomita et al. [206] use statistical analysis over
the image to capture the similarity of groups of pixels. One line of works fo-
cuses on adaptive thresholding [53,[111],235] based on the lighting condition and
the histogram distribution of the image, and then on the use of multiple thresh-
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olds [173,[177,218] to perform object-level segmentation. A second set of works
instead relies on detecting edges [25,29,383] and treats them directly as object
boundaries. More complex heuristics-based approaches exploiting geometric cues
construct graphs over the image [62] and take into consideration the global prop-
erties of the image to guide region merging and splitting. Heuristic approaches
are also applied for the segmentation of 3D data [21),[168], exploiting the knowl-
edge about the plants’ structure to separate a single plant from the ground and
neighboring overlapping plants. Miao et al. [148] propose to extract the plant’s
skeleton, run a first coarse segmentation, and then perform a fine segmentation
based on morphological features. Jin et al. [102] follow a similar approach, us-
ing a growing algorithm to segment the stem after removing the ground points.
However, purely heuristics-based pipelines often depend on several hand-tuned
parameters and domain knowledge, leading to poor generalization performance.
In the specific case of the agricultural domain, heuristics-based pipelines struggle
with the problem of occlusions caused by neighboring plants or even the plant

itself, failing to identify correct instances in case of high plant density.

With higher computational power and the collection of larger datasets [106,
224], deep-learning approaches have become the dominant way to solve segmen-
tation tasks. They usually outperform traditional heuristics-based methods, es-
pecially in complex scenarios where manually tuned heuristics are demanding
to design. Recent advances primarily leverage convolutional neural networks
(CNNs), vision transformers (ViTs), and more recently vision-language models

(VLMs) to extract rich feature representations for segmentation [26,83,[184].

CNN-based architectures such as U-Net [186] and DeepLabV3 [34] are com-
monly employed for pixel-wise classification in agriculture due to their ability
to capture multi-scale features and retain spatial information. Cui et al. [4§]
introduced an improved U-Net variant for corn and weed segmentation, while
Zenkl et al. [240] utilized DeepLabV3 to segment wheat leveraging features at
different image resolutions via atrous spatial pyramid pooling. Zeng et al. [239)]
proposed a framework to estimate the true near-infrared (NIR) reflectance of veg-
etation compensating for shadows, point of view, and soil conditions. A correct
NIR reflectance is crucial for approaches such as the one by Milioto et al. [150],
where they compute multiple vegetation indices using NIR and RGB images to
enhance the segmentation accuracy of neural networks. Beyond classical CNNs,
Weyler et al. [225] employed ERFNet [[184] for efficient real-time segmentation
embedded in robotic systems. ERFNet combines residual skip connections [84]
and factorized convolutions [217] to maintain high accuracy while reducing the

computation load, making it well-suited for in-field robotic systems.

Once each pixel in the image is classified, the next step is to distinguish in-

dividual objects within the same class. For the instance segmentation task in
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the agricultural domain, Champ et al. [30] investigated one of the most com-
mon instance segmentation approaches, Mask R-CNN [83]. It follows a two-stage
pipeline: object detection followed by pixel-wise mask generation. Another no-
table method, PanopticDeepLab [39], formulates instance segmentation by pre-
dicting object centers and pixel-wise offsets, followed by post-processing to group
pixels into individual instances. Weyler et al. [222] adopted a similar approach
but introduced covariance matrices to refine instance clustering, particularly for
leaf segmentation. Morris [155] designed a pyramid CNN that distinguishes leaf
boundaries based on texture differences, and Romera-Parades et al. [185] intro-
duced convolutional long short-term memory (LSTM) units to count leaves ex-
ploiting their spatial layout. Beyond single-network architectures, ensemble and
multi-branch models have also been explored. Jeon et al. [98] proposed a dual-
network approach, where different feature representations are exchanged during
training, resulting in an ensemble-based final prediction.

Recent advances in vision models have significantly impacted the performance
of semantic and instance segmentation in a large variety of domains, agriculture
included. The Segment Anything Model (SAM) [110] was trained on over 1 billion
masks of general-purpose data and showed impressive generalization capabilities
in several domains. The possibility to prompt it with bounding boxes, points,
or masks enables the segmentation of crops, plants, or even plant organs. Then,
vision-language models such as Grounded SAM [178] included the possibility of
prompting the segmentation pipeline with natural language. While the perfor-
mance of these models is impressive, their reliability falls short in the agricultural
domain due to the presence of occlusions and the high variance in the appearance
of soil, crops, and weeds. Fine-tuning them on manually labeled datasets is still

the go-to solution for achieving satisfactory performance.

Despite the amount of work and progress in 2D segmentation, many agricul-
tural applications require a more detailed understanding of the plant structure
which can be achieved only using 3D data. In particular, the estimation of mor-
phological traits often requires spatial reasoning beyond the capabilities of images.
As a result, there is an increasing trend of works based on three-dimensional data,
which can capture the complex geometry of plant structures. However, 3D rep-
resentations pose challenges due to their irregular and unordered nature. In the
work by Ao et al. [9], they use PointCNN [125] to extract stem points, and then
fit them into 3D cylinders. Individual leaves are segmented using a density-based
clustering algorithm [59], followed by morphological post-processing. Similarly,
Han et al. [78] proposed to predict object centers and cluster the instances using
the mean-shift algorithm [45]. Li et al. [123] proposed a novel down-sampling
strategy to preserve edge points and a novel fusion mechanism for semantic and

instance features, enabling the networks to identify instance boundaries and im-
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prove their performance. They further improved their method in their following
work [122], adding modules to exploit the attention mechanism [213] and for

fusing features at different resolutions.

While deep-learning approaches do not suffer from the limitations of the
heuristic-based methods, they require vast amounts of manually annotated data
to achieve a satisfactory performance. Data labeling is the bottleneck of such
methods since it is expensive and requires expert knowledge to obtain highly
accurate datasets. One common way to reduce the need for annotated data is
to pre-train the network, reducing also the time needed to converge. In the lit-
erature, pre-training on large labeled datasets [31,[176] is a common choice for
initializing the network for various tasks and domains. However, pre-training
on large general-purpose datasets does not provide a good initialization when
the application domain is narrow and distant from the original training dataset.
Self-supervised pre-training methods, which train models without labeled data by
leveraging task- or domain-specific constraints, have shown promise in reducing
annotation needs while performing on par with fully supervised pre-trainings on
different tasks [37,38,82,238]. One of the main lines of work for self-supervised
pre-training focuses on contrastive learning approaches, which augment the input
to produce different views aiming to obtain similar features for views of the same
sample. Researchers have also explored various data augmentation techniques
to produce different views, showing the relevance of each augmentation and the

order dependence of their applications.

Xie et al. [189] adapted the contrastive learning paradigm used for images [37,
238] to the point cloud domain, encouraging representations of augmented views
of the same object to be similar, while pushing apart representations of different
objects. Building on this, Zhang et al. [243] introduced a momentum encoder to
maintain a more consistent batch of negative examples. Other methods explored
the possibility of pre-text tasks that don’t require labels and encouraged the
network to learn spatial and geometric features from the data. Wang et al. [215]
simulate occlusions and require the network to reconstruct the missing section,
while Alliegro et al. [8] propose a 3D jigsaw puzzle where point cloud segments are
shuffled and the network must learn to assemble them back in the original shape.
Achituve et al. [2] went in the direction of point-wise manipulations, displacing
points of the input and letting the network predict their original locations. Pre-
training provides strong initial representations, but the networks still need fine-
tuning on data labeled for the target task.

Another promising strategy to reduce the reliance on manual labels is to au-
tomatically generate labels integrating domain-specific priors. In the agricultural
domain, Lottes et al. [133] exploit the field arrangement to detect crop rows for

effective semantic segmentation, and Winterhalter et al. [226] further improve
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their performance by looking for multiple parallel crop rows at once. Despite the
efforts, crop-row-based segmentation approaches rely on simplifying assumptions
that do not always hold in real-world scenarios. In practice, weeds frequently
grow within the crop rows, and overlapping plants introduce visual ambiguity,
particularly in late growth stages. To maximize the accuracy of the generated
labels, a line of works focuses on synthetic data generation [27,124]. Exploit-
ing the knowledge of expert plant scientists, these works build 3D scenes of the
agricultural fields [11,86]. Generated data directly comes with labels for seman-
tic and instance segmentation, as well as other complex annotations, such as
phenotypic traits, that can be exploited to fine-tune and train any geometric or
deep-learning approach. Nevertheless, these methods require significant expert
knowledge. Such generation often relies on a mechanistic plant model or hand-
crafted rules. As a result, they need to be adapted for any new crop species
or different growth stages, limiting their scalability. Data-driven generative ap-
proaches such as Generative Adversarial Networks [70] and Diffusion models [46]
try to address this limitation, synthesizing novel and realistic training data with-
out the need for manual modeling. Generative Adversarial Networks produce
high-fidelity images but they often suffer in capturing diverse or fine-grained de-
tails [219], which can be crucial in differentiating plant species, growth stages,
and single plant organs. Diffusion models use a denoising process to generate
diverse samples while preserving semantic consistency, but they still struggle to
generate outputs without careful conditioning [6].

In this thesis, we propose different methods to enhance the performance of
neural networks on the perception tasks in agricultural fields exploiting prior
knowledge specific to the agricultural domain. We build upon previous advances
in self-supervised learning by designing agricultural-specific augmentation strate-
gies and pre-training tasks tailored to plant phenotyping. These strategies im-
prove results compared to commonly used pre-training strategies that do not
take into consideration the application domain. By leveraging intrinsic field pri-
ors, such as crop row arrangement and typical plant density and morphology
distributions, we enable fully unsupervised semantic and instance segmentation
for automatic labeling of images. Our methods generate high-quality labeled data
without relying on costly manual annotations or assumptions that are easily vi-
olated in the fields. Finally, we propose a method to generate labeled leaf point
clouds for the estimation of morphological traits, such as leaf blade length or
width. Our method relies on real-world data and does not require manual anno-
tation or expert knowledge. Our method generates a dataset with accurate mea-
surements and sufficient variety to fine-tune off-the-shelf trait estimation methods

improving their final performance on real-world measured traits.
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Chapter 3

Exploiting Domain Knowledge
for Post-Processing of Instances

USTAINABLE crop farming is crucial to fulfill the demand for food, fuel,

and fiber while reducing the environmental impact of agricultural prac-

tices. To this end, plant phenotyping aims to accurately identify plant

growth stages and appearance to optimize field management or provide
variety-specific information to plant breeders [204]. The first step towards pheno-
typing is the accurate identification of crops and weeds, which can be automated
by robotic platforms equipped with sensors. Additionally, robotic platforms can
leverage information about the plant’s growth and phenotypic traits to perform
automatic in-field intervention. One commonly analyzed phenotypic trait is the
number of leaves per plant, which is a key component for assessing the growth
stage and the need for fertilization [118].

In this chapter, we propose a solution to simultaneously perform semantic,
plant instance, and leaf instance segmentation of crops given an RGB image
recorded by UAVs. In Fig. @, we show two exemplary images of cauliflowers
from the GrowliFlower [106] public dataset with their corresponding semantics,
where crops are depicted in green, and instances of plants and leaves, where
each color represent a different and unique instance. The three segmentation
tasks are interdependent, but prior vision-based approaches targeted semantic
segmentation of crops and weeds [145,150], instance segmentation of plants [30]
or instance segmentation of leaves [222,225] in isolation. Consequently, these
approaches overlook the underlying hierarchical relationship between these tasks,
where semantic knowledge informs plant identification, which guides the detection
of leaf boundaries. Our method explicitly leverages this task hierarchy enabling
more accurate and coherent results.

The contributions of this chapter are twofold: (i) a novel CNN-based network
architecture designed to jointly perform semantic segmentation and instance seg-
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3. EXPLOITING DOMAIN KNOWLEDGE FOR POST-PROCESSING OF INSTANCES

mentation of both plants and leaves; and (ii) a domain-specific post-processing
that significantly boosts segmentation performance by refining the raw network
output using agricultural priors. While this work is part of a shared publication,
the design and implementation of the post-processing pipeline is my principal
contribution, and experimental validation was a joint effort. We present both
contributions here for a complete understanding of the system and its results.
For each pixel in the input image, we predict its semantic class and, if it is a
crop to which plant and leaf instance it belongs. We solve the three tasks jointly,
exploiting the underlying task hierarchy thanks to a novel design of residual skip
connections. In particular, semantic segmentation can support plant instance
segmentation, which can further guide leaf instance segmentation. Furthermore,
our post-processing module exploits structural regularities in crop layout and
morphology to enable high-quality instance segmentation. Our approach yields a
pixel-wise semantic, plant instance, and leaf instance segmentation of the image
data at the frame rate of a typical camera, i.e., approx. 25 frames per second. Our
experiments suggest that our novel skip connections scheme better exploits the hi-
erarchical connections between tasks, and our automatic post-processing achieves
superior performance compared to common state-of-the-art methods while yield-

ing end-to-end real-time inference.

3.1 Our Approach for Hierarchical Image

Segmentation in Agriculture

The network that we propose is an encoder-decoder architecture with three
decoders, addressing the three tasks of semantic, plant instance, and leaf in-
stance segmentation, as illustrated in Fig. @ The network takes as input RGB
images I € R*>*™W where H and W are, respectively, the image height and
width, and 3 is the number of channels of a typical RGB image. We employ an
ERFNet [184] encoder and three ERFNet-based decoders. This choice provides
us with a lightweight network well-suited for tasks requiring real-time predictions.
The semantic segmentation decoder consists of a single non-bottleneck-1D block
after the deconvolutions, while the instance segmentation decoders have two, as
defined in the original paper [184]. Both encoder and decoders use the Gaussian
error linear unit (GELU) [87] activation function, a smoother variant of the com-
mon Rectified Linear Unit (ReLU), following the suggestions by Liu et al. [129].

3.1.1 Decoders for Semantic and Instance Segmentation

Semantic segmentation. The decoder for semantic segmentation has a single
output head, and the output Lom has size H x W x K , where K is the number
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Figure 3.2: Overview of our architecture. The encoder takes an RGB image as input
and extract compressed features that are further elaborated by the decoders. Residual
kip connections are present in a hierarchical fashion after each downsampling (encoder)
and upsampling (decoders) block. The two features map that are passed via the skip
connections have size H /2xW /2x 64 and H /4 x W /4x 128, respectively. The decoders
for instance segmentation output predictions for centers and offsets that must be post-
processed to obtain the final instance masks.

of semantic classes. In our experiments K = 2, since the datasets provide labels
for soil and vegetation. We apply a softmax activation function to the output to
obtain per-class probabilities for each pixel. We train the semantic segmentation
decoder to minimize the Lovasz-Softmax loss [], defined as

K—1
. 1 )
Leem (Isem, Isem> =% kz_% Lovész (L) , (3.1)

where Iy, is the ground truth semantic, Lovész (+) is the application of the Lovasz
extension to directly optimize the Intersection-over-Union, and Ly, is the per-class
error vector defined as

1-— isem ¢ »where I, =k
L,=<. ’ , (3.2)
| P , otherwise

where Ly, € RTXW

is the predicted probability for class k.

Instance segmentation. The two decoders for plant and leaf instance seg-
mentation both have two heads, one to predict centers and one to predict offsets.
The center prediction heads have an output of dimension H x W x 1, that is

passed through a sigmoid activation function to predict pixel-wise probabilities
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)
cen?

of being a center I i € {p, [}, where p stands for plants and [ for leaves. We

define the center of an object as the internal pixel closest to its median point. We

optimize the center prediction to minimize the binary focal loss [[151], defined as

[’ien (iéem Iien) - Iien <1 - iien>%en lOg (iien>
. A~ Ycen A
- (1 - IZen) (I;Lten> IOg (1 - Izen> )

where I’ is the image of the ground truth centers, and 7ee, is a parameter to

(3.3)

weight the loss differently in the presence of hard examples. We keep Yeen = 2,
which is the default value, while computing the losses for the centers of both
plants and leaves.

The offset prediction heads have an output of dimension H x W x 2, since
they predict offset images igmo and ifﬁl in the z and y directions respectively.

We optimize the offsets to minimize L1 losses

éff( s Iéff) = ’Igff,o - éff,o’ + f)fm - If)ff,l ) (3.4)
where I¢ is the image of the ground truth offsets.
Thus, the final loss function £ is given by
£ :wl Esem (isem7 ISem) + w2 ﬁgen <i€9n7 Izc)en> + w3 ££:en (ilcen7 Ilcen)
(3.5)

+ wy ‘Cgff (igfb Iﬁﬁ) + ws Eloff <iéffv Iéﬁ) )

where w; are scalar weights for the different terms.

3.1.2 Skip Connections

Skip connections are fundamental in several architectures [84,92,[186] to ensure
feature reusability and solve the gradient degradation problem of deep models.
They skip one or more layers and provide a direct gradient flow from late to early
stages. This helps maintain stronger gradient signals during training, which is a
common challenge for deep networks [199]. Skip connections preserve low-level
spatial information usually lost during the downsampling operations performed
in the network’s encoder. The common usage of skip connections in segmenta-
tion models is inspired by Ronneberger et al. [186], where the higher-resolution
feature maps of the encoder are concatenated with the feature maps of the de-
coder. In this work, we propose a new scheme for residual skip connections, i.e.,
skip connections that are summed instead of concatenated, to leverage the se-
mantic relations between the different tasks we address. We propose to directly
connect the different decoders, rather than encoder and decoders only, to im-

prove segmentation performance. Our skip connections propagate feature maps
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Figure 3.3: Detailed overview of our residual skip connections scheme. We take the
features extracted from the convolutional layers of the encoder and sum them to those
extracted from the layers of the semantic decoder. The result of this sum is passed
to the following layers of the semantic decoder, and is also summed to the features
extracted from the plant instance decoder. The same pattern is replicated from the

plant instance decoder to the leaf instance decoder.

of dimensions H/2 x W /2 x 64 and H /4 x W /4 x 128, as shown in Fig. B.3. In

particular:

1. For the semantic segmentation task, we keep the commonly used skip con-
nections from the encoder to the decoder [186], since spatial information
coming from the features extracted at higher resolutions helps the decoder

correctly classify each pixel.

2. Plant instance segmentation aims to assign each pixel classified as the crop
class to a specific instance, so the information coming from the semantic
task is relevant to focus on the regions of interest. The information coming
from the encoder could help, but it would carry less semantic knowledge.
Thus, we sum the contribution from the semantic segmentation decoder,
which also carries the features extracted at higher resolutions thanks to the

skip connection discussed before.

3. The objective of leaf instance segmentation is to identify individual leaves
in each plant. To achieve this, knowing the position of each distinct plant
can provide more valuable context beyond the simple semantic informa-
tion, which only indicates crops’ locations and the high-resolution features

of the input from the encoder. Thus, as we did before, we augment the skip
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connections with the contribution from the plant instance decoder. Im-
portantly, these skip connections also carry information from the semantic
decoder and the network’s encoder that are fed into the plant instance
segmentation decoder.

This newly proposed skip connection scheme directly exploits the underlying
hierarchy between the tasks, designed to realize a meaningful transfer of features
from one branch, either encoder or decoder, to the following one. Extensive
experiments reported in Sec. suggest that these task skip connections lead

to superior performance.

3.1.3 Post-Processing

Our automatic post-processing is a three-step procedure that exploits domain
knowledge to handle occlusions and improve boundary detection in complex agri-
cultural scenes. We show each step in detail for two exemplary plants in Fig.
for the leaf instance segmentation task. The same post-processing is applied to
obtain the plant instances. The first step is inspired by Panoptic DeepLab [39]
and aims to extract a single center for each object. Specifically, we take the cen-
ter prediction from the decoder and filter it with the predicted semantic mask to
discard any center that does not belong to the class of interest. Since the center
prediction head commonly outputs blobs around the desired center, we perform
a non-maximum suppression operation to reduce each blob to a single pixel. We
show in Fig. @ (a) the output of the prediction head and in Fig. @ (b) the result
after the non-maximum suppression, where each red dot is a predicted center.
Afterward, we need to assign each pixel to its center, which defines the indi-
vidual instances. However, the offsets could point to regions of space close to more
than one center. In the second step, we assign only those pixels whose offsets point
to a single center. To achieve this, we construct an image of coordinates I oo,
where each pixel p; ; is a vector of values (4,7),7 € {1,...,H},j € {1,...., W} We
compute the Euclidean distance between I.,,,q and every ground truth center c,
producing for each center a ground truth distance map D¢ € RE*W_ Then, we
compute a predicted distance map D € RF*W from the offsets, as

D= \V igﬂ:o + igff,lv (3.6)

where, we remember, Ig( is the image of the predicted offsets in the x-direction,
and ioff70 is the image of the predicted offsets in the y-direction. We visualize
in Fig. @ (c) the offsets in the x-direction and in Fig. @ (d) the offsets in
the y-direction. We can see that each leaf has a gradient from yellow to dark
purple, meaning that one extreme has high positive values and the other has

high negative values. Finally, in Fig. @ (e), we show the predicted D, where we
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(a) Centers probabilities ) Predicted centers

f) Assigned pixels

(g) Partial leaf instance ) Final leaf instance

Figure 3.4: Workflow of our post-processing for two exemplary plants. In (a) and (b)
the predicted centers before and after non-maximum suppression. Then, we show the
predicted offsets in the x (c¢) and y (d) directions, and the distance map D computed
from them in (e), where dark purple pixels have lower distance to the center they point
to, while high distances are in yellow. In (f), we show in green the pixels assigned to
an instance during step 2, and in (g) the partial leaf instance segmentation after step
2. In (h) the final result after assigning the remaining pixels in step 3.
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can see that the distances change in a radial pattern from the leaves’ centers. If
the offsets point close to a center ¢, we expect the predicted distance map to be
similar to the ground truth one D¢. Thus, defining a distance threshold 7, one
pixel of coordinates (i, 5) is assigned to the instance with center c if the term

Dz, = Dig|| <= (3.7)

holds for that instance only. In Fig. @ (f), we see in green the pixels that have
been assigned to an instance, and in yellow the pixels that have not been assigned
yet. The instance segmentation at this point is displayed in Fig. @ (2).

The third step takes care of the pixels that were not assigned to any instance.
This can happen if their offset is pointing far from every extracted center or
close to more than one. In this case, we apply a nearest-neighbor voting scheme.
We compute the instance label that occurs the most between the Nyiqn closest
neighbors and assign it to the current pixel. We show the final result of our post-
processing operation in Fig. @ (h). To enforce consistency between the masks,

we filter all post-processing results with the semantic segmentation masks.

3.2 Experimental Evaluation

We present our experiments to show the capabilities of our method for joint se-
mantic, plant instance, and leaf instance segmentation of RGB data. The results
of our experiments confirm that our joint approach works on data collected in real
fields, i.e., not in controlled environments; our novel scheme for the skip connec-
tions better exploits the hierarchical connections between the tasks improving the
performance; and our post-processing achieves superior performance with respect

to common state-of-the-art methods.

3.2.1 Experimental Setup

Datasets. We test our method on two RGB datasets: a sugar beets dataset
introduced by Weyler et al. [222], denoted as SugarBeets, and GrowliFlower [106].
SugarBeets is composed of 1,316 images with a resolution of 512 px x 1024 px.
The images are recorded by a UAV equipped with a PhaseOne iXM-100 camera
mounted in nadir view. GrowliFlower is a dataset of cauliflower images. It is
composed of 2,198 images with a resolution of 368 px x 448 px. The images are
recorded by a UAV equipped with a Sony A7 rIII RGB camera and a MicaSense
5CH for multispectral image data. Both datasets provide an official data split
that we adopt.

Metrics. We evaluate the performance of semantic segmentation computing
the intersection over union (IoU) [60] of the “crop” class. The IoU provides a
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Figure 3.5: Qualitative results on the SugarBeets dataset for plant (left) and leaf (right)
instance segmentation. We show the input image and ground truth leaf instances
in the first row, and results from PD-S (second row), Weyler (third row), and our
approach (last row). We highlight the prediction errors using red circles.

26



3. EXPLOITING DOMAIN KNOWLEDGE FOR POST-PROCESSING OF INSTANCES

quantitative measure of the overlap between two regions: the pixels PR predicted
as a given class or object by the network, and the pixels GT that belongs to that
class or object in the ground truth labels. Formally, we compute the IoU as

|PR N GT|

where |PR N GT| is the number of true positives (TP), i.e., pixels correctly pre-
dicted, and |PR U GT]| is the number of pixels belonging to the class or object
in either set. A perfect prediction yields an IoU of 1, indicating complete over-
lap between the sets. On the contrary, an IoU of 0 indicates no overlap at all.
In practice, IoU is often multiplied by 100 and expressed as a percentage. The
metric penalizes both false positives (FP) and false negatives (FN), providing a
balanced assessment of the segmentation accuracy. False positives refer to pixels
incorrectly predicted as part of the class or object when they are not, while false
negatives are pixels that belong to the class or object in the ground truth labels
but are not predicted as such.

For the plant and leaf instance segmentation, we evaluate our method with
the panoptic quality (PQ) [109]. PQ combines semantic segmentation and in-
stance segmentation, offering an evaluation of how well objects are detected and
segmented. Given a set of predicted instances pi; € PI and ground truth instances
gti, € GTI, where each instance is represented by its set of pixels and its semantic
class, the PQ is defined as

PQ o Z(pi,gti)ETP loU (pla gtl)
ITP|+ 5 |[FP[ + § [FN|’

(3.9)

where a pair (pi, gti) belongs to the true positives (TP) only if the IoU exceeds
a threshold, typically 0.5. Here, FP (false positives) are predicted instances with
no matching ground truth, and FN (false negatives) are ground truth instances
not matched by any prediction. Each predicted or ground truth instance can par-
ticipate in at most one match. A high P(Q indicates that the method successfully
detects most object instances with precise localization and correct class labels.
In contrast, a low PQ reflects either poor segmentation quality, incorrect classi-
fication, missed objects, or a combination of these factors. As already mentioned
for the IoU, PQ is also often multiplied by 100 and expressed as a percentage.
Training details and hyperparameters. We use AdamW [130] without
weight decay in all experiments. We set an initial learning rate of 5-10~* for the
encoder and the semantic decoder, and 8 - 10~* for the instance decoders. We
use a step scheduler for the encoder, with a step size of 25 epochs and v = 0.9.
For the instance decoders, we use an exponential scheduler with v = 0.99. We
train for 500 epochs. We initialize our network with the Xavier initialization [67].

The batch size is set to 1. We resize images from the SugarBeets dataset to
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256 pxx 512 px to keep the aspect ratio. No resizing is applied to the GrowliFlower
dataset. Additionally, we set wy; = 1, ws = w3 = 0.1, and wy = ws = 50
in Eq. (@), while in the post-processing we use Nyeigh = 5 number of neighbors,
grouping threshold 7 = 6 for the plant instance segmentation and 7 = 2 for the
leaf instance segmentation in Eq. (@) We tuned all hyperparameters on the
validation sets.

Baselines. We benchmark our model against commonly used segmentation
approaches in the agricultural domain, including Mask R-CNN [83], denoted as
MR, and Panoptic DeepLab [39], denoted as PD, which is a state-of-the-art model
for panoptic segmentation. We use three variants of Panoptic Deeplab with dif-
ferent backbones: a small model that uses MobileNetV2 [191], called PD-S, a
medium-size model with ResNet50 [84], called PD-M, and a big-size model with
Xception6s [43], called PD-L.

All these baselines, however, can only address one instance segmentation task
at a time and, thus, they need to be trained for either plants-only or leaves-only.
We also compare with the work from Weyler et al. [222], denoted as Weyler,
which addresses both, plant and leaf instance segmentation.

3.2.2 Experiments on Double Panoptic Segmentation

The first experiment evaluates the performance of our approach and its outcomes
support the claim that we can jointly provide pixel-wise semantic, plant instance,
and leaf instance segmentation. Tab. @ and Tab. @ show the IoU for the crops,
and the panoptic quality for both plant (PQp) and leaf (PQy) instances on the
SugarBeets and GrowliFlower datasets respectively. We also report the number
of parameters of the networks and the end-to-end frame rate of each method at
inference time (FPS).

Interestingly, the models that tackle all tasks simultaneously also have the
fewest parameters, making them especially suitable for deployment on resource-
constrained robotic systems. The additional parameters in our model compared
to Weyler [222] are primarily due to the inclusion of the semantic segmentation
decoder, which is our first output and filters the predictions of the subsequent
decoders. Our approach is suitable for real-time operations with a frame rate
that exceeds 20 Hz. Although some of the baselines performing only one instance
task at a time (MR and all PD variants) achieve higher FPS, their frame rates
cannot be directly compared to those of the joint models, as we would need to
run two of such models to perform all tasks. Since most networks have similar
FPS for the two tasks, this would generally double the needed time. However,
on top of that, the approaches that need two models to perform all tasks would
need an extra processing step to ensure consistency of the results increasing their

final latency. The only baseline that addresses both, the plant and leaf instance
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Figure 3.6: Qualitative results on the GrowliFlower dataset for plant (left) and leaf
(right) instance segmentation. We show the input image and ground truth leaf instances
in the first row, and results from PD-S (second row), Weyler (third row), and our
approach (last row). We highlight the prediction errors using red circles.
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Table 3.1: Performance of baselines and our model on the test set of the SugarBeets
dataset. P and L stand for plant and leaf instance segmentation, respectively. Best
results in bold. For the FPS we put in bold the best results for all three sections:
semantic and plant instance segmentation, semantic and leaf instance segmentation,

and joint semantic, plant, and leaf segmentation.

Model P L IoU[%] 1 PQp[%] 1T PQL[%] 1 +#Params FPS [s7!] 1
MR [83 v 46.2 A7.8 ; 43.9M 13.5
PD-S 39 v 75.4 69.4 ; 7.7M 93.5
PD-M [39] v 75.5 69.8 ; 55.3M A7
PD-L 39 v 76.4 71.1 . 69.6M 48.4
MR [83] v 649 ; 53.6 43.9M 13.4
PD-S [39] v 754 ; 50.8 7.7M 93.7
PD-M [39] v 767 ; 54.4 55.3M 49.1
PD-L [39] v 76.3 - 52.9 69.6M 48.5
Weyler [222] v v 75.3 72.3 63.1 2.25M 0.14
Ours v v 79.3 76.2 63.5 2.4M 26.3

with one network is Weyler et al. [222], which is not suitable for real-time opera-
tions due to its relatively low framerate of 0.14 Hz on SugarBeets and 0.25 Hz on
GrowliFlower. The bottleneck of the approach by Weyler et al. [222] is the post-
processing based on the clustering of high-dimensional embeddings and the use
of covariance matrices. While this shows to be effective, enhancing their perfor-
mance compared to most other baselines, the clustering step is computationally
demanding especially on large and high-resolution images.

In summary, our model with specifically designed skip connections and novel
automatic post-processing operations significantly outperforms all baselines on
every metric for the SugarBeets dataset. On GrowliFlower, our model achieves
state-of-the-art results on both instance segmentation tasks, all while operating
at the frame rate of common RGB cameras. Qualitative results and ground truth
labels are shown in Fig. @ for SugarBeets, and in Fig. @ for GrowliFlower for
PD-S [39], Weyler [222], and our approach.

3.2.3 Ablation on Residual Skip Connections

In this section, we provide additional experiments to evaluate how our novel
residual skip connections scheme impacts the performance of the three tasks. We
perform the experiment on the validation set of the SugarBeets dataset. We
show the results in Tab. @ In particular, we use the same network as the

one we propose with no skip connections (A), typical encoder-decoder skip con-
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Table 3.2: Performance of baselines and our model on the test set of the GrowliFlower
dataset. P and L stand for plant and leaf instance segmentation, respectively. Best
results in bold. For the FPS we put in bold the best results for all three sections:
semantic and plant instance segmentation, semantic and leaf instance segmentation,

and joint semantic, plant, and leaf segmentation.

Model P L IoU[% 1T PQp[%] 1T PQL[%] T #Params FPS [s7!] 1
MR [83] v 25.4 27.9 : 43.9M 9.6
PD-S 39 v 83.1 69.9 . 7.7M 43.4
PD-M B9 V 82.0 68.0 - 55.3M 47.6
PD-L [39] v 82.7 69.4 - 69.6M 23.8
MR [83] v 538 ; 41.0 43.9M 16.2
PD-S [39] v o844 : 58.8 7.M 76.5
PD-M [39] v 802 . 43.4 55.3M 41.6
PD-L [39] v 82.8 - 50.1 69.6M 30.3
Weyler [222] v v 65.8 67.8 69.4 2.20M 0.25
Ours v v 80.2 89.2 71.0 2.4M 20.7

Table 3.3: Comparison between different skip connections schemes, with or without
gradient flow. Best results in bold.

Skip Connections Attached ToU [%] PQp [%] PQr [%]

A None 84.4 75.5 65.1
B Encoder v 83.3 79.4 65.6
C Task + Encoder 83.2 78.9 65.6
D Task v 84.4 81.1 66.0
E (Ours) Task + Encoder v 84.5 81.7 67.8

nections [186] (B), hierarchical skip connections with no gradient flow (C), skip
connections without summing the contribution from the encoder (D). If we do
not use any skip connection the panoptic qualities are noticeably lower, because
the corresponding decoders have no help from previous features. Using encoder-
decoder skip connections (B) improve the panoptic qualities thanks to the access
to encoder features. However, since the encoder must capture features relevant to
all tasks, this harms the semantic segmentation performance. Interestingly, we
notice no improvement from the hierarchical skip connections with no gradient
flow (C), where skip connections are detached and thus do not participate in the
backward pass, since the feature flow does not play any role in the optimization,
leading to suboptimal performance. On the other hand, hierarchical skip connec-

tions without the encoder contribution (D) substantially improve performance
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Table 3.4: Comparison between different post-processing operation, starting from iden-
tical network’s predictions. Best results in bold.

Post-processing IoU [%] PQp [%] PQL [%]

Panoptic DeepLab [39]  84.5 79.0 47.2
Ours 84.5 81.7 67.8

compared to only using the skip connections from the encoder (B). This suggests
that decoder-level features are more relevant than restoring features from the en-
coder when it comes to tasks that present an underlying hierarchical structure.
Nevertheless, our skip connection scheme (E) is the one achieving the best result
across all tasks.

3.2.4 Ablation on Post-Processing

We also evaluate the contribution of our novel post-processing in Tab. @ We use
our model as introduced in Sec. @, trained with our loss function and skip con-
nections scheme. Since the architecture and training are unchanged, the predic-
tions of the network are identical between the two experiments. This allows us to
compare the effectiveness of our post-processing operation with the state-of-the-
art instance post-processing from Panoptic DeepLab. Since the post-processing of
instances does not play any role in the semantic segmentation, the IoU remains
the same. We can see that our post-processing leads to significant improve-
ments in instance segmentation, especially when clustering leaves. We find that
this improvement is due to the way our post-processing handles the offsets that
point between multiple centers or to regions distant from any center. The post-
processing from Panoptic DeepLab simply assigns the pixel to the center closest
to the pixel pointed by the offset. This is particularly problematic during leaf in-
stance segmentation, where several centers are spatially close. On such occasions,
even a one-pixel shift in the offset can result in incorrect instance segmentation.
We address these issues using the threshold 7 in the second step, and the voting
mechanism in the third step of our post-processing. This enables us to correct for

ambiguous offsets that might otherwise lead to erroneous instance segmentation.

3.3 Discussion

Numerous works have addressed semantic, plant instance, or leaf instance seg-
mentation independently, achieving admirable performance. However, such ap-
proaches do not exploit task hierarchy and, since the predictions come from in-

dependent models, their results are often inconsistent, requiring additional steps
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to produce coherent predictions.

To address this limitation, we propose integrating semantic, plant instance,
and leaf instance segmentation into a single unified model. Our approach pro-
gressively performs the tasks, capturing both high-level semantic understanding
and fine-grained details. Organizing the model hierarchically improves both seg-
mentation quality and boundary detection by leveraging the context gained from
previous tasks, while also enabling extending the model to additional tasks such
as fruit segmentation. A key component of our approach is the novel domain-
specific post-processing operation, which enforces structural consistency and re-
duces over-segmenting the instances, especially in areas with dense vegetation
or occlusion. The use of domain-specific thresholds and the refinement step for
pixels with ambiguous offset predictions provides an effective way to incorporate
prior agricultural knowledge into the segmentation pipeline, without requiring

additional data or adaptation of the network.

Our experimental evaluation confirms that the hierarchical structure of our
method improves the performance of all tasks while producing consistent predic-
tions. Notably, this does not come at the cost of a significantly larger model,
which could be problematic for deployment on resource-constrained robotic plat-
forms, nor does it slow inference times that could hinder real-time operability.
Even without achieving the highest IoU on the GrowliFlower dataset, our method
has superior panoptic quality on both plant and leaf instances. This indicates that
even with slightly lower semantic segmentation performance, the overall instance-
level understanding is significantly improved. The small gap in IoU performance,
which is at most a drop of 4.2 percentage points, can be attributed to our compact
architecture, which jointly addresses three tasks with fewer parameters. Despite
this, we observe a notable minimum gain of 4+19.3 percentage points in PQ for
plants and +12.2 percentage points in PQ for leaves when compared to models
with higher IoUs. Moreover, Tab. shows that our novel post-processing strat-
egy contributes to the improvements by enhancing final predictions even when
the raw network outputs remain unchanged, demonstrating the effectiveness of
using in-domain knowledge to obtain more accurate predictions.

Relying on the predictions of previous tasks to guide the subsequent ones can
be a risk, especially when the network is applied to out-of-domain data. It is well
established in the literature that fully supervised methods tend to perform poorly
in unfamiliar scenarios [66,232]. In such cases, an inaccurate semantic segmen-
tation prediction would be propagated to the following tasks, making it difficult
for the system to recover and achieve satisfactory performance. To address this
without re-training the network, one could design a mechanism that adaptively
weights the influence of previous task predictions based on their estimated relia-

bility. Similarly, the hand-tuned thresholds used in the post-processing need to
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be adapted to new image resolutions or crop species, limiting the applicability
of the approach to new scenarios. Addressing this issue is not trivial because
the quality of instances is quantified by the P(Q, which is not differentiable and
thus cannot be directly optimized. One possible way would be to compute the
instance mask using the predicted thresholds and optimize the threshold via an
auxiliary loss. One solution is computing the IoU between the masks obtained for
each instance using the predicted threshold and the ground truth masks, taking
into account the difference between the number of predicted and ground truth
instances as formulated in the work by Cheng et al. [42].

3.4 Conclusion

In this chapter, we introduced a novel approach for joint hierarchical semantic,
plant instance, and leaf instance segmentation of RGB images. Our method lever-
ages the task hierarchy via a newly designed skip connection scheme, enabling
each task to support the following ones in a structured and efficient manner. In
addition, we introduced a novel post-processing strategy that significantly boosts
instance segmentation performance by incorporating structural knowledge of the
agricultural environment by means of the threshold 7. This threshold depends on
the morphology of the investigated crops, making it a domain-specific parame-
ter. The experiments show improved segmentation accuracy and demonstrate the
importance of domain knowledge in training models to surpass the capabilities
of purely data-driven methods. This is shown in our last ablation study, where
we isolate the contribution of our novel post-processing operation. Applying the
two different post-processings on identical network predictions, we can see the
improvement obtained only thanks to our post-processing. The experiments in-
dicate that exploiting the task hierarchy and integrating domain knowledge are
both crucial for effective scene understanding in agricultural fields. In the next
chapter, build on these findings to extend the idea of exploiting domain knowl-
edge for improving model initialization and learning across various perception

tasks, reducing reliance on manual annotations and boosting generalization.
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Chapter 4

Exploiting Domain Knowledge
for Task-Agnostic Pre-Training

EEP learning approaches, such as the one previously introduced in this

thesis, have significantly improved the capabilities of robotic systems

in agriculture, particularly in tasks requiring precise scene under-

standing. In Chapter a, we proposed a fully supervised method that
jointly performs semantic, plant instance, and leaf instance segmentation using
RGB images. Such tasks enable automatic assessment of plant health [76,138],
identification and localization of weeds [223], detection of plant diseases [73], and
monitoring of the growing conditions in the field [225]. However, like most su-
pervised methods, it needs a large amount of labeled data to achieve satisfactory
performance. Acquiring labeled data is expensive and time-consuming. More-
over, for agricultural data, the need for expert knowledge to produce high-quality
and accurate annotations poses an additional challenge.

To address this limitation, some researchers use semi-supervised approaches
to reduce the need for per-pixel labeled images [134] or leverage background
knowledge [150]. Recent work in self-supervised pre-training showed promising
results, where we can pre-train a network without relying on supervision by man-
ual labels. Pre-training on the ImageNet dataset [52] is a common way to reduce
the number of training samples and the training time needed by the network to
converge. Several other methods use a contrastive loss and strong augmentation
techniques [28,37,71,82,238] to extract meaningful representations of the images,
which are called embeddings and are high-dimensional vectors. Embeddings pro-
duced in such a way are robust to the augmentations applied at training time,
focusing on more relevant details of the images. However, the applied data aug-
mentations need to be selected carefully so as not to lose features useful for the
semantic understanding of the image. In this chapter, we study self-supervised

representation learning to improve the perception of agricultural robots. Fig.
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Figure 4.1: Results on semantic segmentation with different amounts of data and pre-
trainings. We achieve better or comparable results with % of the epochs and ﬁ of
the images. The dotted circles highlight the errors in the results.
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illustrates how the pre-training strategy affect the semantic segmentation results
and shows higher accuracy and fewer errors for our approach.

The main contribution of this chapter is a pre-training strategy for the plant
domain, which will reduce the number of labeled images needed, and a newly
defined augmentation policy. We study existing augmentations and propose
domain-specific ones to boost performance on different downstream tasks, i.e.,
the final task that we want the network to learn after pre-training, such as seman-
tic or instance segmentation. We investigate how self-supervised pre-training on
domain-specific data leads to better models that can learn with less labeled data
on multiple agricultural perception tasks. Specifically, in this chapter, we present
results on the semantic segmentation and leaf instance segmentation tasks and
show that our pre-training improves the performance with respect to other state-
of-the-art methods on both tasks. Our experiments suggest that using domain-
specific pre-training can further reduce the number of labeled images needed,
and confirm that the augmentation policy needs to be domain-specific, taking
into account the order and design of the augmentations.

4.1 Owur Approach for Effective Agricultural
Pre-Training

We aim to learn an abstract representation that will serve as a starting point for
further learning tasks in the domain of the perception of plants. By deploying
robots in the fields, we can quite easily collect a large amount of unlabeled data.
This offers the potential to build systems to train networks in a self-supervised
fashion. For our perception task, we pre-train the network encoder following
Barlow Twins proposed by Zbontar et al. [238]. Most contrastive learning ap-
proaches use positive and negative pairs, encouraging the network to produce
similar representations for the positive pairs and different representations for the
negative pairs. Instead, we decided to use Barlow Twins, which does not use neg-
ative pairs. This was a major advantage for us, since in the agricultural domain
most images are very similar, all depicting plants in the fields. The pre-training
approach, as well as the architecture for the tasks, is not our main focus. Our
contribution lies in a novel domain-specific augmentation policy to boost the per-
formance of the final system. We evaluate our pre-training on semantic and leaf

instance segmentation.

4.1.1 Barlow Twins

Barlow Twins learns representations in a self-supervised fashion via redundancy

reduction. Here, we briefly summarize its relevant parts and refer to the original
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Figure 4.2: Overview of our architecture. For each image, we build two views using
different augmentations and feed them into the network to produce their embeddings.
We build the cross-correlation matrix C from the two embeddings and then compute
the loss, that encourages C to be an identity matrix. In this way, we induce the network
to produce non-redundant embeddings that are as close as possible for different views
of the same input image.

paper [] for more details. Barlow Twins uses a siamese network with shared
weights, as depicted in Fig. #.2. The two inputs are two different views computed
from the same input image applying different augmentations. The encoder is
a ResNetb0 [@] without the final classification layer, followed by a projector
network. The projector network has two identical blocks — linear layer, batch
normalization, and rectified linear units — followed by one linear layer.

Zbontar et al. [] build for each input image I two augmented views I, I,
that are fed into the network to produce two distinct embeddings z;, z, € RP.
They compute the loss directly on z; and zy. The first step is to construct the
cross-correlation squared matrix C € RP*P from the embeddings normalized over
the batch dimension. This matrix has values between —1 (anti-correlation) and
1 (correlation). Then, the loss is:

Ler =) (1-Cy)?+A> Y C7 (4.1)
i i gt
where )\ is a weight to trade-off two parts: the invariance term, which encourages

the diagonal elements of C to be 1, and the redundancy reduction term, which

penalizes the non-zero off-diagonal elements of C.

4.1.2 Augmentations

Augmentations play a fundamental role in self-supervised learning. The stronger

they are, the more the network focuses on relevant and stable features to represent
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(b) Affine (¢) Background Invariance

(e) Gaussian Blur (f) Mix (¢) Random Erasing

Figure 4.3: We applied all of our augmentations to a single image to show one possible
outcome for each one. In our pre-training strategy they are applied sequentially pro-
ducing even more variations of the input.
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the images. It has been recently shown [49], that augmentations effectively act
as implicit kernel modifications within the network. However, augmentations are
easier to develop and more practical to use, being architecture agnostic. We use
our augmentation policy as common in the literature [71] plus domain-specific
knowledge. In Fig. @, we show the result of each augmentation applied to one
sample image for illustration purposes. We now present all of the augmentations
we use, first the general-purpose transformations, i.e., affine, gaussian blur, and
random erasing, and then the domain-specific ones, i.e., color jittering, mixing,

and background invariance.

4.1.2.1 Affine Transformation

3X3 rotates, translates, scales, and shears

The affine transformation, T.gne € R
the input image. It makes the network invariant to such transformations which
are common when working with robots of different sizes and cameras. More

specifically, Tamne is given by

At

4.2
ool (42)

Tafﬁne =

where A € R?*2 contains an isotropic scaling factor in [0.5, 2], a rotation in [—, 7]
and the shearing along the two axes randomly sampled in [0.25, 0.75], while t € R?
is a translation vector with each component t,,t, € [-0.25- W,0.25 - H|, where
W and H are the image width and height respectively.

4.1.2.2 Gaussian Blur

We blur the image using a random standard deviation oy, € [0.1,2]. The purpose
of this augmentation is to help the network focus on the image structure across
different scales and resolutions.

4.1.2.3 Random Erasing

Random erasing [244] selects multiple rectangles inside of the image and sub-
stitutes the pixels’ values with random values in [0,255]. Given the minimum
percentage of the image that has to be removed, it picks rectangles of different
sizes and aspect ratios until the deleted area is at least the minimum desired area.
We slightly change the implementation to enforce the use of multiple rectangles
rather than a single large one. We use this augmentation to make the network

less sensitive to occlusions and shadows.
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4.1.2.4 Color Jittering

Color jittering changes the brightness, contrast, hue, and saturation of the image.
Instead of the symmetrical range of values for the hue (—0.1,0.1) from the liter-
ature, we use (0,0.125) as the range. The commonly used symmetrical range can
produce a wider range of colors, but some of the augmented images will not look
realistic. This is usually not a problem when pre-training for classification for
large-scale problems, where color is not the main feature of the object. However,
in the agricultural domain, knowing a realistic range of colors for the plants is
crucial to distinguish the vegetation from the soil and to identify ill or damaged

plants, where color is often the major discriminator [208§].

4.1.2.5 Mixing

Zhang et al. [241] propose to mix two different images into one via linear inter-
polation, we instead use a single image I. We create two copies of I, one flipped
on the x-axis called I, and one on the y-axis called I,. We sample each pixel in
the augmented image from I, I, or I, using a uniform probability over the three
images. This can simulate motion due to the wind or water uptake, or holes eaten

by insects.

4.1.2.6 Background Invariance

This transformation cuts plants from the current image and pastes them into a
different soil background. This is important to expose the network to different
combinations of crops and soils. Specifically, we perform the following steps:

1. Compute a normalized image as

I<Z7j) — M1

4.3
o1+ € ( )

Inorm (Z7 J) =

where 4, j are pixel coordinates, u; € R? and o1 € R? are mean and standard
deviation of I, and € = 1078,

2. Compute the vegetation mask M following Woebbecke et al. [227]. Specif-
ically, M is given by
M=2I; Iy — Iy (4.4)

where Ig,Ig and Iy are the color channels of I,,om.

3. Convert M to a binary mask using a threshold ny, i.e., all pixels above 7y
are set to 1, the others are set to 0.

4. Refine M using 2 rounds of erosion with kernel size (2,2), 4 rounds of
dilation with kernel size (6,6).
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5. Cut the vegetation and paste it at a random location on a random soil
image from a dataset of images whose vegetation mask M is below a given
threshold, i.e., less than 5% of the image.

All the augmentations are applied with a certain probability, tuned from the

results in Sec. .

4.1.3 Downstream Tasks

In an application, the pre-trained models are fine-tuned on specific downstream
tasks. Our approach is network-independent since it is mainly a strategy to pro-
vide a better network initialization. Thus, we pre-train ResNet50 [84] for semantic
segmentation and an ERFNet [184] encoder for leaf instance segmentation. For
both tasks, we use ERFNet-like decoders, as those used in the network proposed
in Chapter E for all tasks. The ResNet50 [84] architecture has been chosen for
the semantic segmentation task in order to use publicly available initialization
weights and, thus, provide a fair comparison against state-of-the-art methods.

4.1.3.1 Semantic Segmentation

Semantic segmentation predicts a class for each pixel of the image, in our appli-
cation example, crop, weed, and soil. The decoder outputs an image H x W x K,
where H and W are the height and width of the input image, and K is the
number of semantic classes. Instead of connecting the decoder at the end of the
ResNet50 [84], we discard the last two layers to preserve more spatial informa-
tion. The truncated backbone can still be initialized with the pre-trained weights
without changing anything. Following Rahman et al. [174], we directly optimize
the Intersection over Union (IoU) metric during training.

4.1.3.2 Leaf Instance Segmentation

Leaf instance segmentation predicts a pixel-wise mask for each leaf. This task
allows discovering the shape and size of individual leaves, and counting them,
which is fundamental in determining the growth stage of the plant [61]. We use
the network and loss proposed by Weyler et al. [222], which we also used as a
baseline in Chapter a This setup demonstrates that our pre-training approach
is network-independent and can be applied without relying on prior components
from this thesis, making it broadly usable without loss of generality. One decoder
predicts the center locations of each leaf, the other the offsets pointing at the
specific leaf and plant center plus clustering parameters for their post-processing.
We feed the predicted and ground truth masks to the Lovasz Hinge Loss [17]. For
more details, refer to the original paper by Weyler et al. [222].
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Figure 4.4: Comparison of the mloU with different amounts of labels after fine-tuning
for 100 epochs (semantic segmentation). The number of images for each label percent-
age is: 14 for 1%, 140 for 10%, 362 for 25%, 724 for 50%, and 1,450 for 100%.

4.2 Experimental Evaluation

The focus of this work is showing that our domain-specific self-supervised pre-
training together with augmentation policy has the potential to perform better
than the commonly used supervised pre-training on ImageNet. We show this for
images from the agricultural robotics domain. In our experimental evaluation, we
show that even just pre-training on plant images, i.e., in-domain data, improves
the performance of the investigated downstream tasks. Furthermore, our results
suggest that using domain-specific pre-training further reduces the need for labels
and that considering the design of each augmentation is crucial to apply them in
the best order.

4.2.1 Experimental Setup

Datasets. We pre-train on 18,000 unlabeled images of sugar beets from four
different locations (Ancona in Italy, Bonn and Stuttgart in Germany, and Esch-
likon in Switzerland) [B2]. For the semantic segmentation task, we use the official
annotated split from the same dataset [32] that contains 2,148 images: 1,450 for
training, 478 for validation, and 220 for testing. For the leaf instance segmenta-
tion, we use the SugarBeets dataset introduced in Chapter B, with 1,316 images;
746 for training, 292 for validation, and 278 for testing. We pre-train on a single
NVIDIA RTX A6000 GPU and fine-tune on a single Quadro RTX 5000 GPU.
Metrics. We evaluate the results on semantic segmentation using the mean
IoU (mloU) [60], which is the mean of the IoU computed over all K = 3 semantic
classes, i.e., soil, crop, and weed. For the leaf instance segmentation task, we

report the average precision (AP) and recall (AR), and the absolute difference
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Table 4.1: Comparison of average precision (AP) and recall (AR) on plants (p) and
leaves (1) for the three main approaches. The number of images for each label percentage
is: 7 for 1%, 74 for 10%, 186 for 25%, 373 for 50%, and 746 for 100%.

Percentage of Labels Pre-Training AP, [%] AR, [%] AP [%] AR, [%)]

none 54.3 60.5 48.7 68.3

100% ImageNet 55.1 61.2 59.7 68.9
ours 55.6 62.9 64.4 69.2

none 50.3 59.0 45.6 60.1

50% ImageNet 52.4 60.1 52.7 61.5
ours 54.6 60.8 54.6 62.7

none 48.0 55.2 42.0 46.1

25% ImageNet 50.2 56.1 50.6 56.6
ours 50.9 56.9 53.8 60.6

none 46.6 54.0 20.7 39.6

10% ImageNet 46.8 53.7 29.5 38.4
ours 48.0 54.2 42.5 49.2

none 0.0 0.0 0.1 0.3

1% ImageNet 0.0 0.0 0.4 0.2

ours 1.1 8.3 0.9 5.6
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Figure 4.5: The average |DiC| for the three approaches with increasing number of
labeled images. The lower the better.

in count (|DiC|) of the leaves. AP evaluates the precision of the instances across
various [oU thresholds 7;, where ¢ goes from 0.5 to 0.95 in steps of size 0.05, as

TP (1)
4
KZTP (7) + FP (1)’ (4.5)

where TP (7;) and FP (7;) are the number of true positives and false positives
when threshold 7; is applied.

AR measures the fraction of ground truth instances that are correctly de-
tected. For a given threshold 7;, we compute it as

TP (1)
4.
KZTP (7) + FN ()’ (46)

where FN (7;) is the number of false negatives when threshold 7; is applied.
Training details and baselines. We pre-train our encoder for 250 epochs
with batch size 128. We use AdamW [] with a fixed learning rate of 2 - 1074,
and a weight decay of 107%. We compare our method with the results obtained
using the same network without any pre-training, i.e., randomly initialized, and
pre-trained in a supervised fashion on the general-purpose ImageNet dataset [@]

4.2.2 Our Pre-training vs. Non-specific Pre-training

The first experiment analyzes how self-supervised domain-specific pre-training
provides a more effective initialization while decreasing the need for labeled im-
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ages, time, and computational resources. We fine-tune our model and the model
pre-trained on ImageNet with different amounts of labels.

Semantic Segmentation. Fig. @ suggests that when using a sufficient
number of labels, different pre-training strategies perform similarly. The fewer
labels we use, the wider the gap. The ImageNet pre-training requires more la-
beled data to adjust to the agriculture domain. Our pre-training performs better
requiring less data for pre-training i.e. 18,000 images against the 1,281,167 from
ImageNet, and epochs i.e. 250 against 1,000. For this experiment only, we also
pre-train on domain-specific data with the augmentations from the literature.
The results confirm that domain-specific augmentations are a key component to
obtain the best performance.

Leaf Instance Segmentation. Tab. [1! confirms the utility of pre-training
on domain-specific data to boost the performance and reduce the number of
labeled images needed. Our pre-training boosts every metric in every scenario.
In Fig. @, the difference in count shows a similar trend. When using less than
10 images, none of the approaches can properly segment the leaves. Using 74
images (10%), our pre-training can already reduce the uncounted leaves to ~ 6
per image (each image can have between 2 and 5 plants in it). We illustrate
qualitative results in Fig. @, where we highlight with yellow dotted circles the
leaf instance segmentation errors. These results confirm that our pre-training
reduces incorrect predictions even for fine-grained tasks.

4.2.3 Pre-training vs. No Pre-training

This experiment aims to confirm that using our pre-trained backbone boosts the
final performance and reduces the reliance on labeled data compared to training
the model without any pre-training.

Semantic Segmentation. In Fig. @, we see how pre-training boosts the
performance when using the same routine and number of labeled images. Our
pre-trained model performs better using up to 25% of the annotated data. With
less than 10% of the labeled data, pre-training on ImageNet is hurting the per-
formance. The reason may be that the network expects to see objects from the
ImageNet dataset distribution and requires the labeled data to adapt to the agri-
cultural domain. Our pre-training does not suffer from this issue.

Leaf Instance Segmentation. Training the randomly initialized network
with only a few labeled images rapidly deteriorates the performance. Fig. @ and
Tab. El! show that we can achieve the same performance using half of the data.
Our pre-training boosts all metrics, and it produces instance masks using only
7 images (1%). The qualitative results in Fig. @ demonstrate that pre-training
enhances the network’s ability to distinguish close instances.
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(¢) with our pre-training

(d) Ground Truth labels

Figure 4.6: Qualitative results of the leaf instance segmentation task, where each color
corresponds to a different instance. All results are obtain after fine-tuning the network
with 50% of the labels. We show the results when the network is randomly initialized
with no pre-training (a), when it is initialized with the ImageNet pre-training (b), and
with our pre-training (c). In (d), we show the ground truth labels. We highlight the

mistakes in yellow dotted circles.
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Figure 4.7: The mloU for different combinations of transformations. We fine-tune with
minimum 100 epochs or until convergence. We use different number of asterisks to
indicate how many more epochs were needed to converge, where (*) means 10 extra
epochs; (**) 40 extra epochs; and (***) 100 extra epochs.
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Table 4.2: The mIoU [%] after fine-tuning (100 epochs on semantic segmentation) with
20, 40, 60, 80, and 100 epochs of pre-training using only the color transformation.

Color pre-training epochs

Augmentation 20 40 60 80 100

standard 23.44 23.77 23.89 19.92 13.89
Ours 17.61 21.11 31.28 32.52 42.80

4.2.4 Relevance and Order of Augmentations

We use a shorter training routine to analyze which augmentations work better
in the agricultural domain. We pre-train each combination for 50 epochs on a
subset of the pre-training dataset and then fine-tune on a subset of the labeled
dataset for semantic segmentation. Chen et al. [37] did a similar experiment on
a general-purpose setting and showed results similar to ours.

In Fig. @, we see that changing the order of the augmentations impacts
both the mloU and the training time. The combinations that took more time
are those that make the task much harder, i.e., if we first apply color jittering
and then background invariance, it will be challenging to correctly identify the
plants, since the color distortion inhibits a correct computation of the vegetation
mask. Focusing on the highest-performing combinations we see that swapping
them leads to lower values, confirming that the order in which they are applied is
a key aspect when designing the augmentation policy. On the diagonal, where we
apply only one augmentation, the mIoU values are all in the mid-lower range, the
highest values being the strongest augmentations. This pattern is also visible in
the other combinations; strong augmentations such as random erasing and mixing

lead to better performance, not always at the price of longer training time.

As explained in Sec. , we changed the parameters for the color jittering
augmentation. To evaluate whether this choice makes a difference, we pre-train
our encoder using color jittering as the only data augmentation and fine-tune the
weights at different pre-training epochs for the semantic segmentation task. We
demonstrate in Tab. @ that a longer pre-training period with the standard color
augmentation hurts the performance. One reason could be that the augmentation
is so strong that the network learns to ignore the color information, making the
semantic segmentation task harder. Our augmentation consistently improves the
performance the more we pre-train the encoder, outperforming the architecture

pre-trained with the color jittering from the literature.
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Figure 4.8: The mloU after fine-tuning for 100 epochs using different pre-training
epochs. There is no improvement after 250 epochs. The starting value is obtained with

a randomly initialized network.

4.2.5 Influence of Pre-training Length

We pre-train up to 500 epochs, evaluating intermediate checkpoints on the se-
mantic segmentation task. We want to determine how many epochs are needed
to achieve satisfying results and to find out how much we can improve by con-
tinuing training. This enables us to find a compromise between performance and
computational resources. In Fig. @ we show that the mIoU increases until 250
epochs, where we see a diminishing effect. Therefore, if not otherwise specified,

we pre-train for 250 epochs in our experiments.

4.2.6 Ablation on Augmentations’ Probabilities

We apply each augmentation with a probability based on the results of the previ-
ous experiments to increase variance. We evaluate the effectiveness of our policy
comparing it against a pre-training in which all augmentations are always applied.
The results in Tab. @ show that the probabilities we assign to each augmenta-
tion result in higher performance on all metric evaluations. We propose to assign
a probability of 1.0 to color jittering and random erasing, 0.9 to gaussian blur

and mixing, and 0.8 to background invariance and affine transform.

4.3 Discussion

Pre-training methods often rely on large-scale general-purpose datasets and aug-
mentations. While such models often provide a good initialization for perception

tasks, they are not tailored to capture the visual differences of narrow domains
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Table 4.3: Comparison of mloU, mean average precision (mAP), and mean average
recall (mAR) after fine-tuning for 100 epochs (semantic segmentation) with our aug-

mentation probabilities vs. applying always all the augmentations.

Approach mloU [%] mAP [%] mAR [%]

all augmentations 78.09 88.61 87.68
our policy 81.77 91.07 89.99

such as the agricultural one. This domain gap compromises the final performance
of the models, especially when the size of the labeled fine-tuning dataset is small.
The use of general augmentations may also distort relevant features, i.e., color or
geometric cues, which could otherwise help the final perception task.

We present a domain-specific task-agnostic self-supervised pre-training strat-
egy based on Barlow Twins, focusing on the development of augmentations that
preserve relevant information for agricultural perception tasks. We use unla-
beled data collected from different robotic platforms across various field condi-
tions, which provides broad domain coverage even if without manual annotation.
Our augmentation policy combines general augmentations from the literature
with novel domain-specific transformations that reflect real-world perturbations.
Background invariance, mixing, and controlled color jittering help simulate shad-
ows, leaf motion, and lighting variation. Our objective is to reduce the labeling
effort in agriculture by learning robust and transferable representations that im-
prove performance even when fine-tuned on small-scale labeled datasets.

Our experimental evaluation shows improved performance across all label
regimes. Our pre-training consistently outperforms random initialization, achiev-
ing the same performance using only 10% of the data, and the model pre-trained
on ImageNet, even if the dataset we pre-train on is 70 times smaller. We evalu-
ated our approach by fine-tuning the model for semantic and leaf instance seg-
mentation, demonstrating that the learned representations are transferable over
multiple perception tasks at different granularity levels. In Fig. @, we show the
importance of incorporating prior knowledge in the augmentation policy, even if
strong general-purpose augmentations achieve comparable performance. Interest-
ingly, the comparison between the standard color transformation and our revised
version reveals that a stronger, albeit unrealistic, augmentation yields better per-
formance for shorter pre-trainings. However, the more we pre-train with our
augmentation, the more the performance improves, while the standard augmen-
tation degrades performance. This confirms the need to align the pre-training
data and augmentation policy with the downstream domain and tasks.

Although we were able to reduce the need for labeled data in both tasks, the
experiments highlight that the gains are smaller for the leaf instance segmenta-
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tion task, which requires more fine-grained spatial reasoning. This is expected
since we are only pre-training the encoder, which extracts a very compressed
representation of the images. To pre-train the entire architecture and capture
sufficient spatial detail, we would need to define a new loss over the up-sampled
image computed by the decoder. This is not trivial when pre-training without a
specific task in mind, since the effectiveness of the pre-training depends on the
alignment between the new loss and the final task.

In principle, such a strategy could lead to improvements, especially for seman-
tic segmentation, where the task is relatively simpler and already benefits from the
encoder pre-training. For example, one could pre-train using vegetation masks as
pseudo-labels and later fine-tune with more accurate manual annotations. How-
ever, this approach would offer limited benefit for the instance segmentation task.
We would need to modify the architecture to predict a different type of outputs,
i.e., pixel-level offsets or instance centers instead of binary soil-vegetation labels.
As a result, we would still be limited to pre-training only part of the architecture
rather than the full model.

4.4 Conclusion

In this chapter, we presented an approach to exploit a vast quantity of unlabeled
images from the agricultural domain to learn useful representations in a self-
supervised fashion. Our experiments rely on domain-specific data and domain-
specific augmentations during the pre-training. This allows us to successfully use
our pre-training for different downstream tasks obtaining good performance us-
ing fewer labeled images. We implemented and evaluated our pre-training on two
tasks, semantic and leaf instance segmentation in the agriculture domain. We
compared our results with those obtained without pre-training and pre-training
on ImageNet. The experiments suggest that pre-training on a domain-specific
dataset and exploiting domain knowledge to define the augmentation policy can
reduce the number of labeled data required to achieve the same performance
as without pre-training. However, the performance gains on the leaf instance
segmentation task were lower than those of the semantic segmentation. This is
because of the more challenging task and the task-agnostic nature of our pre-
training, which does not encode the fine-grained spatial details needed for sepa-
rating the leaves. These observations motivate the next chapter, where we shift
our focus on semantic segmentation, a foundational task for agricultural scene
understanding. We propose an automatic labeling pipeline that can better ex-
ploit the knowledge from the agricultural setting given the fixed task and paves

the way for more scalable and effective perception systems.
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Chapter 5

Exploiting Spatial Arrangement
for Semantic Segmentation

EMANTIC segmentation of images is the task of assigning a class label to

every pixel of the image. In agriculture, it can be used to distinguish

which parts of the image correspond to soil, crop, or weed. This pixel-

level understanding is critical for automating tasks such as automated
weeding [12,[192], controlled usage of pesticide [[156] to apply them in areas with
high weed density and not uniformly over the whole field, and harvesting [166].
Semantic segmentation is also the first step of more complex tasks such as yield
estimation [b4], growth monitoring [144], and disease detection [[169)].

In the previous chapter, we demonstrated how to boost the performance
of semantic segmentation by exploiting our domain-specific self-supervised pre-
training. However, the network still needs access to some manually labeled data
to learn the semantic segmentation task. In this chapter, we examine the prob-
lem of automated semantic crop-weed segmentation in RGB images under various
field deployment conditions, e.g., different growth stages, crop species, or light-
ing conditions, without human-labeled training data. This is crucial for ensuring
robust crop-weed segmentation in unseen fields, enabling robots to perform weed-
ing and harvesting. Our approach automatically labels RGB images based on the
robot’s pose and its current semantic map of the field, which is computed online
using the automatic labels of previous RGB images. In this way, semantic labels
are generated using the robot’s spatial information and the spatial arrangement
of the field, i.e., its crop row structure.

Previous methods for unsupervised semantic segmentation in agriculture pro-
posed by Lottes et al. [133] and Winterhalter et al. [226] are heuristic-based and
rely on assumptions about field arrangements that do not necessarily general-
ize well, e.g., absence of weeds in the crop row [[133], constant distance between

plants’ rows [134, 226], or non-overlapping vegetation components [133]. In con-
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Figure 5.1: The overview of our pipeline to generate semantic labels for images of crop
fields. We use a robotic platform equipped with an RGB camera to collect images
of the field with their corresponding poses. We process each image and generate its
semantic segmentation, which we then fuse into the semantic map. At each time step,
we use the semantic map to generate the image’s semantic label and then, we update
the map accordingly.

trast, fully supervised deep learning-based approaches do not rely on heuristics,
but on in-domain human-labeled training data. The performance of such methods
is satisfactory when deployed in conditions they were exposed to during train-
ing. However, their performance usually rapidly deteriorates in novel deployment
conditions [180], e.g., different crop species, weed pressure, lighting conditions, or
growth stage, requiring new human-labeled training data. This additional label-
ing is costly and limits the fully supervised approaches when there is not enough

time, money, or data to re-train the approach on new field conditions.

The main contribution of this chapter is a novel heuristic approach for unsu-
pervised soil-weed-crop segmentation in managed fields with crop row structure,
which we exploit to address the limitations of previous works. Our method au-
tomatically generates labels used to train deep semantic segmentation networks.
The overview of our pipeline is shown in Fig. @ Our pipeline takes the cur-
rent RGB image and the pose of the robotic platform as input to compute a
semantic map of the field. As a key novelty, we use the semantic map to enforce
the spatial consistency of labels. To this end, we leverage the information about
the crop rows in the map to enhance crop segmentation across different growth
stages. We additionally do not assign labels to vegetation components that are
near the crop rows but have not been classified as crops, i.e., they do not lie
directly on the crop row. This reduces labeling errors, enabling the generation
of high-quality labels and thus improving model predictions after training on our
generated labels. We use the labels generated by our heuristic approach to train
an uncertainty-aware evidential semantic segmentation network [194]. At infer-
ence, as a post-processing step, we exploit the predicted uncertainties to refine
the final semantic predictions.
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Our experimental evaluation demonstrates that our approach produces more
accurate semantic labels than previous unsupervised label generation approaches
on multiple crop species, growth stages, and lighting conditions. Our approach
outperforms previous approaches thanks to the combination of our spatially con-
sistent generated labels and an uncertainty-aware semantic neural network. We
improve the performance of fully supervised models on previously unseen crops,
growth stages, or soil conditions by fine-tuning them on labels automatically

generated with our approach for the new images.

5.1 Uncertainty-Aware Networks

Classical neural networks are known to provide overconfident point estimate pre-
dictions [1], i.e., they provide a single “best guess” for each pixel and overestimate
the confidence in their prediction even when the prediction is not correct. Several
works, including the one by Lakshminarayanan et al. [117], use ensembles of mul-
tiple independently initialized and trained neural networks to quantify predictive
uncertainty. Although ensembles improve prediction performance and model cal-
ibration, they induce high computational costs during training. Gal et al. [65]
proposed Monte Carlo dropout to approximate predictive uncertainty with a sin-
gle network trained with dropout. At inference, they perform multiple forward
passes with independently sampled dropout masks to compute predictive uncer-
tainty. Although Monte Carlo dropout is more computationally efficient during
training, it produces more overconfident predictions than ensembles [15]. More
recently, Sensoy et al. [194] proposed evidential deep learning for image classi-
fication to predict uncertainty using a single forward pass. As evidential deep
learning performs on par with ensembles while drastically reducing online com-
pute requirements, we use it as part of our semantic segmentation network. We
leverage the predicted uncertainties in the post-processing of our predicted labels
to correct our prediction for the weed class, which is the most under-represented
class and, thus, the most uncertain for the model.

5.2 QOur Approach for Automatic
Soil-Weed-Crop Segmentation

We propose a heuristic-based approach to automatically segment RGB images
of agricultural fields into three semantic classes: soil, crop, and weed. Sec. n
describes the fusion of each generated semantic label into an online-built global
semantic field map based on the robot’s pose. Then, Sec. presents our au-
tomatic labeling pipeline, which enforces spatial label consistency while reducing
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Figure 5.2: Example of a typical UAV mission. The coverage path along which we fuse
semantic image labels is depicted in white, the square is the initial pose, and the arrows
indicate the direction of movement. The images can overlap, but it is not required. This
path ensures efficient coverage of the crop field and is commonly adopted in aerial data
collection missions.

the possibility of labeling errors in the map. Sec. describes the training pro-
cedure of our uncertainty-aware semantic segmentation network ] on labels
extracted from the global semantic field map. Finally, Sec. outlines our
uncertainty-based post-processing for refining uncertain vegetation predictions.

5.2.1 Semantic Field Mapping

We perform semantic mapping to enforce spatial consistency across automati-
cally generated semantic labels. Furthermore, the semantic map allows us to
extract image-label pairs from the map with different rotations, positions, and
scales. We assume that our robotic system is equipped with a downwards-
facing RGB camera. At each time step ¢, the robotic platform collects an image
I, € RIT*W>3 where H and W are the height and width of the image, respectively.
Let X; = (x4, ys, 21, 6¢)" be the robot pose, where we consider the 3D position
(x4, ys, 2¢) and the yaw angle ¢; € (—m, 7| with respect to the origin of the map-
ping mission. Any path is defined by a sequence of poses that we use to fuse our
predicted labels into the global semantic field map S, : G — N¥ xH XW, where GG
is a grid discretizing the environment into H x W cells with K possible seman-
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tic classes. Each image I, along the path is segmented by our approach based
on the previous map S;_; and then fused into the semantic map to compute S;
accumulating predictions. We use majority voting to assign the most likely class
when images overlap, leading to multiple predictions for the same map pixel. In
practice, we follow a common lawnmower-like coverage path to efficiently cover
agricultural fields [94], as shown in Fig. @

5.2.2 Automatic Labeling

At each time step ¢, our automatic labeling approach takes as input the image I;,
the current pose X’;, and the semantic field map S;_; to produce a semantic label
for image I;. We use the map S;_; to estimate potential weeds and crops in I,
enforcing spatial consistency to reduce labeling errors. This is possible because
the semantic field map contains information about the set of crop rows detected
in previous images, called R;_;. Our automatic labeling procedure is exemplarily
visualized in Fig. @ and consists of the following steps: first, we extract the
vegetation mask and apply the Hough transform to detect the main crop row in
the current image I;. Second, we propagate all previously detected crop rows R;_1
to the current pose to segment multiple crop rows. All vegetation components
intersecting a line are labeled as crops. Third, we label the vegetation components

with a minimal distance to all rows as weeds.

Hough transform. We compute the binary vegetation mask I, ,,, € {0, 1}V

visualized in Fig. @ (b) via graph-based image segmentation [62], where a pixel
is 1 if it contains vegetation, i.e. crop or weed, and 0 otherwise. We apply the
Hough transform introduced by Hough et al. [90] to the vegetation mask I; v, to
detect crop rows in image I;. This gives us a set of supporting lines in I;,. Each
line [ is parameterized by the distance r;; from the image origin to the line, and
the angle 6,; between the image’s x-axis and the line connecting the origin to the
closest point on the line. The origin is the lower-left pixel of I;. The best-fitting
line is the one that maximizes the overlap with the vegetation mask I;,,. We
show in Fig. @ an example of a fitted crop row line (white). We discretize the
Hough line radius search space using a pixel resolution of [,, = 5px to fit lines
robustly even in the presence of noisy vegetation masks. We define the minimum
number of overlapping pixels 7,, = H to fit the line along the whole image height
if the crop rows are aligned with the y-direction of the camera, and 7,, = W
otherwise. We keep only the best-fitting line of parameters (ry, 6;) returned from
the Hough transform and add it to the set of the crop rows detected in the map
Ri = Ri_1 U (r,0;) to use them in the following step. Based on the best-fitting
line parameters (r, 0;), we create a binary mask I; e, which is 1 for all pixels on

the line and 0 otherwise. We transform the line parameters for this time step ¢
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(a) RGB image I, (b) Vegetation mask I; v,

.

(c) Connected components (d) Detected row [

.

(e) I + rows from R;_; (f) Crop labels

(g) Uncertain areas (h) Final label

Figure 5.3: Steps of our automatic labeling approach for the I; image in (a). In (b), the
extracted vegetation mask I; vy, (white). In (c), we show the connected components,
and in (d) the most prominent crop row detected via the Hough transform (dark blue).
In (e), we see the result after propagating the set of previously detected crop rows R;_1
(light blue) into the current image. (f) shows all components labeled as crops (green).
In (g), we see the area of uncertainty around each crop row. Finally, in (h), we show
the final segmentation, where components outside the uncertain area are labeled as
weeds (red). All the components with at least one pixel inside the uncertain areas are

assigned to the “unknown” class (white).
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5. EXPLOITING SPATIAL ARRANGEMENT FOR SEMANTIC SEGMENTATION

Figure 5.4: Given the vegetation mask, we visualize the line detected by the Hough
transform (in white). Considering the origin as the bottom left corner, we show the pa-
rameters r; and 0; defining the detected line [. The vegetation components intersecting
the line are thus labeled as crop (green). We label the vegetation component on the
far left as a weed (red), since it is far from the detected line.

into the coordinate system of the mapping mission’s origin X, as

| cos(f-1.)
e = || (T7) Te—1,8i0(0;-1,) ; (5.1)
0 2
01 = 0i—11 — &4, (5.2)

where 71 ;cos(6;_1;) and r¢_1,sin(f;_1;) represent the (i,j) coordinates of the
closest pixel to the origin of I; for line [, assuming flat terrain. We save the line
mask to facilitate the computation of the following steps. The mask obtained from
our example image is shown overlayed to the vegetation mask in Fig. @ (d).

Propagating predictions. We use our semantic map S;_; to retrieve the
predicted lines R;_; and propagate them into our current image I;. This enables
the prediction of multiple crop rows consistent with the rows detected in previ-
ously explored areas of the crop field. When ¢t = 0, the semantic map and R;_;
are both empty and we can skip this step. At each time step ¢t > 1, we first
compute the position of the newly acquired image in the coordinate system of
the initial pose X, given by the transformation matrix T € R**3. Then, we
check which lines in R;_; intersect I; and should be propagated into its semantic
prediction using Eq. (5.1) and Eq. (5.2).

We include these lines in I jise, i.e. we set the pixels covered by these lines
to 1. To reduce the computation time, we reject lines that are too close to those

already present in the mask I jine. In particular, we reject line [ if its distance
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to any other line in R; is smaller than 2[,,. In Fig. @ (e), we showcase line
propagation from a previous image, enabling us to detect a second crop row on
the image’s right side.

As we propagate our line predictions from previously recorded images into
the current image, we use an eroded version the vegetation mask I, ,,, to extract
single vegetation components. We use a square kernel of size 3 for the erosion to
remove noise from I, ., and reduce the mislabeling of weeds touching the crops
in the crop row. We then apply standard connected component analysis [22]
on the eroded mask to isolate distinct vegetation components, which we show
in Fig. @ (c). Then, all components intersecting lines in I . are assigned to
the crop class, yielding a new binary mask M; € {0, 1}*W where a pixel is 1 if
it is labeled as crop, and 0 otherwise. We show the result in Fig. @ (f), where
crops are colored in green, and the rest of the vegetation components are still in
white. Next, we describe which remaining vegetation components are assigned
to the weed class.

Weed labeling. Naively classifying any vegetation component in I, not
yet labeled as crops in M; usually results in poor weed label quality. These
remaining vegetation components may still be crops, not labeled because of the
failure of the row detection due to low sensor resolution, wrong odometry or pose
information, or bad lighting conditions [132]. To avoid labeling these potential
crops as weeds, we do not label the vegetation components which are likely to
introduce labeling errors, and ignore them during network training. To this end,
we compute the distance from each of the N crop pixels of M; with value 1 to
their respective closest line as follows

d(i,j) = arg ming, o, )er, i cos(0;,) + jsin(Bry) — ey - (5.3)

We aim to estimate crop sizes along the detected rows using these distances.
Hence, we use an indicator function 1(z,7) that returns 1 if the pixel (z,y) is 1

Z(i,j) ﬂ(ivj) d(i’j)
N

in M; and zero otherwise to extract the mean uy; = and standard

i '74 d '7‘ - 2 o« e .
deviation o5 = \/ Z(”)ﬂ(”)]é ) ~ta) . We define the minimum distance di,

required for any unlabeled vegetation instance to be labeled as a weed as

dmin = 4 + 60_d7 (54)

where § = 3 in our setting, such that only vegetation instances with a large
distance from all rows are considered weeds. We show the uncertain areas around
the crop rows in Fig. @ (g). All vegetation components that were not labeled
as crops and whose distance to the lines is smaller than d,,;, are left unlabeled,
i.e., they are assigned to an “unknown” class. Note that large values of § reduce
the number of components labeled as weeds, while small values of § are prone

to weed labeling errors. The key idea behind this step is that we use py and oy
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to represent the area around the detected crop row where we assume there may
be other crops that were not touched by the line and that we leave unlabeled.
Outside of this area, we are fairly confident that the vegetation component is a
weed as it is far from the detected crop row with plants of estimated size py. The
resulting label for the example image is shown in Fig. @ (h), where components
close to the crop row on the right are not labeled while the component on the

upper-left corner is labeled as a weed.

5.2.3 Learning with Uncertainty

Once we finish our mapping mission as described in Sec. , we can extract any
number of image-label pairs with any size, rotation, and aspect ratio. We use the
extracted labels to train a semantic segmentation network, which will predict a
semantic class also for the pixels currently assigned to the “unknown” class. We
follow the evidential deep learning framework by Sensoy et al. [194] to predict
at the same time both semantic segmentation and the network’s uncertainty.
Estimating the prediction uncertainty enables to account for the “unknown” class
by refining the network’s semantic predictions in a post-processing step described
in Sec. .

The key idea behind evidential deep learning is to predict a Dirichlet dis-
tribution over all possible class probabilities instead of a single point estimate
as in deterministic deep neural networks. In this way, the evidential network
minimizes the prediction error while maximizing the prediction uncertainty for
ambiguous image parts. We use evidential deep learning instead of Bayesian
deep learning approaches [[15,65] as it is empirically shown to produce similarly
or better-calibrated prediction uncertainties [194] while being computationally
more efficient during training than ensemble methods and during inference than
Monte Carlo dropout.

We train the network to minimize for every pixel (i, ) of image I the Bayes
risk cross-entropy

K-1
LCE,(i,j) = Z Y,k (¢(Q(z‘,j)) - ¢(a(z’,j),k)) ) (5.5)
k=1

where 1) is the digamma function, y(; j), = 1 if the pixel (4, ) of I belongs to
ground truth class k, Q) = Zszl Qi )k, and ag; j is the evidence predicted
by the network in support of class k. We do not compute this loss for the pixels
assigned to the “unknown” class, so we sum only over the remaining K — 1
classes, i.e., soil, crop, and weed. We additionally minimize the Kullback-Leibler
(KL) divergence between the uniform D(1x_,) and predicted D(é; ) Dirichlet

distribution for all non-ground-truth classes [[194],

L) = Lok, + AepochKL[D(d(i,j)”|D(]—K—1)]7 (5.6)
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i)k =Ygk T (1= Yk, (5.7)
for all K — 1 classes, and Aepoen = min(1.0, epOCh) with epoch being the current
training epoch and 7" the maximum annealing epoch. We minimize the overall
training loss

| LW
=W D> Ly (5.8)

i=1 j=1
which is the average over all image pixels, iterating over all training images. At
inference time, the network predicts the semantic class and an uncertainty for

each pixel, that we use for our label refinement.

5.2.4 Uncertainty-Based Label Refinement

We use the network’s predicted Dirichlet distribution D(e ;) over all K — 1
classes to quantify the prediction uncertainty for post-processing and refining the
predicted semantic labels. For a pixel (i, 7) of image I, the network’s prediction
uncertainty [194] is given by

K —1
Zk 1 &),

where K — 1 is the number of classes excluding the “unknown” class. In our

Ut (i,5) = ) (5-9)

crop-weed segmentation case, the most under-represented class is weed. Thus,
the network will likely be more uncertain about areas representing weeds than
the other classes. We define an adaptive threshold 7 to select the most uncertain
pixels (7, 7) in any image I as
max (U;) — min (U
= (G 5 (G) + min (Uy) . (5.10)
We compute a binary mask U, € {0,1}" where a pixel (i,5) is 1, if

U, (i,7) > 7, and 0 otherwise. We compute the connected components [22] of
the pixels predicted as crops from the network, aiming to use the ratio between
the size of the object and its number of uncertain pixels to refine the component’s
label. Most of the components have high uncertainty at their instance bound-
aries. However, we are interested only in the components with large amounts of
uncertain interior pixels. We iterate over all crop components cc € {1,...,C}
in our prediction and compute a binary mask C.. € {0, 1}HXW for each compo-
nent, which is 1 for all pixels belonging to the component. We also compute the

components’ bounding box b, = (b%,, by, bheisht p ¥idth) "where b, and bY, are the

coordinates of the upper left corner of the bounding box, while b2 and

are the height and width of the bounding box. We define an adaptive threshold
1 b width bheight

Tee = — Min (—CC. < ) : (5.11)

height ’ dth
4 g g

b width
cc
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(a) Ground Truth (b) Network prediction

(¢) Uncertainty (d) Final prediction

Figure 5.5: We illustrate how we polish the prediction of the network for an exemplary
image. In (a), we show the ground truth labels over the RGB input image, where weeds
are colored in red, and crops are colored in green. In (b), we show the prediction of
the network and highlight the errors with white dotted circles. In (c), we can see the
uncertainty of the network, where highly uncertain areas are colored in green-yellow.
As expected, the network is uncertain about the boundaries of the plants, which are
always hard to classify correctly, and about the weeds. Even the weeds already classified
as crops by the network have high uncertainty. In (d), we show the final prediction
after our post-processing, where we label as weeds the highly uncertain vegetation
components. This corrects many of the network’s errors.
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This threshold helps us avoid detecting as weeds small spikes of uncertainty
that could arise because of shadows, reflections, or insects. In this way, we only
act upon vegetation components where there is a large uncertain area. If the
network is uncertain about the prediction of crop component cc, it holds that

> (i) UG Ceer (i)

idth 7.height
b ™ bee'®

> Tee- (5.12)

If crop component cc fulfills Eq. , we assign the component’s uncertain
pixels (i,7) with Uy ;) = 1 to the weed class. We do not re-assign the whole
vegetation component because our network does not provide instances. Hence,
there may be components that contain both weeds and crops, i.e., when crops and
weeds share a boundary and are not separated by the soil. We show in Fig. @
the result of our post-processing operation for an example image, highlighting
the correspondence between the network’s wrong predictions, the estimated un-
certainty, and the post-processed semantic prediction.

5.3 Experimental Evaluation

The main focus of this chapter is an automatic labeling pipeline for semantic
soil-weed-crop segmentation of RGB images. In the following experiments, we
show how we generate more accurate semantic labels than previous unsupervised
label generation approaches on multiple crop species, growth stages, and lighting
conditions. Our approach outperforms previous approaches thanks to the com-
bination of our spatially consistent generated labels and an uncertainty-aware
semantic neural network. We improve the performance of fully supervised mod-
els on previously unseen crops, growth stages, or soil conditions after fine-tuning
them on our automatically generated labels.

5.3.1 Experimental Setup

Datasets. We employ four datasets, three of which are publicly available: Phe-
noBench [224], as well as the Carrots and Onions datasets from Lincoln Univer-
sity [20]. The last one is the SugarBeets dataset [225] introduced in Chapter E
The Carrots dataset was recorded in Lincolnshire, UK, in June. The field is un-
der substantial weed pressure and contains weeds with a similar appearance to
the crop. Furthermore, several regions contain crops and weeds in close prox-
imity to each other. The Onions dataset was also recorded in Lincolnshire, UK,
but in April. The weed pressure is lower compared to the Carrots dataset. The
PhenoBench dataset was recorded in Meckenheim, Germany, on different dates
between May and June to capture different growth stages. The field contains two

varieties of sugar beets and six different weed varieties. The weed pressure varies
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Table 5.1: Details for all the used datasets: name, reference paper, camera sensor,
image resolution and GSD.

Dataset Camera Image Resolution [px] GSD [”;—)r:‘]

PhenoBench [224] PhaseOne iXM-100 with a 11664 x 8750 1
80mm RSM prime lens on a
gimbal (UAV)
Carrots [20] Teledyne DALSA Genie Nano 2428 x 1985 0.4
deployed on a manually pulled
cart (UGV)
Onions [20] Teledyne DALSA Genie Nano 2149 x 1986 0.4
deployed on a manually pulled
cart (UGV)
SugarBeets [225] PhaseOne iXM-100 (UAV) 4320 x 4100 1.5

Table 5.2: List of the hyperparameters of our method, where they are used, and their
chosen values.

Hyperparameter Method Value
number of pixels for detection (7,;) Hough line detection H (image height)
width of the line to fit (I,) Hough line detection 5 px
confidence interval for crop rows (6) Weed labeling 3
number of annealing epochs (7) Evidential Deep Learning 25

as the dataset contains images from fields that were fully, partially, or not treated
with herbicides at all. Finally, the SugarBeets dataset was also recorded in Meck-
enheim, Germany, over five different weekly sessions. The field is arranged with
small spacing between plants and high weed pressure, inducing challenging con-
ditions. We refer to Tab. @ for information about the camera, image resolution,
and ground sampling distance of the datasets.

Metrics. As in Chapter B and in Chapter @, we use the IoU as a metric for
semantic segmentation. For the automatic labeling pipeline, we also report the
boundary IoU [40] to have a better understanding of the approaches’ limitations.
While the traditional IoU evaluates the overlap between predicted and ground-
truth regions, the boundary IoU is computed only on the objects’ contours.

Training details and hyperparameters. We use ERFNet [184] as our
network and train it using the Adam [107] optimizer, a learning rate of 0.01, and
a batch size of 32. We set T' = 25 in Eq. @ to linearly increase Aepoch Over the first
25 epochs. We report all the hyperparameters of our method with their values in
Tab. . To evaluate the quality of the labels generated by the approaches, we use
them to generate labels for the validation sets of PhenoBench and SugarBeets,

as well as for the whole Carrots and Onions datasets. For PhenoBench and
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SugarBeets, we automatically generate labels for the images in their training
sets to train our network and evaluate the results on the manually annotated
validation sets. We do not split Carrots and Onions to train on them since they
consist of only 20 images each. Thus, we do not use them for model training.
Instead, we evaluate our label generation and the generalization capabilities of
models fine-tuned on these datasets.

Baselines. We use three baselines: two are general-purpose unsupervised
semantic segmentation networks not specifically developed for the agricultural
domain, and one is an automatic labeling method specifically developed for the
agricultural domain. The first baseline is STEGO [[77], which provides an official
implementation for the evaluation alongside the weights of their models. We use
the model based on vision transformers [57] and trained on MS COCO [127].
STEGO predicts per-pixel features and clusters them using the mechanisms of
self and cross attention [213]. Our second baseline is U2Seg [161], which builds
upon STEGO and leverages instance information to overcome some of the limi-
tations of the previous work; they also open-source their code and provide their
models. U2Seg proposes an unsupervised universal segmentation approach that
directly predicts clusters from which it is possible to recover both the semantic
class and the instance ID. We use the model predicting 800 clusters and trained
on ImageNet [p2] and MS COCO. Lottes et al. [132] propose a domain-specific
method for generating per-pixel crop and weed labels. They use a vegetation
mask to detect the main crop row and then label all other vegetation compo-
nents as weeds. We use their official implementation, removing the NIR image
channels. We evaluate their automatically generated labels and the performance
of ERFNet trained on their labels. We train the same ERFNet network with
the same training hyperparameters on their and our generated labels to ensure a
fair comparison. We report the results of ERFNet trained in a fully-supervised
fashion on PhenoBench as a performance upper bound.

5.3.2 Automatic Labeling

In the first experiment, we evaluate the performance of our automatic label-
ing pipeline for semantic soil-weed-crop segmentation on multiple datasets. We
compare against two general-purpose unsupervised semantic segmentation net-
works [77,161] and the domain-specific approach by Lottes et al. [132].

We show the results on all four datasets in Tab. . The general-purpose
approaches perform worse than the domain-specific methods across all datasets,
except for U2Seg on the Carrots dataset. As Onions have thin leaves, they are
hard to detect with common color histogram thresholding methods, such as the
one by Lottes et al. [132]. Furthermore, the weeds in this dataset have a size

similar to the crops, leading to bias in crop row detection and introducing a
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Table 5.3: Performance of all the baselines on the PhenoBench dataset, Carrots dataset,
Onions dataset, and SugarBeets dataset. The top rows are the general purpose ap-
proaches, while the bottom rows are the domain-specific ones. We report the mean
IoU, plus the IoU and boundary IoU per class. In bold the best results per column.

IoU [%)] mloU (%] Boundary IoU [%)]

Dataset Approach
soil  crop weed soil  crop weed

STEGO 214 119 04 11.2 0.0 1.5 0.0
U2Seg 84.6 40.0 24 42.3 458 11.7 34

PhenoBench
Lottes 99.6 44.1 7.6 50.5 0.0 0.0 0.9
Ours 98.8 80.7 7.2 62.2 86.3 79.1 13.2
STEGO 284 5.1 15.8 16.4 0.0 0.9 0.0
U2Seg 80.1 204 2.3 34.3 36.2 0.0 19.3
Carrots
Lottes 9.1 15.9 34.0 46.3 0.0 0.0 6.8
Ours 90.4 12.6 42.7 48.6 84.4 23.6 94
STEGO 26.5 5.1 3.0 11.5 0.0 2.4 0.0
) U2Seg 92.8 0.0 4.3 32.4 24.2 0.0 8.2
Onions
Lottes 9.7 14 1.1 30.7 0.0 0.0 1.6
Ours 95.4 10.7 16.6 40.9 74.2 10.7 16.7
STEGO 249 4.7 1.3 10.3 0.0 1.9 0.0
U2Seg 779 99 6.7 31.5 1.8 2.8 0.0
SugarBeets

Lottes  98.0 23.6 1838 46.8 0.0 0.0 1.5
Ours 97.7 50.6 24.7 57.7 88.7 0.0 1.8

higher risk of confusing the two classes. Our approach for automatic labeling,
i.e., without the uncertainty-aware network, shows higher crop label quality than
Lottes while performing on par or better in terms of weed label quality. Par-
ticularly, Lottes confuses more weeds with crops, while our approach does not
assign labels to hard-to-label vegetation components, as described in Sec. .
The Carrots dataset is the only one where U2Seg outperforms the domain-specific
approaches, which suffer from the weed pressure when estimating the crop rows.
Our method consistently outperforms all other baselines across all datasets cover-
ing different crop species, weed pressure, growth stages, and lighting conditions.
On the Onions dataset, where most approaches fail, we improve by approx. 9%
mloU over the second-best baseline, U2Seg, due to higher IoU in both vegetation
classes. We draw attention to the fact that all pixels classified as “unknown” are

considered errors at this point of the evaluation.
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Image with Ground Truth Ours Lottes et al. [132]

Figure 5.6: Qualitative results of our and Lottes et al. methods on PhenoBench (top
row) and Onions (bottom row). We depict soil in black, crops in green, weeds in red,
and the vegetation that we leave unlabeled in white. We highlight segmentation errors
in dashed blue circles.

To gain additional insights on the accuracy of the generated labels, we com-
pute the boundary IoU. This is important for phenotyping, as accurate boundary
detection helps measure the plant size and growth rate. The metric confirms
the result of the standard IoU. As shown in Tab. @, the approach by Lottes et
al. [132] incorrectly segments boundaries on most of the datasets. This might be
due to wrongly segmented vegetation masks. Aiming to include the boundary of
weeds more accurately may worsen the overall performance, as the soil could be
mistakenly classified as vegetation. The results suggest that our approach might
suffer from the same problem on the Carrots dataset. The discrepancy between
IoU and boundary IoU per class suggests that we underestimate the size of weeds,
i.e., high IoU but low boundary IoU for weeds, and overestimate crop size, i.e.,
low IoU but high boundary IoU for crops. On the Carrots dataset, U2Seg out-
performs the other methods in the weeds boundary IoU. The weed IoU suggests
that U2Seg overestimates weeds, thus obtaining a boost as the total number of
pixels in the IoU computation is low. On the Onions dataset, our method’s IoU
and boundary IoU are almost the same, irrespective of the semantic class. Since
the crops and weeds are thin, the boundary area covers the whole vegetation
instance. The other approaches fail to correctly assign weed and crop boundaries
on the Onions dataset, which is a direct result of the low IoU on both weeds and
crops. On the SugarBeets dataset, all approaches fail to predict boundaries, most
likely due to unusually high weed pressure. Our method accurately segments soil
boundaries, suggesting that it at least successfully differentiates between soil and
vegetation. Overall, the results indicate that most approaches underestimate the

size of vegetation, both crops and weeds. Instead, our automatic labeling method
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Table 5.4: Performance of ERFNet trained on the labels generated by ours and the
approach by Lottes et al. We also report the results when we use the uncertainty
to post-process the semantic predictions. The bottom line shows a fully supervised
approach trained on manual labels as upper bound of the performance. Best results

per column in bold.

IoU [%]
soil crop weed

mloU [

Approach

Lottes et al. + network 99.1 546 11.2 55.0

Lottes et al. + uncertainty 99.1 27.2 8.1 44.8
Ours + network 99.1 88.8 21.0 69.6
Ours + uncertainty 99.1 88.6 22.7 70.1

ERFNet 4+ manual labels 98.0 83.4 33.5 71.6

shows the strongest boundary segmentation performance across all methods and
classes on most datasets, often by a large margin compared to the second-best
method. This further verifies our claim that our automatic labeling pipeline gen-
erates more accurate semantic soil-weed-crop labels than previous methods. We

show qualitative results of Lottes et al. [132] and our approach in Fig. @

5.3.3 Unsupervised Semantic Segmentation

The second experiment evaluates the performance of our automatic label genera-
tion combined with network training and uncertainty post-processing. For that,
we use the PhenoBench dataset. We show that training the evidential ERFNet
using our automatically generated labels outperforms other unsupervised seman-
tic segmentation models. The general-purpose learning-based approaches [[77,[161]
have not been fine-tuned on human-labeled field images to ensure a fair compar-
ison. We use our approach and the one by Lottes et al. [132] to generate labels
for all images in the PhenoBench training set to train on the same set of images,
thus having a fair comparison with the fully supervised ERFNet model trained
on the manual labels.

Tab. @ presents the performance of the network with and without uncer-
tainty post-processing. We use “+ network” to refer to the results obtained by
ERFNet after being trained on the labels generated by the approach, and we
use “4 uncertainty” to refer to the results after we post-process them using the
estimated uncertainty.

The results indicate that the approach by Lottes et al. [132] confuses more
crops with weeds since it simply assigns all vegetation components that are not
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on the main crop row to the weed class. This introduces inconsistent labels in
the model’s training data. Thus, training the ERFNet on Lottes et al.” labels
does not yield uncertainty estimations that are useful for improving their pre-
dictions during post-processing. Additionally, this leads to smaller performance
improvements after training on their labels than after training on our labels. Us-
ing our generated labels to train the ERFNet substantially improves the weed
and crop predictions over directly using our generated labels. We further im-
prove mloU and weed predictions by exploiting the estimated uncertainties for
post-processing of the network’s predictions. Most importantly, combining our
approach with the uncertainty refinement noticeably closes the performance gap
between fully supervised and state-of-the-art unsupervised approaches. However,
the ERFNet trained on human-labeled training images still predicts weeds more
accurately. As the fully supervised model predicts more weeds, it also confuses
weeds with crops more often. Hence, our approach performs better on both the
crop and soil classes. This experiment confirms that our method’s conservative
labeling strategy, which excludes vegetation components prone to introducing
labeling errors, combined with evidential deep learning, significantly reduces the

reliance on manual annotations.

5.3.4 Generalization Capability

In the third experiment, we assess how our approach enhances the performance of
networks trained in a fully supervised fashion by fine-tuning on unseen fields using
our automatically generated labels. Instead of employing our full uncertainty-
aware architecture, we fine-tune an ERFNet model using the standard cross-
entropy loss pre-trained in a fully supervised fashion. We train two ERFNets,
one on each of the human-labeled training sets of PhenoBench and SugarBeets.
We deploy the two models on all the other datasets. Then, we fine-tune the two
models, leveraging our automatically generated labels for the SugarBeets and
PhenoBench datasets. Each model is fine-tuned on the dataset that it was not
trained on.

In Tab. @, we show the performance of the two models before and after
fine-tuning. Due to the domain gap between datasets, models that were not fine-
tuned have a lower performance when evaluated on unseen data. Fine-tuning
alters the data distribution, leading the model to converge to a different local
minimum. Usually, this deteriorates the performance on the original data, as the
model prioritizes features relevant to the new distribution over those previously
learned. Our results suggest that using our automatically generated labels helps
to close the performance gap on previously unseen datasets with different crops,
soil types, lighting conditions, and sensor setups. Generally, our fine-tuned mod-

els perform better on all classes and datasets, even on the Onions and Carrots
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Table 5.5: Performance of fully supervised models trained on manually annotated data
(first row), and fine-tuned on labels generated by our approach on a second dataset. In
bold we highlight the best results per metric and per test set.

loU
Train Test oU [%] mloU %]
soil  crop weed
PhenoBench S Beot 935 7.3 168 39.2
ugarBeets
PhenoBench (+ SugarBeets) & 93.7 51.7 25.0 56.8
PhenoBench Carrot 89.0 11.1 47.1 49.1
arrots
PhenoBench (+ SugarBeets) 86.5 26.0 354 49.3
PhenoBench Oni 824 05 11.3 31.4
nions
PhenoBench (+ SugarBeets) 87.7 55 6.9 33.4
SugarBeets PhenoBench 97.6 67.0 11.7 60.2
enoBenc
SugarBeets (+ PhenoBench) 975 76.8 16.4 63.6
SugarBeets Carrot 87.6 36.1 24.3 49.0
arrots
SugarBeets (+ PhenoBench) 88.6 38.2 34.3 53.7
SugarBeets Oni 86.3 0.2 13.2 33.2
nions
SugarBeets (+ PhenoBench) 87.3 12.3 13.9 37.8
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datasets that the model did not see during either the pre-training or fine-tuning.
The model fine-tuned on SugarBeets does not gain much, i.e., less than 1% point,
on the Carrots dataset. We hypothesize this is because the SugarBeets dataset
is approx. 10x smaller than Phenobench, which introduces data imbalance, while
also having lower quality labels compared to the manual annotations. In sum-
mary, using our automatically generated labels helps to fine-tune fully supervised
models, enabling better adaptation to unseen field conditions without any addi-

tional human labeling costs.

5.4 Discussion

Most learning-based semantic segmentation approaches assume access to large
amounts of human-labeled data required to train the vision model. However,
their performance rapidly decreases in field conditions they were not trained on,
i.e., different crop species, growth stages, weed pressure, and lighting conditions.

To address this issue, we proposed an automatic labeling approach to obtain
semantic information from RGB images of agricultural fields. Our method has
similar semantic segmentation performance to a fully supervised model trained
on large amounts of human-labeled data. This significantly reduces the need for
manually annotated data, diminishing costs and loosening the need for domain
experts. The arable field datasets considered in our experimental evaluation re-
port an average of 2 hours per image for labeling the Onions dataset, 3-4 hours
per image for the Carrots dataset, and 1-3.5 hours per image for the PhenoBench
dataset. All of the datasets went through at least two labeling rounds, doubling
the costs. This suggests the need for new labeling paradigms besides fully su-
pervised model training while maintaining strong prediction performance. Our
method is a crucial step in narrowing the performance gap between models trained
unsupervised and fully supervised models without additional labeling costs.

The results of our experiments indicate that the fully supervised approach has
a lower performance in segmenting crops compared to our unsupervised method,
as it is trained on more weeds. Nevertheless, the fully supervised method still
shows the highest mIoU. The unsupervised methods are not exposed to enough
weed labels, making them assign the crop class more often. Since the number of
crop pixels is generally higher, these errors have a smaller impact on the crop than
on the weed segmentation. We also investigate how to leverage our automatic
labeling in combination with supervised methods to improve the overall perfor-
mance in challenging scenarios, i.e., in unseen fields with new crop species and
different weed pressure. Fine-tuning degrades performance on the pre-training
dataset, as shown in Tab. @ The degradation largely depends on the size and

similarity of the pre-training and automatically labeled dataset used for fine-

72
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tuning. Future work could investigate continuous learning methods to train on
the newly automatically labeled images without catastrophically forgetting what
has already been learned.

The need for images with associated pose information can be a limitation of
our method, as it cannot be applied to a dataset of unposed images. However,
most agricultural datasets are recorded using aerial or ground vehicles that, by
default, provide spatial information while recording images in the field, often us-
ing GNSS systems such as GPS. Furthermore, we assume deployment in fields
with a typical crop row structure. If this assumption does not hold, for instance
in the presence of irregular planting patterns or when the weeds are larger than
the crops, our crop row detection may fail, leading to degraded results. Ad-
dressing this limitation would require alternative unsupervised strategies that do
not rely on the knowledge of the structured spatial arrangement. These could
instead incorporate additional cues to distinguish between plant species, such
as information from thermal or NIR images. Our results, along with those by
Lottes et al. [132], demonstrate that a higher-quality vegetation mask could en-
hance the performance of unsupervised methods. One possible solution is to use
NIR images, which are less dependent on the lighting conditions compared to
RGB images. NIR images are already commonly used for crop segmentation in
agriculture [44,[188]. Moreover, our approach leverages uncertainty estimates to
post-process semantic predictions. Current state-of-the-art methods are known
to produce partially miscalibrated uncertainty estimates [[15]. Thus, our post-
processing could benefit from improvements in uncertainty-aware deep learning.

Finally, we plan to deploy our approach on a real robot to perform field trials.

5.5 Conclusion

In this chapter, we presented a novel approach to automatically generate se-
mantic soil-crop-weed labels of images from agricultural fields. As a key aspect,
our approach generates a semantic map of the entire field using robot pose in-
formation and exploits the row structure of the plant arrangement to produce
high-quality and spatially consistent labels used for training semantic segmenta-
tion networks. We further enhance the semantic segmentation performance by
employing evidential deep learning to estimate prediction uncertainties, enabling
better identification of the typically under-represented weed class and allowing
our targeted post-processing. Our results highlighted that incorporating domain
knowledge, in this case about the spatial arrangement and the imbalanced dis-
tribution between crops and weeds, improves the quality of scene understanding
tasks without the cost of additional labels. We evaluated our approach on four

datasets recorded with different robotic platforms and in various fields. Our ap-
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proach consistently outperforms previous domain-agnostic and domain-specific
unsupervised labeling approaches. Moreover, we demonstrated that our gener-
ated labels enable fine-tuning fully supervised networks trained on one dataset
for new agricultural fields, e.g., different species, growth stages, and field con-
ditions, enhancing generalization capabilities without additional human labeling
effort. Looking forward, the next critical step in field-based phenotyping requires
us to distinguish individual plants, a challenge that we aim to address in the next

chapter.
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Chapter 6

Exploiting Crop Knowledge in
Plant Instance Segmentation

UILDING on the semantic segmentation task discussed in the previous
chapter, we now move to the next stage in the phenotyping pipeline:
plant instance segmentation. While semantic segmentation classifies
each pixel by class, i.e., soil, crop, or weed, instance segmentation goes
one step further by assigning a unique identifier to every individual object in the
scene. In essence, instance segmentation combines object detection and semantic
segmentation by identifying each object in an image and delineating its precise
shape at the pixel level. This is important in agricultural scenes, where separating
individual instances allows for fine-grained analysis of fruits [99], plants [196,233],
and leaves [74,[137], laying the ground for trait extraction and growth monitoring.

In this chapter, we focus on plant instance segmentation using images of crop
fields [3], as shown in Fig. Ell The goal of the task is to assign a unique ID
to every observed plant. We target plant instance segmentation because it is a
critical step towards phenotyping [30,222]. It enables determining the growth
stage of the crops, providing direct insights for yield estimation and targeted
watering or fertilization, thereby reducing resource waste [152]. Plant instance
segmentation is particularly challenging due to overlapping foliage and the irreg-
ular, complex shape of leaves. Heuristics- and learning-based approaches both
struggle to address these problems.

The instance segmentation problem was originally tackled using heuristic-
based techniques, which exploit geometric background knowledge about the do-
main. As we have already seen in this thesis, such knowledge can be useful
for specific applications, and it can also be combined with learning-based sys-
tems to bootstrap approaches when training data is unavailable or hard to ob-
tain [134,[181]. Today, machine learning, often deep-learning approaches such as

convolutional neural networks or transformer architectures [41,230] are widely
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Figure 6.1: Robotic UAV systems equipped with RGB cameras, such as the drone shown
in the left image, can capture images of agricultural fields for monitoring purposes. On
the right we can see one exemplary image and the desired result for the plant instance
segmentation task, where we assign a unique identifier to each plant. In the image,
different identifiers correspond to different colors.

used. However, it is often required to adapt the heuristics or re-train the learn-
ing approaches to achieve satisfactory performance on a new crop species or field.
This depends on the diversity of the crop varieties, on the common ”closed world”
assumption of the models that are trained on a small subset of classes, and on
the ambiguous definition of crops and weeds in different agricultural settings, i.e.,
what is a crop in one field can be a weed in another.

Many approaches rely on neural networks trained on large datasets of paired
texts and images, and a new paradigm has recently been proposed. These so-
called vision-language models [] have competitive performance compared to
fully supervised methods in many computer vision zero-shot tasks, i.e., without
adapting the model using additional training examples from the new domain.
However, the performance deteriorates with increasing task complexity or when
the application domain diverges too much from the original training dataset []
The domain gap is often tackled by fine-tuning the models on manually anno-
tated data from the new application domain [@, @] We investigate a novel
route to narrow the domain gap, leveraging domain-specific heuristics-based post-
processing to enhance our final performance without requiring in-domain labels.
Only a few works have explored the combination of heuristics- and deep learning-
based approaches to get the best out of both worlds. This motivated us to develop

76
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Vision-language
Segmentation

Refine

or
Plant Instances

Graph-based
Segmentation

RGB image Plant Instar.lce Refined Plant Instance
Segmentation

Figure 6.2: An overview of our approach. Taking as input an RGB image, we either
perform a domain-specific graph-based segmentation or a vision-language model to
obtain instance proposals. Then, we employ domain-specific heuristic to select which
instances to split as explained in Sec. . The output is the unsupervised plant

instance segmentation.

a pipeline to enhance deep-learning methods, i.e., reducing the need for labels and
improving the networks’ generalization capabilities. We illustrate our pipeline for
an exemplary image in Fig. 5.2.

The main contribution presented in this chapter is a novel method to generate
plant instance segmentation labels without requiring training data. We propose
two ways to predict a first instance segmentation using (i) a vision-language
model, or (ii) a graph-based image segmentation algorithm. These first predic-
tions are then refined using domain-specific heuristic post-processing to improve
our generated labels. Our experimental evaluation demonstrates that our ap-
proach can produce plant instance segmentation labels, which can then be used
to train fully supervised methods, requiring fewer manually acquired labels and
boosting their final performance. The experimental evaluation shows that our ap-
proach not only produces higher-quality plant instance labels compared to other
state-of-the-art automatic labeling methods but also enhances the performance
of neural networks when these labels are used as additional input. Moreover,
our approach reduces the dependence on manually annotated data used as pre-
training data, and it improves the model’s ability to generalize to new, unseen
fields where no ground-truth data is available.

6.1 QOwur Approach to Segment Plants Using

Prior Knowledge

Our approach exploits domain-specific post-processing to refine the results of
either a vision-language foundation model or a modified version of the graph-
based image segmentation by Felzenszwalb et al. [@] Given the set of detected
objects, we refine the mask of every instance to ensure that it includes a single
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plant, geometrically solving the problem of overlapping plants that confuses most
approaches. Our refinement builds upon edge detection to determine the bound-
aries of the plants and includes domain knowledge to split the instances without
requiring further training or additional manual labels. In the following sections,
we will first explain vision-language foundation models in Sec. m, and how we
modified the approach by Felzenzwalb et al. [62] in Sec. blj In Sec. bl.i we

discuss our heuristics-based refinement operation, while in Sec. blfl] we intro-

duce the optimization framework for the graph-based approach. Based on the
proposed instance segmentation approach, we investigate multiple settings for
training deep learning-based approaches in Sec. .

6.1.1 Vision-Language Model

Vision-language models comprise an object extractor that identifies objects in a
given image using bounding boxes, and a segmentation network that generates
pixel-wise masks for each detected object. Replacing the object detector or the
segmentation network does not require any adaptation, since the two blocks have
standard input-output pairs.

RIXWx3 and a set of

The object detector takes as input an RGB image I €
text prompts. It extracts image features X; € RV >4 and text features Xy €
RN7%4_ where N; is the number of image tokens, Ny the number of text tokens,
and d corresponds to the feature dimension. These features are fused as X =
X;X; and then passed to a decoder to obtain the detected objects o; € OVi,
each one with its bounding box BB;. The approach employs two thresholds:
one to filter objects based on their prediction confidence, and one to filter them
based on their alignment with given text prompts. Each object o; is identified
by a prompt, that reflects the object class, and a binary mask M; € {0, 1}HXW,
where the value is 1 if that pixel belongs to the object, and 0 otherwise. To
maximize the possibility of detecting all the relevant objects in the images we
define prompt; € {soil, crop, weed, single plant, vegetation}, and assign to the
same vegetation class all detections with prompt, # soil. Using multiple synonyms
for the vegetation class enables the model to capture the different vegetation
components more accurately [72]. The filtered bounding boxes BB, from the
object detector are the input for the segmentation network to extract pixel-wise
masks M; for each bounding box. The mask has one associated “semantic class”
which is the prompt, with the highest confidence score.

The results of such zero-shot instance segmentation models have two major
short-comings: (i) the object detector allows some pixels in the image I not to
be part of any detection; (ii) because of the difficulty of correctly separating
overlapping plants, some detections need a refinement step to assign a unique

ID to each plant. To solve the first problem, we compute the average RGB
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Figure 6.3: Output of Grounded SAM2, where soil is colored in purple and the vegeta-
tion instances are colored in different colors and surrounded by their bounding boxes.
The leaves (A) in the upper-left corner are not segmented, as well as the weed (B) in
between the two detected instances (C and D). Additionally, C and D both consist of
multiple overlapping plants.

color for all pixels assigned to the vegetation and soil classes after the first step.
We then use the cosine similarity to assign all not-segmented areas of I to the
class — vegetation or soil — with the most similar color. Every area assigned to
the vegetation class also gets a new instance ID. In this way, we correct both for
undefined objects in the field, i.e., stones, wires, and pipes, that we want to assign
to the soil class, and for missing vegetation detection. At the end of this step,
all pixels have a semantic class, and every vegetation pixel is part of an instance.
As already mentioned, to solve the second problem, we need a refinement step.
Such a refinement operation is discussed in Sec. , as it is also required by
the graph-based image segmentation method. We show in Fig. @ both of these
problems in an image from PhenoBench, where some leaves in the upper left
corner (A) and a weed in the middle of the image (B) are not detected, and
where multiple plants are segmented as a single instance (C and D).
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6.1.2 Graph-Based Image Segmentation

The second possibility we explore to obtain candidates for the instances is the
graph-based image segmentation by Felzenszwalb et al. [62]. We take as input the
same RGB image I, smooth it using a Gaussian kernel with standard deviation o,
and build for each image a graph G = (V| E) with vertices V and edges E, where
each pixel p, is a vertex v, and each edge ¢ = (u,v) € E between pixels u and
v has a weight w(u,v) € R. We stick to the original implementation using the
N, neighborhood, i.e., defining for each pixel of coordinates (i, j) edges with its
four neighbors, with the coordinates (i — 1,5), (i,7 — 1), (4,5 + 1), and (i + 1, j).
The weight w(u,v) associated to each edge represents the dissimilarity between
vertices v and u, i.e., the pixels p, and p,. The dissimilarity is the measure used
to define where to cut the graph and separate it into distinct segments.

The original implementation computes the dissimilarity w(u,v), between u
and v as

w(u,v) =v/(ug — vr)? + (ug — vg)? + (up — vB)?, (6.1)

where (vg, vg, vg) and (ug, ug, ug) are the values of the red, green, and blue
channel of pixels p, and p, associated with vertex v and u, respectively.

In our work, we aim to represent only the differences between the ground and
the vegetation; hence, we change the dissimilarity to

vy IO =B, 00 > e 0r w0 > 7o
0 , otherwise

where 1(v) = 2ug —vr —vp is the excess green index [228] computed for vertex v,
and Tgcq is a fixed threshold to compute the dissimilarity only for pixels that
belong to the vegetation mask according to the excess green index. Once we have
the graph, we initialize each node as a distinct segment in the image and run
the algorithm by Felzenszwalb et al. [62] to combine the segments and obtain the
final segmentation of the image. More specifically, the algorithm iterates over each
edge e € F, in increasing order of weights, i.e., from the edges between similar
to dissimilar segments (pixels). Formally, two disjointed segments C;, Co C V,
where C; N Cy = (), are merged together if

e(r:m%c w(u,v) < M min(B(k,Cy), B(k,Cs)) (6.3)
(u,i)’)GE2
with
/ / k
B(k,C;) = max w(u',v") + —=, (6.4)
u' w'eC; |CZ|
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where M defines the margin of difference between the two segments and the
maximum dissimilarity between two elements of the same segment to keep them
separated, and k defines how fine or coarse the final segmentation should be. For
further details on the implementation of the algorithm, we refer to the original
paper by Felzenszwalb et al. [62].

At this point, we have an instance segmentation with no semantic information.
We use the mean of the RGB values for each segment C; to distinguish between
soil and vegetation. We use the excess green index and the same threshold 7
from Eq. (@) to assign the semantic classes y, as

soil Jif ﬁ > uee, Y(u) < Trxa

plant , otherwise

y(CGi) = (6.5)

Using the graph-based image segmentation method has one advantage over
using VLMs: we always obtain a class for all pixels in the image. However, since
the classification is based on heuristics and not learned from data, it is possible
that the chosen threshold mgg does not provide a correct prediction when there
is a gap between training and testing data. Such situations are common in the
agricultural domain when we encounter changes in light, soil color and texture,
and crop species.

To obtain the instances, we need to ensure that we merge the leaves that have
been separated from the main body of the plant into one component. The over-
segmentation of a single plant can happen because of lighting conditions, small
peduncles that are not visible after smoothing the image, and boundaries between
adjacent and overlapping leaves. To better follow the next steps of the approach,
we visualize them in Fig. . In Fig. (a) we see the graph segmentation,
and in Fig. @ (b) the output of Eq. (6.5). We then merge close segments of the
vegetation using dilation. For a pixel p of coordinates (7, j), the dilation returns
a value depending on its neighbors N (i, j) as

1,J) = max 1+x,7+y). 6.6
p(i,j) 1D(MQ\W)I)( j+y) (6.6)

This operation can be applied n times iteratively and has no defined concept
of neighbors. In our implementation, we use N (i,7) = {(r,s) | =y <r,s <},
where the kernel size v defines the size of our neighborhood. The kernel size
~v and the number of iterations n are both hyperparameters we can tune. The
result of the dilation is shown in Fig. (c). After dilation, we can compute the
connected components [22] as depicted in Fig. (d). A connected component
in a binary image is a set of adjacent pixels that share the same property: in our
case, there will be components with value 0 or 1.

At this point, we have an instance segmentation, but we need to filter out the

pixels that were not in the original vegetation segments. We need to multiply
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¢
N

(a) Graph segmentation

(b) Extracted vegetation mask

(c) Dilated mask

(d) Connected Components

(e) Product of (d) and (b)

Figure 6.4: From top to bottom we show the graph segmentation, the extracted vege-
tation mask, the mask after dilation, the result of the connected components, and the
product of the connected components with the vegetation mask.
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(a) Instance before (¢) Ietinst (d) Ietinst

refining erosion

(e) Largest Ninst  (f) Assignment of (g) Final points’ (h) Mask after
components all components assignment cleaning

Figure 6.5: Step-by-step images depicting how we address the splitting of instances.
In (a), we see the unified instance in red, while in (b) we show its edges. (c¢) shows the
results of the XOR operation between the instance mask and Iegges. In (d), we can see
the result of the erosion; eroded points are colored in blue. In (e), we show the largest
components colored in white, azure, green, and pink, while in (f) we see the assignment
of all the other components. After assigning the blue points using a voting mechanism,
in (g), we use red dotted circles to highlight points assigned to one instance but not
connected to it. In (h), we show the final instance segmentation after cleaning.

83



6.1. OUR APPROACH TO SEGMENT PLANTS USING PRIOR KNOWLEDGE

again for the semantic mask, filtering out all the pixels originally classified as soil.
The output of this step is the plant instance segmentation shown in Fig. @ (e),
i.e., one image where each pixel has either value 0 if it is soil or a positive value
N as the instance ID of the predicted plant.

As for the results of the vision-language model, we are left with the problem
of separating instances of overlapping plants that are currently merged.

6.1.3 Plant Instance Segmentation Refinement

The methods used to produce candidates for the plant instance segmentation
have difficulties separating single plants when they overlap. We propose refining
these instances by once again leveraging domain knowledge.

First, we need to detect which instances to refine. Using crop-specific knowl-
edge, we can design a split function f(Ii,s) € {True, False} that takes as input
one instance binary mask M; and return True if the instance needs to be split.
In our implementation, we use the aspect ratio a = %’Z to detect if the instance
needs to be refined. In this way, we avoid using the number of pixels as a proxy
for when to split the instance, which is problematic when we encounter plants of
different growth stages, i.e., the same number of pixels could belong to two early
growth stage plants or one late growth stage plant. Thus, we define the split
function as follows:

True ,ifa>rT,
JM;) = , (6.7)

False ,otherwise

where 7, is the aspect ratio threshold. At this point, we can also have an estimate

of how many instances N; have been aggregated according to our threshold, as

N =la/7,]. (6.8)

Eq. (@) can be expanded as IV; = II}, ‘g—ﬂ We use the aspect ratio because
it is independent of the plant size and image resolution. Since the number of
instances can only be an integer, we only take the integer part of the result,
which also provides a tolerance, i.e., an aspect ratio a = 1.3 with a threshold
T, = 1 detects only one instance with a margin of 0.3 of difference in the ratio.
We do not allow the number of instances to be less than one. If this assumption
is violated, we compute the aspect ratio as W;/H;, which means that the crop
row in our image is oriented horizontally instead of vertically.

We refer to Fig. @ to illustrate the steps we perform once we identified
an instance that needs to be split, since it actually comprises multiple plants.
Fig. @ (a) shows one red instance that our approach decides to split. We can

compute the edges Legges € {0, 1}HXW from the original RGB image with any edge
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detector: in our implementation we first apply a smoothing to the image and then
use the edge detector by Canny et al. [25]. Icqges is shown in Fig. @ (b). We
then exclude the edges from the instance mask with a bit-wise XOR operation
between Igges and M;, we call the output Leiing shown in Fig. @ (c). Since
we cannot guarantee that the edge detector finds smooth and optimal edges to
separate our instances, we erode I, using a kernel of size ~y; this will expand our
edges and better separate the instance, as can be seen in Fig. @ (d). We apply
connected components and select the NV; components with the largest areas as our
new instances. The N, instances detected in our example are the ones colored
in white, light blue, green, and pink in Fig. @ (e). We iteratively assign all
the other components to the closest instance, computing the Euclidean distances
between the centers of the components. The result of this iterative process is
shown in Fig. @ (f).

Now, we need to take care of pixels belonging to the original instance and that
were removed with the erosion, depicted in blue in Fig. @ (f). For each of them,
we compute the set of neighbor pixels belonging to an instance. We then count
the number of neighboring pixels assigned to each instance and assign the pixel
to the instance with the highest count. The result is shown in Fig. @ (g). There,
we see in red dotted circles the pixels assigned to an instance but not connected
to it. We clean the mask, keeping the largest component for each instance ID as
it is, while assigning the smaller components to an existing instance connected to

it, or a new instance otherwise. The refined instances after these operations are
shown in Fig. @ (h).

6.1.4 Graph-Based Hyperparameters Optimization

When we use the graph-based image segmentation method, our approach is en-
tirely based on heuristics and has seven hyperparameters. Three are for the
graph-based segmentation: the kernel for the Gaussian smoothing o, the margin
between the maximum internal and external dissimilarity M, and the coarseness
of the segmentation k. The additional four parameters are the threshold for
the excess green index Tgyq, the kernel size 7, the number of iterations n for the
dilation, and the aspect ratio threshold 7, for the post-processing and refinement.

We use Optuna [[7] to perform hyperparameter optimization, aiming to max-
imize the Panoptic Quality [L08] over the images of the training set. We fix the
excess green index threshold g = 0.2 and the aspect ratio threshold 7, = 1.
We found these values by inspecting different images and their mean green excess
index masks. We validate our choice for the value of Tg,¢ by computing the ex-
cess green index value over vegetation pixels of different datasets. All results were
between 0.2 and 0.25. The IoU of our approach also suggests that the threshold
can capture the vegetation components of different datasets. We fix the kernel
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size v = 3, which is the default value in most of the graphic libraries [22,212],
and the number of iterations n = 10, which for high-resolution images is a 2 cm
dilation, i.e., the maximum error we allow in our vegetation mask to reconnect
components of the same plant. We use these values for all experiments except
those in which we estimate the importance and range of the hyperparameters,
where we show that these values are in the optimal ranges.

This leaves us with only three parameters to fine-tune, which are those from
the original implementation of the algorithm: the kernel for the Gaussian smooth-
ing o, the margin between the maximum internal and external dissimilarity M,
and the coarseness of the segmentation k. For each hyperparameter to tune,
we must define its type, i.e., integer or floating point, and the range of possible
values. The framework runs the same experiment multiple times, varying the
hyperparameters based on the results of the previous trials. In our case, each
trial returns the panoptic quality, and we seek to maximize its value. We use the
tree-structured Parzen estimator [165] to sample the hyperparameters.

Given the number of parameters to optimize and their range, we can compute
the number of trials 7" required by Optuna [[7] to try every combination. If H is
the set of hyperparameters and range(h) is a function returning the number of

possible values of h, we can compute

T = H range(h). (6.9)

heH

With only three hyperparameters to optimize, we can make fewer trials to
find the best configuration, focusing on the optimization of the graph hyperpa-
rameters. Importantly, hyperparameter tuning is required only to obtain the
best possible performance. As we will show in the experiments, this step is op-
tional as our approach can generalize across different datasets, growth stages, and

illumination changes with a fixed set of hyperparameters.

6.2 Experimental Evaluation

The main focus of this work is a fully unsupervised pipeline for plant instance
segmentation that exploits vision-language foundation models or graph-based im-
age segmentation and domain-specific post-processing. The approach takes RGB
images as input and computes plant instance annotations that we use to (i) boost
the performance of networks on data for which we have labels and (ii) improve
the generalization of a network on different fields.

In Sec. , we show the results of different vision-language and heuristics-
based methods and how our domain-specific post-processing improves their re-
sults on different agricultural datasets; then in Sec. , we show how to use
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our generated labels to improve the generalization capabilities and reduce the

requirement for manually annotated data of fully supervised learning methods.

6.2.1 Experimental Setup

Datasets. We test our approach on three RGB agricultural datasets. Two of
them are recorded on fields of sugar beets: one was introduced by Weyler et
al. [222], denoted as SugarBeets, and the other is the public benchmark dataset
PhenoBench [224]. The third dataset is GrowliFlower [106], which is recorded
on a field of cauliflowers. The three datasets have different image resolutions,
lighting conditions, and growth stages; furthermore, only PhenoBench provides
weed annotations. We use the official validation and test sets for all of them.
The SugarBeets dataset, which is not publicly available, consists of 745 images
for training, 272 images for validation, and 278 images for testing.

Metrics. We compute the intersection-over-union (IoU) [60] for the vege-
tation, or as the mean over crops and weeds. We also compute the panoptic
quality (PQ) [L09] to evaluate the quality of the instance segmentation.

Details and hyperparameters. Our approach with vision-language mod-
els has two hyperparameters: the kernel size v and the aspect ratio threshold 7,;
while our approach with the graph-based image segmentation method has seven
hyperparameters, of which we tune three using the Optuna optimization frame-
work [[7] as already mentioned in Sec. m We analyze the importance and the

range of the optimal hyperparameters in Sec. w In all the experiments, we
fix the aspect ratio threshold 7, = 1 and the kernel size v = 3. We train all
networks using the configuration suggested in their original papers unless they
give different parameters for the specific dataset.

Baselines. We benchmark against heuristic-based approaches similar to our
domain-specific post-processing and the results of the vision-language models
without our post-processing. In particular, we try two different object detectors,
Grounding DINO [128] and Florence2 [229], and two versions of the Segment
Anything Model [175], SAM2 and SAM2.1. These changes do not alter the input
that we provide or the outputs that the foundation models supply to our domain-
specific post-processing. Detailed information about the different object detectors
and pipelines can be found in the original papers.

As a first heuristics-based baseline, we use the original implementation of the
graph-based image segmentation by Felzenswalb et al. [62]. The comparison to
this baseline helps us assess how much our domain-specific adaptations improve
the performance of the segmentation compared to the general-purpose method.
The second heuristics-based baseline is the vegetation mask based on the hue
histograms [81], which is a commonly used option that does not suffer from the

changes in lighting and weather conditions affecting the RGB values of the images.

87



6.2. EXPERIMENTAL EVALUATION

Table 6.1: Results of the vegetation IoU and PQ for all baselines on all the different
datasets. In bold the best results for each metric and dataset. Our results highlighted
in gray. All results are given in %.

A SugarBeets ‘ GrowliFlower ‘ PhenoBench
pproach
oU [%] PQ[%] | ToU [%] PQ[%] | IoU [%] PQ [%]
o Graph-based [62] 58.1 47.8 62.7 35.2 68.3 3.9
2 HUE [81] 67.8 34.8 71.3 13.9 74.5 2.6
S ExG [22§] 73.1 66.8 76.3 24.5 75.1 22.6
= Graph-based + ours 76.6 70.1 84.1 75.9 81.8 51.4
Grounded SAM2 72.9 78.6 72.0 74.1 58.2 60.6
Grounded SAM2 + ours 75.2 78.1 88.1 79.0 77.3 66.3
ﬁ Florence2 + SAM2 33.4 47.5 78.3 61.3 59.6 44.2
g Florence2 + SAM2 + ours 72.2 75.4 80.9 82.9 62.9 67.0
Grounded SAM2.1 69.9 86.3 66.4 84.0 45.3 62.7
Grounded SAM2.1 + ours 75.1 83.3 88.6 85.2 78.7 66.0

Since we use the excess green index in our dissimilarity function, we report the
results of the excess green index [228] where we employ a threshold to obtain a
vegetation mask based on the predominance of the green color in the vegetation.
For all the heuristics-based baselines, we compute the plant instance segmentation
from the vegetation masks as explained in Sec. .

We use the same deep-learning baselines we compared to in Chapter , retain-
ing their acronyms. Mask R-CNN [83], denoted as MR, PanopticDeepLab [39]
with MobileNetV2 [191] as the backbone, denoted as PD-S, and the approach by
Weyler et al. [222], denoted as Weyler. As a last deep-learning baseline, we use
our approach introduced in the same Chapter , here denoted as HAPT.

6.2.2 Experiments on Unsupervised Label Generation

In this section, we evaluate the performance of our two approaches, i.e., the one
using the graph-based image segmentation and the one using the predictions of the
vision-language model. The experiments indicate that our methods outperform
common heuristics-based approaches in terms of segmenting soil and vegetation,
as well as in distinguishing individual vegetation instances, while improving the
performance of the foundation models.

Tab. Ell shows the results on all three datasets for all baselines. On the
SugarBeets dataset, the VLMs and heuristics-based methods all have similar IoU
results, except for Florence2, which produces fragmented masks. The other VLLMs
have a better PQ than all heuristic-based methods. The version of our approach
based on graph image segmentation is the best among the heuristic methods. The

use of a graph-cutting method instead of simple thresholding makes our method
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Figure 6.6: Qualitative images from Grounded SAM2 (left), and Grounded SAM2 +
our post-processing (right). We highlight in red dotted circles the errors by the two
approaches, and in green the correct prediction.

more robust than the baselines when performing instance segmentation. Incor-
porating domain knowledge into the graph-based segmentation enhances both
metrics across all datasets, yielding an average improvement of 17.8 percentage
points for IoU and 37.1 for PQ. Adding our post-processing to the VLMs improves
the ToU in all investigated cases, but worsens the PQ for the models based on
Grounding DINO, i.e., Grounded SAM2 and Grounded SAM2.1. We investigate
this further by looking at qualitative results. In the image shown in Fig. @
Grounded SAM2 had a vegetation IoU of 61.7% and a PQ of 95% since it only
missed the plant in the red dotted circle. After our post-processing, the IoU is
75.5% because we are correctly identifying the missing plant as vegetation, but
we also classify the weed at the bottom as vegetation. This error brings our PQ
to 87.5%. Since in the ground truth all weeds are labeled as soil, our correct
vegetation detection for weeds is considered an error. This usually has a higher
impact on the PQ than on the IoU because, although the ratio between misclas-
sified pixels and vegetation pixels is low, the number of incorrect detections is
high compared to the number of objects in the image.

For the GrowliFlower dataset, we show in Tab. EI that all the approaches
yield good performance in differentiating vegetation and soil, probably thanks to
good lighting conditions. However, the presence of various growth stages makes
the instance segmentation task harder. The version of our approach based on
graph image segmentation outperforms all heuristic approaches and part of the
VLMs without our additional post-processing. GrowliFlower has some images
with grass that should be detected as soil, as it is not a crop to harvest or a
weed to remove. It is hard for VLMs and heuristics-based methods alike to
classify grass as soil. The VLMs have similar performance to the heuristic-based
approaches for the IoU but superior results in the PQ. Using our domain-specific
post-processing improves the results of all VLMs, both in IoU and PQ. The
two most impressive results are the IoU of Grounded SAM2.1, improved by 22.2
percentage points, and the PQ of Florence2 + SAM2, improved by 21.6 points.
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These improvements show that we correct both for missing vegetation detection
and for wrongly merged instances.

The rightmost column of Tab. El! shows the results on PhenoBench, the only
dataset with weed annotations. The dataset presents images from late growth
stages when many leaves overlap and create shadows, making the segmenta-
tion task challenging for both heuristics- and neural network-based approaches.
Without being penalized for detecting the weeds, all heuristic approaches achieve
higher ToU compared to their performance on the SugarBeets dataset (average of
+7%). However, the more challenging environment produces a loss in terms of
PQ (average of -23.6%). Our version of the graph-based image segmentation is,
among the heuristic approaches, the one that gets the second greatest increase in
IoU, and the smallest decrease in PQ). The presence of shadows, weeds, and mul-
tiple growth stages limits the semantic segmentation of VLMs; all attaining lower
IoU than heuristic-based methods. However, the VLMs have superior abilities in
differentiating single plant instances, even with their reduced set of correct veg-
etation pixels. Again, adding our domain-specific post-processing improves the
[oU and PQ of all methods, surpassing most heuristic-based methods in terms of
IoU and boosting the quality of plant instance segmentation.

6.2.3 Experiments on Exploiting Our Generated Plant
Instance Labels

In this section, we investigate several scenarios where we employ our approach to
boost the performance of deep-learning approaches on the plant instance segmen-
tation task. The results illustrate that our approach (i) boosts the performance
of neural networks when used as additional input; (ii) reduces the need for labels
when used as ground-truth annotation; (iii) improves the performance on plant
instance segmentation when used to generate extra labels for the training proce-
dure; (iv) helps the network generalize better on different fields without the need
for ground-truth annotations.

6.2.3.1 Generated Instances as Additional Input

This set of experiments demonstrates that, even when we have access to labeled
data, our heuristic approach can be used to improve the performance of learning-
based systems. We conduct two types of experiments. Firstly, we augment the
input of the networks with our generated labels, secondly, we add the offset vectors
for each instance we detected. We evaluate this experiment on all three datasets
and with all the learning-based approaches. We run all experiments under the
same configuration and with a fixed random seed so that the only change is in

the additional inputs provided.
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Figure 6.7: We show the results of the deep-learning networks (o) against the results
obtained by the same network when augmenting the input with our predicted instances
(4), or with the predicted instances and the offsets computed from them in the x and
y direction (x).

Fig. @ shows the results of the experiments on the three different datasets.
Using the additional inputs helps the network and boosts the final performance
on both PQ and IoU for all experiments. The only cases in which this is not
true can be easily explained. For the SugarBeets dataset, MR using only the
generated labels as additional input has a lower IoU. As this dataset has no weed
annotation and our approach, without semantics, provides instances for each
vegetation component, i.e. weeds and crops, the network does not learn to ignore
the weeds, which are considered an error during the evaluation.

For the GrowliFlower dataset, only the approach by Weyler et al. [222] has
a lower IoU when using our labels as additional input. The reason is similar to
the one given for MR on the SugarBeets dataset, since Weyler does not learn any
semantics, it cannot learn to ignore the weed instances. As an additional point,
even if the metrics are correlated, it can happen that the model with the best
PQ is not the model with the best IoU. This occurs when the model predicts
cleaner instances, improving the PQ, while underestimating the object extent,
resulting in lower pixel-level overlap. In this case, the maximum IoU obtained by
the model is 1.7 percentage points higher than the one reported in Fig. @, the
same as the baseline without additional inputs.

For the PhenoBench dataset, all approaches have improved their IoU and
PQ when using our additional inputs. Since this dataset presents both crop and

weed annotations, the IoU reported in Fig. is the mean IoU over all classes.
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Figure 6.8: Results of three deep-learning networks, when using our approach instead
of manual labels. On the x-axis we show the percentage of manual labels used during
training. The first row depicts the IoU, i.e., crop on SugarBeets and GrowliFlower, and
the mean of crop and weeds for PhenoBench. The second row shows the PQ.

We note that for this dataset, the additional inputs are helping the IoU more
than the PQ. We believe this is because the PhenoBench dataset consists of
high-resolution images (1’;—;"), and it presents small plants which are hard to
detect for convolutional networks with big receptive fields. In the case of the
graph-based image segmentation version of our approach, we do not perform any
downsampling, thus enhancing the visibility of small instances for the network.
Similarly, the refinement applied to the predictions of the VLMs to obtain pixel-

wise semantic classes also operates on the image at its original resolution.

6.2.3.2 Labels Substitution

This experiment aims to show the capability of our approach to reduce the need
for human-generated labels. For all datasets and baselines, we run three experi-
ments, progressively substituting the manually annotated labels with the output
of our pipeline. We run the experiments substituting 50%, 75%, and then 100% of
the human-generated labels. The approach by Weyler et al. [222] is a bottom-up
method that requires leaf instance labels as supervision, thus it could infer the
manual plant labels from the provided leaf instances. We nevertheless decided
to conduct the experiments using this approach by substituting only the plant
instances with our approach and analyzing the results.

In Fig. @, we see the results of the experiments. For SugarBeets and
GrowliFlower, which both only have crop and soil as semantic classes, the net-

work can learn the task and perform well on the test set using less than half of the
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labeled data. The metrics are slightly lower than those obtained from training
on all the labeled data, but the drop in performance of 2 percentage points is a
good compromise if we need to label only 1/4 of the images. Interestingly, some
of the experiments have better metrics when using only part of the real labels.
This effect is not consistent across datasets or approaches: we can observe it in
the ToU of MR for SugarBeets, in the IoU of HAPT, in the PQ of Weyler for the
GrowliFlower dataset, and in the metrics of PD-S on PhenoBench. We visually
investigated these results and concluded that, considering the performance shown
in Tab. El!, the error introduced by our labels is considered part of the data noise
when there are enough manual labels to drive the learning-based approaches in
the right direction. For the SugarBeets and GrowliFlower datasets, our generated
labels are likely to have weed instances that can be considered hard negatives for
the network to better learn the final task, leading to a small improvement.

6.2.3.3 Additional Labels

In these experiments, we aim to assess whether scaling up the number of images
in our training data by including images annotated by our approach can boost
the performance. We evaluate this capability by testing the models on a joint
test set comprising the validation set from PhenoBench and the test set from
GrowliFlower. We create different training datasets, consisting of manually la-
beled data from PhenoBench and images from other datasets labeled with our
approach. We then evaluate how this diversity helps or degrades performance on
both datasets. Using our generated plant instance labels for the “Extra data”,
we can provide semantic annotations only in terms of vegetation and soil.

First, we generate plant instance labels for an additional sugar beet dataset
introduced by Ahmadi et al. [4], which contains 287 images. This dataset has
different lighting conditions, growth stages, and image resolution compared to
PhenoBench, but it presents the same crop species. The ability to adapt to new
scenarios, even when the objects in the scenes are the same, is part of what domain
adaptation algorithms try to solve. In the second experiment, we further shift the
domain by using a corn dataset consisting of 280 images introduced by Ahmadi et
al. [5]. Corn is not in our test set, containing PhenoBench and GrowliFlower, i.e.,
sugar beets and cauliflowers. Nevertheless, we believe that a network can benefit
from seeing different crop species, as our ultimate goal is to use the same network
for any crop species, seen or unseen. In the third experiment, we extend the
training set with all the 1,542 images from the original GrowliFlower training
set, using our labels. In this case, the data presented at training time has a
more similar distribution to the test data, i.e., sugar beets and cauliflowers. The
number of new images is comparable to the size of the original training set, so
the networks should be able to optimize equally for both crop species. We run all
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Table 6.2: Results on the validation sets of GrowliFlower and PhenoBench, both in-
dependently and together, for MR. We train on PhenoBench only and with additional

labels provided by our approach on different datasets.

Test Set IoU
Extra Data est oe oU 1%l PQ [%]
PB GF soil crop weeds
v 97.3 70.9 23.7 45.8
none v 76.8 9.0 - 7.9
v v 90.5 50.2 23.7 32.8
v 96.8 66.7 39.9 46.8
Sugar Beets [{] v 78.0 15.9 - 10.8
v v 90.5 49.8 39.9 34.8
v 96.9 63.2 40.0 45.5
Corn [p] v 86.7 34.3 - 30.9
v v 93.5 53.6 40.0 40.6
v 96.2 67.5 30.5 33.9
GF (Train) [106] v 81.4 32.7 - 34.1
v v 91.3 56.0 30.5 34.0

experiments using Mask R-CNN, PanopticDeepLab, and HAPT and report the
metrics in Tab. , Tab. @, and Tab. @ We cannot run the experiments on
Weyler et al.’s approach since it requries supervision from the leaf instances, and

we cannot provide them using our pipeline.

We can see that, in general, introducing the additional data always has a
good impact on the PQ of the combined evaluation set and on the PQ and
IoU of GrowliFlower. For Mask R-CNN and HAPT, several metrics diminish
on the source domain. This is expected since the weights need to be optimized
for new crop species, growth stages, and field conditions. PanopticDeepLab is
the architecture that benefits the most from the additional data. This depends
on its use of centers and offsets instead of the region proposal of Mask R-CNN,
and on the size of the network, which is three times larger than HAPT, making
the network less prone to overfitting to the training data. Looking for the best
results, we can see that we obtain most of them using GrowliFlower or Corn as
additional data; the first is expected since the training distribution matches the
one for evaluation, while the second suggests that using different crop species can
increment the ability of the networks to generalize even if the new species are not

presents in the final evaluation data.
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Table 6.3: Results on the validation sets of GrowliFlower and PhenoBench, both inde-
pendently and together, for PD-S. We train on PhenoBench only and with additional
labels provided by our approach on different datasets.

Test Set IoU
Extra Data est oo oU [l PQ [%]
PB GF soil crop weeds
v 99.0 81.5 21.0 24.4
none v 78.4 35.5 - 30.8
v v 92.1 66.2 21.0 26.5
v 97.4 80.3 22.6 31.5
Sugar Beets [4] v 89.8 65.4 - 40.3
v v 94.9 75.3 22.6 34.4
v 99.1 84.7 29.1 36.4
Corn [p] v 94.0 78.5 - 45.8
v v 97.4 83.6 29.1 39.5
v 99 84.1 27.8 33.7
GF (Train) [106] v 95.1 86.5 - 58.6
v v 97.7 84.9 27.8 42.0

6.2.3.4 Pre-Training

This experiment aims to show that our plant instance labels can be used to
pre-train any backbone for the plant instance segmentation task. Pre-training
is a common strategy to initialize the weights of a neural network, reducing
the amount of data and iterations to converge to the optimum [p8,202]. Our
pre-training, in this case, can be considered self-supervised since our labels are
generated without training on labeled data. However, compared to common pre-
training strategies, in which the pre-training and final tasks are related but not
identical, we are directly training for our final task, i.e., plant instance segmenta-
tion. We pre-train all the networks on 6, 747 images from PhenoBench labeled by
our approach. The images are taken from partially herbicided fields, i.e., there
are both crops and weeds from different days with respect to the images in the
annotated dataset. We then fine-tune on PhenoBench using 100%, 50%, 25%,
10%, and 5% of the training set and report the results on the validation set. We
compare our results to those of the network without pre-training and initialized
with MS COCO pre-training.

In Fig. @, we can see that when using only 5% of the training data, our pre-
training weakens the performance of Mask R-CNN. This is mainly because our

labels do not provide the correct semantic information, thus needing more weed
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(c) pre-training results using HAPT

Figure 6.9: Results after fine-tuning the three backbones without any pre-training,
initialized with our pre-training, and with the pre-training on MS COCO.
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Table 6.4: Results on the validation sets of GrowliFlower and PhenoBench, both inde-
pendently and together, for HAPT. We train on PhenoBench only and with additional
labels provided by our approach on different datasets.

Test Set IoU
Extra Data est oo oU [l PQ [%]
PB GF soil crop weeds
v 99.2 90.5 50.4 53.4
none v 84.0 0.0 - 0.0
v v 94.1 60.3 50.4 35.6
v 98.7 86.4 36.4 48.3
Sugar Beets [4] v 86.9 45.6 - 28.6
v v 94.6 72.8 36.4 41.7
v 98.4 89.5 38.8 48.9
Corn [p] v 84.0 24.7 - 21.8
v v 93.6 67.9 38.8 38.9
v 98.8 89.0 27.2 45.2
GF (Train) [106] v 94.0 78.5 - 39.8
v v 97.2 85.5 27.2 43.4

labels to correct the weights of the semantic decoder. We achieve similar results
for the supervised MS COCO pre-training, which diminishes the performance
until 50% of the real data is available. In this case, the problem is most likely
the domain gap between the pre-training and the final application. If we use 10%
or more of the training data, our pre-training boosts the performance over all
investigated scenarios. In all the investigated scenarios, using the weights from
the MS COCO pre-training has lower performance compared to our approach.
This makes us believe that the domain gap has a bigger impact than the size of
the dataset, since MS COCO has 118K images, while we used only 7K images.

6.2.4 Ablation Studies

In our experimental evaluation, we identified recurring patterns and observed
results that we wanted to analyze further to gain a deeper understanding of the
strengths and weaknesses of both our proposed methods. These include factors
related to the generalization capability of the graph-based segmentation approach
and the influence of its hyperparameters. Moreover, we consider it essential to
investigate the limitations of our semantic annotations, especially in the presence
of weeds, to validate the applicability of our methods in real-world scenarios. In

the following, we present a series of experiments targeted to explore these aspects
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Table 6.5: Results of the vegetation IoU and PQ of the approaches tuned on SugarBeets
and tested on PhenoBench. We highlight in bold the best results for each metric. All

results are given in %.

Approach IoU [%] PQ [%] #Params #Hyperparams

., graph-based [62] 3.7 0.0 - 3
% HUE [81] 70.8 0.0 - 2
S ExG [22§] 721 204 - 3
= Our approach 80.1 43.2 - 7
y MR [83] 24.1 7.8 43.9M 2
£ PD-S[39 76.3 11.5 7.7TM 7
5 Weyler [222] 68.4 32.4 2.25M 4
~  HAPT [183] 75.7 17.5 2.4M 7
in detail.

6.2.4.1 Generalization of Graph-Based Segmentation

In this experiment, we illustrate that the graph-based segmentation method, en-
hanced with our modifications and post-processing, can generalize well even if the
hyperparameters are fine-tuned on a different dataset. Generalization is a com-
mon problem for neural networks [119,[197, 236] that has been often addressed
using domain adaptation techniques [66,232] to close the domain gap between
the training and testing datasets. Most of these techniques require retraining
the network on labeled data from the target domain to incorporate the new in-
formation. It is usually harder to overfit the underlying data distribution with
heuristics-based approaches since they use a smaller number of hyperparameters.
For this reason, they are generally more robust to changing conditions. When
restricting ourselves to the plant instance segmentation task, the environmen-
tal conditions that cause adaptation problems are the illumination, the presence
of shadows, the growth stage, soil color, and texture. Our results suggest that
heuristics-based approaches, if domain-specific, can achieve good results on new
and unseen fields without re-tuning hyperparameters.

In Tab. @, we show the results of the approaches when their parameters are
optimized on the SugarBeets dataset and tested on the PhenoBench dataset. We
also include the results of supervised deep-learning approaches trained on the
SugarBeets dataset. This allows us to show how much supervised approaches
suffer from a shift in the domain, even when using the same crop species. Our
approach is more robust to the domain shift and obtains the best performance

on both metrics, even compared to learning-based approaches. We are shifting
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6. EXPLOITING CROP KNOWLEDGE IN PLANT INSTANCE SEGMENTATION

from a dataset with no weeds labeled, no overlapping leaves, almost no shadows,
and plants of a homogeneous growth stage to a dataset with weeds and crops of
different sizes, and in the presence of overlaps and shadows.

If we compare these results to those in Tab. @, we can see the difference
in performance given by fine-tuning the hyperparameters on a different dataset.
The difference in performance is given by the domain gap and how much the
approaches overfit on the original data used for the optimization. As expected,
all methods suffer from a drop in performance. The approach by Felzenszwalb [62]
fails, obtaining an ToU of 3.7% and a PQ of 0%. Similarly, the HUE [81] segments
the vegetation, but it fails to distinguish instances with a PQ of 0%. Among the
heuristic approaches, our method is the most robust, retaining the ability to
segment the vegetation and identify plant instances. Due to the domain gap, our
method loses 4.5% of ToU and 4% of PQ. When there is no knowledge about the
deployment environment or access to labeled data. Our approach can still perform
the task, outperforming both the heuristics- and learning-based baselines.

6.2.4.2 Hyperparameter Influence on Graph-Based Segmentation

We run the whole pipeline on the datasets presented in Sec. 6.2.1 to evaluate
the influence of the different hyperparameters. The optimizer can evaluate the
importance of the parameters, changing them in the desired ranges and computing
how much the changes influenced the target, i.e., the PQ. For this experiment,
we keep the thresholds of the excess green Ty g and the aspect ratio 7, fixed, and
optimize only o, k and M, the kernel size v and number of iterations n for the
dilation. The evaluator collects the PQ and the hyperparameter configuration
for all runs; thus, we can plot the results for all the values in the ranges defined
for the hyperparameters and can interpolate between the different runs. Since
we run the experiment for 5 different hyperparameters, we visualize the plots for
the 10 different pairs in Fig. , where white corresponds to low PQ and dark
blue to high PQ.

As expected, some hyperparameters allow achieving high PQ for large range
of values, i.e., for each possible value of k there are values of the other hyper-
parameters that yield high PQ, while other hyperparameters require to be in a
specific range, i.e., M should be smaller than 200, and n should be smaller than
15. By analyzing the plots, we confirm that the values we used in our experiments
are in the dark blue ranges, thus yielding high PQ. Keeping the excess green mg.q
and the aspect ratio 7, fixed, we can estimate more plausible ranges for the other
hyperparameters and avoid areas yielding low performance. We also notice that
the hyperparameters fixed in Sec. always give the possibility to tune the
other hyperparameters to get the best possible result.

In Fig. , we visualize the importance of the 5 hyperparameters to opti-
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Figure 6.10: Evaluation of the different hyperparameters combinations, where a darker
color correspond to an higher panoptic quality on the images of the training set. The
small black stars correspond to real trials for which the PQ has been computed, the

other values are computed by interpolating the results from the trials.
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Figure 6.11: Estimated importance of the hyperparameters of the graph-based pipeline
over 100 trials over the three datasets.

mize, estimated by Optuna [H] during the optimization. It turns out that o is the
most important hyperparameter, which can be explained by the fact that it de-
fines the amount of smoothing of the image, thus making the pixel-level instance

segmentation less precise as o grows.

6.2.4.3 Filtered Semantic Supervision

Our methods target plant instance segmentation without considering the semantic
class of the instances, i.e, we do not predict if a vegetation component is a weed
or a crop. If we want to use our generated labels and also train for semantic
segmentation, the results are sub-optimal when the network is not presented
with enough weeds.

To better investigate how to address this problem, we ran all experiments
again with Panoptic DeepLab without computing the semantic loss when the label
comes from our approach. In this way, we remove the systematic error we would
otherwise introduce. The results of this ablation study are shown in Tab. @
The results indicate that when there is a sufficient amount of real labels, the
network predicts better semantic masks. However, when there are only a few
real labels available, this disables any supervision of the semantic head, leading
to worse performance. We do not report the results with zero labels because if
the network does not have access to semantic labels, neither from our generated
labels nor from the manually annotated dataset, it cannot learn semantics at all.

We investigate the impact of semantics on our pre-training by conducting
a similar experiment. In this experiment, we only consider the vegetation IoU

and PQ), i.e., treating weeds and crops as one unique class. This brings our pre-
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Table 6.6: Results on the PhenoBench dataset, using PD-S with different percentages
of real labels. For each percentage of labels, weshow the results computing the semantic
loss over all labels or only over the manually annotated labels. We report in bold the

best results per metric for each label percentage.

Percentage of Semantic Loss on IoU [%] PQ [%0)]
Real Labels Real Labels Generated Labels soil crop  weed
75 v v 97.8 79.7 18.1 23.1
v 99.2 86.8 32.6 29.2
66 v v 98.9 80.3 14.1 22.8
v 99.2 85.1 31.2 28.3
50 v v 98.9 81.2 17.9 21.4
v 99.2 84.7 29.0 25.8
o5 v v 98.3 78.2 4.8 18.4
v 98.5 76.5 4.4 7.0

training task to be the same as the final task, without any semantic difference in
the vegetation class.

We report in Tab. @ the average difference in mloU and PQ over the three
approaches for the different amounts of labels used during the fine-tuning, com-
pared to the same training evaluating for all three semantic classes. Removing the
weed class always improves performance, both because the network does not need
to separate the vegetation into two classes and because semantic segmentation
with only two classes is easier. The biggest gap occurs in the scarcity of labels,
as the network struggles learning the weed class, lowering both metrics. When
comparing the results to the networks without pre-training, we note a similar
trend. The results in Tab. @ show that for a higher percentage of labels, the
difference becomes less. The best improvement is obtained with 10% of labels,
probably because with less data, it is difficult for the networks to recover from

possible mistakes introduced by the generated labels during pre-training.

6.3 Discussion

Instance segmentation, specifically plant instance segmentation, has been ad-
dressed with both heuristic-based and deep learning methods. The former lever-
age domain-specific assumptions and do not require large annotated datasets, but
their performance deteriorates when hand-tuned thresholds and rules cannot cap-

ture the high variance introduced by overlapping foliage, lighting variation, and
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Table 6.7: Difference on mloU and PQ when counting both crops and weeds as a unique
semantic class (vegetation) while fine-tuning with respect to fine-tuning with the three
semantic classes. The results are averaged on the three architectures.

Percentage of Labels
5% 10% 25% 50% 100%

mloU [%] + 19.8 + 185 + 184 + 174 + 16.5
PQ (%] +44 +28 +32 +35 +038

Table 6.8: Difference on mloU and PQ when counting both crops and weeds as a unique
semantic class (vegetation) while fine-tuning with respect to the results obtained on the
same task without our pre-training. The results are averaged on the three architectures.

Percentage of Labels
5% 10% 25% 50%  100%

mloU (%] +40 +6.4 +19 +11 +05
PQ % +48 465 +56 +51 +1.0

irregular plant geometry. The latter require extensive labeled data to achieve
satisfactory performance and usually do not adapt well to unseen crop types,
growth stages, or field conditions. Recent vision-language models, trained on
large general-purpose datasets, show promise in addressing instance segmenta-
tion in different domains. However, they also need access to labeled data when
the task complexity or domain distance increases.

To loosen the reliance on annotated datasets, we propose a fully unsupervised
pipeline comprising vision-language foundation models or graph-based segmen-
tation and domain-specific post-processing. We refine the detected instances by
leveraging knowledge about the plant morphology to improve the final detec-
tion quality, showing how to overcome the limitations of both zero-shot vision-
language models and purely heuristics-based graph-segmentation approaches. We
evaluate multiple settings in which we employ our generated plant instances to
boost the performance of supervised networks while reducing the reliance on
manual annotations. We also demonstrate how our labels enhance the gener-
alization capabilities of networks, introducing additional training data to cover
more diverse crop types, growth stages, and field conditions.

Our experimental evaluation suggests that our pipeline generates plant in-
stance labels for training networks in the absence of manual labels. Our approach

performs comparably to state-of-the-art fully supervised deep learning methods
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without using labels. When labels are available, we recommend using our method
to enhance performance and increase the generalization capabilities of the model.
The best strategy depends on the amount of available labels and the testing con-
ditions. Our results suggest that if we have very few labeled training examples
from the same crop species and field, pre-training with our generated labels and
then fine-tuning on manual labels yields the best performance, see Sec. .
When testing conditions are unknown, training on one dataset with manual la-

bels integrating different fields labeled with our approach is the most effective

strategy, as we demonstrated in Sec. .

We note that most of the vision-language models are trained on general-
purpose datasets, which is most likely also the root cause of the shortcomings
we address with out refinement step. The performance of such models usually
deteriorates in very complex scenarios and domains as narrow as the agricultural
one, where they need to address domain-specific challenges such as dense veg-
etation, overlapping canopies, and morphological differences between crops and
weeds. To fully leverage these models for agricultural purposes, the best option
would be to explore a domain-specific foundation model. This would enhance the
performance of the first step of our proposed pipeline and the overall quality of
the plant instance segmentation.

An example of failure due to unreliable prediction from the VLMs is illustrated
in Fig. . The left image depicts the prediction of a VLM, where a soil mask
is also assigned to part of the plants and does not capture the whole soil. This
prevents our approach from accurately segmenting the remaining pixels, as the
vegetation and soil colors are not reliable due to the incorrect detections by the
VLM. One possible solution would be to use both the VLM and the graph-based
segmentation to produce two soil-vegetation masks and check where they overlap.

This can help reject severe failure cases and improve the overall results.

The right side of Fig. represents a limitation of our approach, which splits
the instances based on the expected ratio of the plant bounding box. Since the
plant is not fully visible in the image the resulting instance does not match our
expected aspect ratio. The aspect threshold 7, is in this case a limiting factor,
since it assumes that the plant is always fully visible in the image. We performed
all experiments with the same threshold 7, = 1, however, different crop species
or data acquisition procedures may require adapting the threshold to capture the
new expected shape of the crops. Finally, our approach struggles to detect weed
instances when they are connected to plants because they are smaller and can
get eroded in our refinement step.
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Figure 6.12: Two failure cases of our approach. On the left, the VLM fails in correctly
detecting the soil, which is also assigned to most of the plants. Starting from this
prediction, it is almost impossible to get a satisfactory plant instance segmentation.
On the right, the instance is not respecting the expected aspect ratio because the plant
is not fully visible, thus our approach splits it into two instances.

6.4 Conclusion

In this chapter, we presented an effective approach for plant instance segmen-
tation of RGB images. Our method builds upon existing methods, such as
vision-language and graph-based image segmentation methods, combined with
domain-specific knowledge to improve the plant instance segmentation results
without requiring additional annotated data. This integration enables us to em-
ploy common models and approaches without additional labeled data, producing
high-quality plant instances through domain-guided refinement. Our pipeline en-
ables supervision of learning-based approaches using unlabeled data as an initial
training step, enhancing the performance of deep learning systems without requir-
ing additional manual labels. We evaluated our approach on multiple datasets
and provided comparisons to other existing techniques, both heuristic- and neu-
ral network-based. The experimental evaluation demonstrates that our proposed
methods are competitive with current state-of-the-art approaches, and in many
cases, generalize better to unseen crop fields. This makes them well-suited for ap-
plication in agricultural settings when access to manually labeled data is burden-
some and limited. Moreover, they can serve as a valuable pre-training stage, al-
lowing instance segmentation networks to achieve strong performance even when

fine-tuned on small, annotated datasets. Looking ahead, the next logical step in
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phenotyping is moving from plant-level to leaf-level analysis, and ultimately to
the estimation of leaf traits. However, since many phenotypic traits are difficult
to estimate reliably in 2D due to occlusions and projection ambiguity, in the next
chapter, we advance our pipeline toward 3D methods to enable more accurate and
comprehensive trait extraction.
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Chapter 7

Exploiting Plant Morphology for

3D Leaf Instance Segmentation

XPANDING on the work presented in earlier chapters, we transition from

2D phenotyping approaches to a 3D perspective, where spatial struc-

ture plays a crucial role. All approaches presented in this thesis tar-

geted the image domain, which has inherent limitations when dealing
with occlusions, leaf overlap, or the complexity of plant structure. In this chapter,
to better exploit the spatial information and geometrical cues of the agricultural
domain, we tackle the task of leaf instance segmentation within 3D data such as
point clouds [126]. This is particularly valuable in applications where plants are
often only partially visible because of occlusions due to the plants’ self-structure
or adjacent plants. Leaf instance segmentation is the natural step after plant
instance segmentation, discussed in Chapter E This task is crucial for estimating
leaf count, monitoring the growth stages [221], and assessing the plant health
conditions [10]. Accurate leaf segmentation is crucial for robotic manipulation
tasks such as pruning or selective harvesting, and for phenotyping.

The phenotyping task has been addressed in the 3D scenario using supervised
networks on point clouds from 3D LiDAR sensors or multi-view images. Most of
these approaches build on general-purpose instance segmentation methods [[100]
[216]. Thus, the initial struggle to gather plant traits is still present to build a
training dataset, and they do not leverage any prior knowledge about plant and
leaf morphology. To fully automate the phenotyping process, the robot requires
a robust perception system to acquire phenotypic traits in an automated and
repeatable fashion.

Building on the key findings of the previous chapters, we propose a self-
supervised pre-training method to reduce the amount of labeled data needed to
achieve state-of-the-art performance on leaf instance segmentation. Supervised

pre-training on point clouds [231] is still behind compared to the image-based
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Figure 7.1: Overview of our pipeline. In the pre-processing (left), we build the point
cloud P from UAV images using bundle adjustment and segment P using the method by
Nelson et al. [] into single plant point clouds P;. These are the inputs of our network,
which learn representations computing the loss £ on per-point embeddings e. In the
post-processing (right), we exploit domain-specific knowledge to cluster the embeddings
and distinguish each leaf, starting from outer points and progressively assigning points
closer to the center.

scenario, where it is common practice to pre-train networks on general-purpose
datasets like ImageNet [@] or MS COCO [] The reason behind this gap is the
challenge of annotating 3D data due to its complexity and the lack of standardized
tools. This further complicates an already time-consuming and difficult process,
limiting the availability of large, high-quality annotated 3D datasets. As for
images, it is possible to pre-train in a self-supervised fashion also for 3D data.
Self-supervised pre-training in 3D remains uncommon and, most of the time,
application-specific [] The self-supervised pre-training we propose in this
chapter is not only domain-specific, but we also make it task-specific, aligning

the pre-training objective with the leaf instance segmentation task.

The main contribution of this chapter is a 3D self-supervised pre-training to
differentiate each leaf of each plant. We design domain-specific augmentations
and leverage task and domain knowledge to build a more specific self-supervised
loss. We fine-tune on labeled data to show the improvement achieved thanks
to our pre-training. We also propose a novel automatic post-processing of the
self-supervised output, taking into consideration the difficulty of differentiating
individual leaves — especially in the stem region — and reducing the impact of this
problem on the final performance. Our task-specific pre-training enhances the
performance of leaf instance segmentation and reduces the amount of labeling
required. We investigate the importance of the distance information, the number

of points, and the use of a second view as in common contrastive learning. We
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also demonstrate that increasing the embedding size boosts the performance of
our pre-training more than that of the randomly initialized network. Lastly,
we evaluate our novel automatic domain-specific post-processing compared to
common state-of-the-art methods.

7.1 Our Approach for Leaf Instance

Segmentation Pre-Training

We propose a new unsupervised approach to pre-train a deep neural network for
leaf instance segmentation in 3D point clouds. The network is part of the pipeline
shown in Fig. El] The pre-processing computes a point cloud from UAV images
of the field and then extracts single plants leveraging the approach explained
in Sec. . We not only make our pre-training domain- and task-specific, but
we also apply the agriculture-specific augmentations explained in Sec. to
the single point clouds before feeding them into the backbone. In the following
sections, we refer to the augmented point clouds as views and prove that our
approach is effective using either one or two views. The backbone takes as input
sparse tensors representing the point clouds. Each tensor consists of N points,
for which we use 6 features: the first 3 represent the point position and the
second 3 its color. The backbone outputs per-point embeddings, which we can
use to compute the unsupervised loss £ explained in Sec. , to perform a
fully unsupervised leaf instance segmentation, or as features to be refined by fine-
tuning using labeled data. In the latter case, we load the pre-trained weights to
initialize the backbone. It is usually followed by other layers to compute the final

predictions used to obtain the instances.

7.1.1 Pre-processing

We use RGB images of sugar beets collected by a UAV plus GPS information
to build a dense point cloud P of the field via bundle adjustment [207]. The
approach estimates 3D point locations and camera orientations that minimize
the total reprojection error, then combines them into a unique point cloud of the
entire field, with colors computed by projecting the color information from the
corresponding image pixel.

To separate the point cloud P into individual plants P;, we use Ground Den-
sity Quickshift++ by Nelson et al. [159], preserving the color. The algorithm first
uses Quickshift++ [101] to initialize the clusters based on the x and y coordinates
and then refines these results considering the z-component. This two-step ap-

proach ensures that we do not separate stem points due to their different heights,
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Figure 7.2: Results of the occlusion augmentation proposed in Sec. . All points
whose x and y coordinates fall into the generated ellipse with center . and axes a,

and b, are removed.

and that leaves in the same area of the xy-plane are separated. We refer to the
original paper [] for more details.

7.1.2 Augmentations

Our pipeline augments the individual input point clouds P; via different trans-
formations. This is crucial in unsupervised learning, since it helps the network
to focus on relevant features. We use 3D versions of common 2D augmentations
— rotation, translation, adding noise, and erasing points — and our own domain-
specific augmentations explained in the following, which helps us to simulate leaf
occlusion and distortion. These augmentations are applied during the unsuper-
vised pre-training to obtain better weights for initializing the network. If we
use these weights to perform a fully unsupervised leaf instance segmentation, we
need to revert the augmentations at inference time to have access to the real point
positions, which are required by our post-processing, as described in Sec. .

1) Leaf Occlusion: this augmentation aims to remove all the points falling
into one of I' randomly generated ellipses. Each ellipse €, is defined as

(z — /L%x)2 X (y — l’J%y)Q
a? b2
¥ y

1, (7.1)

67($,y) =

where a, and b, are the two axes, and py = (fiyz, fry)' is the center of the
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distortion

Figure 7.3: Results of the distortion augmentation proposed in Sec. . All points
are rotated with respect to the estimated center p in red. We show the side and front
view for better understanding. We can see that the stem (blue dotted circle) and the

leaf tip (orange) are rotated more than the areas closer to p (pink).

ellipse. This simulates the shape of an occlusion caused by the leaves of adjacent
plants. We consider it a domain-specific variant of CutOut [@] In our work, we
use [' = 2, since the plants are grown in rows and thus the occlusions are usually
caused by plants in the same row. We randomly select either a or b as the major
axis, each with equal probability. Then, we compute ., as the furthest point
in the direction of the major axis from the center of the plant p; = ﬁ ZpEPi p,
where p € R3 represent the 3D positions of the points in the point cloud.

We sample a,, and b., from two uniform distributions U{0, amax } and U{0, buax },
where apax and by. are two user-defined parameters defining the maximum
length and width of the leaves according to the growth stage of the plant. We
project the point cloud onto the xy-plane and remove all points falling inside the
ellipses. In the case of different field arrangements, we can change the parameters
to have randomly spaced centers. We illustrate the result of this augmentation
in Fig. @, where we depict one exemplary ellipse in red.

2) Leaf Distortion: this augmentation rotates the points to imitate the
movement of the leaves caused by the wind. Instead of the classical rotation
of the entire point cloud, we rotate each point according to its distance to the
estimated plant center p;.

Given maximum rotations @max = (O max; Qymax, Qzmax)  about the x-, y-
and z-axes, we randomly sample a = (v, oy, )7, ie., ag, o, a, ~U{0,1}.
For each point p € P;, we compute the distances d, = ||p—p;||2 to the plant center
and define the per-point Euler angles o, = (a;p, vy p, zp) ' for the rotation as

d
op=—"——axa (7.2)
maXqep, dg
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(a) (b)

Figure 7.4: In (a) p; belongs to one leaf, while py and ps belong to another. If we only
use the euclidean distances, the embedding of ps will be more similar to p; than to ps.
In (b) we show the graph built over the down-sampled point cloud using 7 nearest

neighbors and 7, = 2 cm.

We can build for each point its rotation matrix

Rp(Qep, yp, @2p) = Ro(a. p)Ry(ay p)Re(azp), (7.3)

where R,(0) is the rotation matrix around axis a with angle . We apply the
distortion as R, p, which leads to a distance-dependent rotation of points. We
illustrate the result in Fig. @, where different areas of the leaf undergo stronger
or weaker rotations based on their distance from the leaf center, depicted in red.

7.1.3 Unsupervised Loss

We aim to learn per-point embeddings e} € RP, withj € {0, ..., N}, where N is
the number of points in the point cloud and v is the view. In particular, we want
the embeddings of the same point in different views to be identical, and points of
the same leaf to be as similar as possible, facilitating their clustering.

In standard contrastive learning [@] [], we normalize the embeddings along

e

the feature dimension as €; = m and compute the cross-correlation between
i

each pair of points. The loss can be expressed as

N
£L=S"A,., - @), 7.4
€ (e (7.4)

r,c=0

where A € RV*¥ is the identity matrix.
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Since we aim to perform instance segmentation, we want to include spatial
information and push the embeddings of close points to be similar.

To do so, we need to remove the identity matrix and use a matrix that carries
the information about how similar each cosine similarity should be. This new
loss function will be

N
L= Z Sr,c - /ég (/e\i)—r ) (75)

r,c=0

where S € RV gpecifies how similar each pair of points (r, ¢) should be given
their distance, meaning that S, . is a function of the distance D, .. This means
that we can compute the loss even with just one view. Since we augment the
point clouds with translations and rotations, distances must be computed from
the same view to be comparable. In the following, we investigate two types of
distances, Euclidean and graph distances, to include spatial information in S.

When using the Euclidean distance between points p,, p. € P;, we simply set
D, =||pr — Pe||2. This makes similar the embeddings of close points, but when
leaves overlap, it can happen that points of different leaves are led to have more
similar embeddings than points from the same leaf, as shown in Fig. @(a).

To overcome this limitation, we propose to compute the graph distance on the
plant. To do so, we need to create a graph G = (V, E), where V are the points and
E the edges given by the k-nearest neighbor graph, i.e., each point has edges to
the k closest points if their distances are smaller than a threshold 7,,. We build
the graph using 7 per-point neighbors and a maximum distance of 7,,, = 2cm
between connected points. The result of this operation is shown in Fig. @(b)
We then initialize a distance matrix D as

- ~ » — Pe Jif (r,c) e B
5. _ 5, [Ieepde it .

00 , otherwise.

Afterwards, we use the Floyd-Warshall [63] algorithm to traverse the graph
and fill the whole matrix. Each element of row r and column ¢ in D is computed
from D as

Dy = Dey = min(Dyx + Dy,). (7.7)

In the end, D has a null diagonal, positive values if two nodes are connected,

and oo otherwise. After filling up the matrix D, we compute the similarities as

1

Sre =72,
7 Dr,c+€

(7.8)

where £ is an arbitrarily small value used to avoid numerical instability. We nor-
Sr,c

max(S) Thus, all points with zero distance will

malize the similarities as S, . =
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have a similarity of 1, and all other values will have a similarity inversely pro-
portional to the distance between the points. We will evaluate both possibilities
in our experiments, comparing the performance when using Eq. (@), Eq. (@)
with different distances and numbers of views.

7.1.4 Post-Processing

Instance segmentation tasks can be solved by predicting embeddings to cluster,
or instance centers and offsets to such centers for each point. Since it is hard
to supervise the predictions of centers in the absence of labels, our pre-training
produces embeddings. Thus, to evaluate the fully unsupervised approach, we
need an embedding-based clustering post-processing.

In the agricultural setting, points close to the center of the plant are more
complex to assign correctly since many different leaves connect to the same stem.
Considering this problem, we propose a novel automatic post-processing that
starts clustering the leaves from the outer points. When not specified, we cluster
via agglomerative clustering [64], and use the cosine similarity “sim” to compute
the similarity. Our post-processing consists of two steps:

1) Define radii to cut. We compute the center of the plant p; = (P; ., Piy, Piz) |

and the distances to the farthests points on the x and y axes as
dy =max|q, —Pis| and d, =max|q, —piy|- (7.9)

We then define the initial radius of the area to cut as
min(d,, d,)
2 )

which allows us to distinguish the tips of the leaves as a starting point.

(7.10)

Pinit =

2) Radius-decremental clustering. At each step, we decrease the size of
the radius as

p — pinit _ pil’lit ’ (711)

nsteps

where ngeps is the number of steps we want to make in the post-processing op-
erations. We cluster only the embeddings of non-clustered points with distance
from p greater than p. For each of the new M clusters Cj, with k € {1,..., M},
we compute the maximum similarity with respect to the existing clusters C using

the embeddings mean, i.e.,
. . 1 1
§ =max sim | — Z €, erj . (7.12)
‘Ck’ meCy, e

If 5 is higher than a threshold 7.uster, Wwe merge the clusters; otherwise, we

create a new cluster. We iterate this step until p = 0 and all points are assigned.
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7.2 Experimental Evaluation

The main focus of the approach presented in this chapter is a novel self-supervised
task-specific approach for pre-training neural networks for 3D leaf instance seg-
mentation. The results of our experiments confirm that our task-specific pre-
training improves the performance on leaf instance segmentation and reduces the
amount of labeling required. We successfully demonstrate that the distance in-
formation and number of points are more important than the use of a second
view, and our approach has a greater benefit from a larger embedding size than
the randomly initialized network. The experimental evaluation conducted on the
different post-processing suggests that using domain knowledge also in this final
step outperforms the instance segmentation obtained via common state-of-the-art

methods, even when the same network’s predictions are available.

7.2.1 Experimental Setup

Datasets. We recorded 3,566 images using a UAV on a 50m x 46 m field. We
compute the point cloud of the field via bundle adjustment. For pre-training, we
use 2,616 point clouds of plants, extracted via the pre-processing steps described
in Sec. . For training and testing, we use the BonnBeetClouds3D dataset,
introduced by Marks et al. [142].

Metrics. We evaluate the leaf instance segmentation using the mean Average
Precision (mAP) [60], introduced in Chapter @ In this case, we use 3D points
instead of pixels, and we only have one semantic class, i.e. leaf, but the metric
definition remains the same. Thus, we compute the overlap between sets of points
belonging to predicted and ground truth instances.

Training details and hyperparameters. We use AdamW [[130] with weight
decay 107% and initial learning rate 2 - 1073 for 100 epochs in all experiments.
We use a batch size of 48, thanks to gradient accumulation. We build the graph
using 7 nearest neighbors and a maximum distance of 7, = 2 cm.

Baselines. We evaluate our approach using two instance segmentation base-
lines to compare network performance when trained from scratch and when pre-
trained with our method. The first baseline is PointGroup by Jiang et al. [100],
which predicts per-point offsets and semantic classes. The network’s predictions
are clustered and filtered by an auxiliary network to produce the final instances.
The second baseline is the method by Marks et al. [143], which also predicts off-
sets but includes the prediction of a confidence score to prioritize fewer but more
accurate predictions. In our experiments, we omit the confidence score to ensure
a fair comparison with PointGroup on all ground truth leaves.

To evaluate the performance of our pre-training against other 3D pre-training

techniques, we benchmark against two publicly available pre-training approaches.
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Table 7.1: Results for the leaf instance segmentation with different pre-training ap-
proaches and embedding size D = 3.

Pre-training # views mAP [%]

none — 36.8
point-to-point 2 41.2
Euclidean 2 41.8
graph 2 42.0
graph 1 44.3

The first is DepthContrast by Zhang et al. [243], which is a self-supervised con-
trastive pre-training exploiting point- and voxel-level features. The second is Seg-
Contrast by Nunes et al. [162], a self-supervised contrastive pre-training based
on the extraction of segments using heuristics. They augment the segments to

use them in the contrastive loss, learning more informative features.

7.2.2 Spatially Informed Pre-Training

The first experiment compares our different pre-training approaches and shows
that a spatially informed pre-training is a better initialization for our target task.
We refer to point-to-point in Tab. @ as the approach following Eq. (@) It
makes no use of spatial information and only enforces that the point has the same
embedding in the two augmented views. This pre-training already outperforms
the randomly initialized network. Incorporating spatial knowledge enhances the
performance, confirming that our spatially informed pre-training is more aligned
with the leaf instance segmentation task. Using graph distances obtains the
best result, as expected considering the limitations of the Euclidean distances
presented in Sec. . Results suggest that, when the graph is representative
of the point cloud, the graph distance is a good approximation of the geodesic

distance on the surface of the plant. This provides a better initialization for the
network that then needs fewer iterations or labels to outperform other approaches.
Since the approach with graph distances outperforms the others, we use this as

the base approach to conduct all further ablations and experiments.

7.2.3 Best Use of Distances and Views

This experiment investigates whether computing the distances on the graph via
the Floyd-Warshall algorithm, even if computationally demanding, improves the
performance compared to using the kNN distances, i.e., D from Eq. (@) On top
of that, we demonstrate that the number of points used in the loss computation
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Table 7.2: Results for the ablations on the graph pre-training on the number fo points
used, and on the computation of the distances with the Floyd-Marshall (FW) algorithm
versus the distance matrix provided by the k-nearest neighbor (kNN) algorithm.

AP [%
# views # points - ]
kNN FW
2 7000 36.3  42.0
1 7000 36.0 40.2
1 10000 39.9 44.3

is crucial for a good initialization, more than using a second augmented view.
Tab. @ shows that using one or two views does not impact the improvement
gained from using the graph, as we gain approx. 4% points of mAP in both cases.
Using just one view performs worse if all other parameters stay the same, but
decreases the GPU usage, allowing us to use more points in the loss computation.
Increasing the number of points closes the gap between the one-view and the
two-views approach, outperforms the latter, and shows that using more points is
more beneficial than using a two-views approach. Importantly, using two views
prevents us from increasing the number of points due to the memory usage of the
second view and all its embeddings. The result of the experiment suggests that
using the Floyd-Warshall algorithm is worth its computational cost, and that,
considering the memory usage of each point and its embedding, using only one

view with more points provides a better network initialization.

7.2.4 Label Requirement Reduction

This experiment aims to show the capability of our approach to reduce the re-
quired amount of labeled data for the leaf instance segmentation task. We initial-
ize the backbones with our pre-training and use progressively fewer labels when
fine-tuning. The results in Fig. @ show that we can boost the performance when
using all the available data, and we obtain a similar or better mAP using 45%
of the labeled data or more. We also include some qualitative images obtained
after fine-tuning on 50% of the labeled data in Fig. @

7.2.5 Embedding Size Scalability

The following set of experiments investigate which embedding size is most suitable
for the task and if the unsupervised pre-training consistently improves the results.
Increasing the embedding size provides us with more representational power but

it also increases the memory usage for each point.
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Figure 7.5: The plot of the mAP fine-tuning with different amounts of labels for the
two approaches [100,143]. In black we highlight the difference in labels from the best

results without pre-training.

7.2.5.1 Number of Points or Embedding Size

Fig. @ shows the results of the fine-tuning, after pre-training with the same
embedding size and different number of points in the loss computation. We
can see that for the first half of the plot, the more points we use, the better the
performance is. However, using more than 10 000 points does not further increase
the final mAP. This can also be due to the number of available points for each
input point cloud P;, when |P;| < 10000 the loss would use fewer points, not
impacting the final performance.

7.2.5.2 Increasing the Representational Power

Tab. @ shows the result of the fine-tuning with different embedding sizes for our
approach using graph distances, the Euclidean distance-based approach, and the
randomly initialized network. We use the same number of points for embedding
sizes 3 and 24 to make a fair comparison. The highest embedding size prevented us
from using 10 000 points because of the higher memory usage. We are sure that if a
more powerful GPU is available, using 10 000 points for the last experiment would
further improve the performance. However, Tab. @ shows the best results we
could obtain using the same machine. We can see that using the graph distances
is consistently better for all the embedding sizes. Increasing the embedding size
yields higher mAP for all the approaches due to the greater representational
power. However, we notice that the gap between the graph pre-training and the
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Figure 7.6: Results of the approach by Marks et al. [] pre-trained with our method
and fine-tuned on 50% of the labels. In (a), a top view where points with no prediction

are in white. In (b), a side view removing the points without prediction.
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Figure 7.7: The plot of the mAP fine-tuning different pre-trainings and number of points
used in the loss, with embedding size D = 3. The curve shows a linear dependency

before saturation occurs.

other approaches is also increasing with the embedding size. This suggests that
the graph pre-training can learn the plant structure from the point positions, thus
providing a better initialization.

7.2.6 Domain-Specific Pre-Training vs. Representational

Power

In this experiment, we aim to evaluate our pre-training against state-of-the-art
methods, which are not trained on the domain-specific data but have more rep-
resentational power. Specifically, DepthContrast [] uses an embedding size
of 96 with 10,000 points, and SegContrast [] uses an embedding size of 128
with 20,000 points. Despite the higher embedding size and number of points, the
second part of Tab. @ shows that both methods underperform compared to our
best configuration.
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Table 7.3: Results for the mAP on the leaf instance segmentation with different pre-
training approaches and embedding sizes D.

mAP [%]

D 7 points o ut euclidean graph

pre-training pre-training pre-training

3 10000 36.8 41.8 44.3
24 10000 45.7 49.3 60.2
48 8000 56.8 61.0 74.2
Approach # points D mAP [%)]
DepthContrast 10000 96 65.8
SegContrast 20000 128 67.2

7.2.7 Automatic Post-Processing

In the last set of experiments, we evaluate the embeddings we get from our pre-
training without fine-tuning. Firstly, we evaluate three different post-processing
algorithms on perfect embeddings (labels) and we progressively add noise, to
show how the final mAP degrades. We use DBSCAN [59] and HDBSCAN [24] as
baselines. We compare them with our post-processing, as explained in Sec. ,
and with a second algorithm implemented by us and based on graph cuts [105].
This variant uses the same Step 1 of our post-processing. In Step 2, we use the
graph cut operation to separate one leaf from the rest of the plant. This must
be repeated for each cluster, i.e., leaf, found in the first step. Step 3 merges the
clusters into the final prediction. After assessing the performance of the different
post-processings, we evaluate the fully unsupervised approach.

7.2.7.1 Post-Processings Evaluation

Fig. @ shows the results for the four post-processings using perfect embeddings
and adding noise. We conduct two experiments, adding (i) random noise over
all the samples or (ii) gaussian-shaped noise with a higher magnitude near the
center of the plants, according to what we discussed in Sec. . Both of our
post-processings outperform the baselines (approximately +50% of mAP over
DBSCAN and +35% over HDBSCAN), especially when adding Gaussian-shaped
noise. We can see that using graph cut performs slightly better (approximately
+0.6% of mAP), but the need to build the graph does not scale well for high-
resolution point clouds. The results suggest that our post-processing methods

are more robust to the expected noise than usual clustering algorithms.
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Figure 7.8: The mAP [%] of the four post-processings with increasing noise magnitude
(the values stand for the maximum noise allowed) with respect to perfect embeddings.

7.2.7.2 Fully Unsupervised Embeddings Evaluation

In Tab. @ we report the results for the post-processing algorithms on the embed-
dings predicted from our unsupervised approaches, both Euclidean and graph-
based. In the first row, we provide the results obtained running HDBSCAN on the
point positions, which we use as the most simple baseline. Our best performance
is less than 10% worse than DBSCAN on the noisy but perfect embeddings. The
results confirm that the graph approach extracts more meaningful features and
that our post-processing has better performance than state-of-the-art approaches.
This set the mAP for the task, without using any labels, from 2.8% to 13.6%.

7.3 Discussion

We already mentioned in Chapter @ that the effectiveness of a pre-training de-
pends on how aligned the data, the augmentations, and the pre-training objective
are to the final domain and task. All these considerations are also valid in the
3D domain, but contrary to Chapter @, in this chapter we aim to pre-train for
a specific task; thus, we can develop a self-supervised objective well-aligned with
the leaf instance segmentation task.

We target leaf instance segmentation to perform the next step in our phe-
notyping pipeline, which is required to extract morphological leaf traits. Our
approach leverages in-domain agricultural data, domain-specific augmentations,
and a self-supervised task as close as possible to the leaf instance segmentation
task. In this way, we align our pre-training with our domain and with our desired

perception task. We compare against state-of-the-art pre-training techniques for
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Table 7.4: Evaluation of the post-processings with different embedding sizes and pre-
training approaches. The first row shows the result obtained running HDBSCAN on
the 3D positions only (without network).

post embedding mAP [%]
processing size Euclidean pt graph pt
HDBSCAN 3D positions 2.8
DBSCAN 24 5.7 6.9
HDBSCAN 24 6.9 11.3
ours 24 7.9 12.2
ours + graph cut 24 9.3 12.4
DBSCAN 48 6.3 10.9
HDBSCAN 48 7.5 11.3
ours 48 8.1 12.3
ours + graph cut 48 11.3 13.6

the entire network architecture and demonstrate that, even with a more compact
representation, i.e., a smaller embedding size D, we achieve superior performance,
confirming all the findings from Chapter @ Our experiments suggest that, even
if the network has access to the point positions, including spatial information in
the pre-training is crucial to learn how to distinguish between different objects
in the scene. In our case, this enables the use of a single view while pre-training
and reduces the memory footprint of the training. We use this to increase the
representational power of the embeddings and the number of points for which
we compute the loss, but we could use it to increase the batch size, providing
higher-quality gradients during optimization.

We believe that the best pre-training setting highly depends on the resolution
of the input point clouds, the growth stage of the plants to segment, and the
available computational resources. High-resolution point clouds allow the com-
putation of the loss on more points because of their density, but close points will
probably provide a similar gradient, increasing the memory footprint without
having a great impact on the final result, as shown in Sec. . The plant
growth stage must be taken into consideration as it directly affects the number
of points and the complexity of the task, i.e., later growth stages usually ex-
hibit more leaves and occlusions. This could guide the decision on the needed
embedding size and the tuning of the hyperparameters for building the graph
to differentiate overlapping leaves. On top of that, all these choices must be
compatible with the available computational resources, which pose a constraint

on increasing the embedding size, the number of points, and the granularity of
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the graph. The results in Tab. @ demonstrate that a higher embedding size is
a better choice than increasing the number of points. We did not perform an
extensive evaluation of the hyperparameters for building the graph because our
dataset comprised plants from the same growth stage. Furthermore, even if a
more fine-grained graph can better guide the pre-training, we could experience
the same problem of Euclidean distances, connecting close leaves, and diminishing
the quality of the learned embeddings.

The results in Tab. @ are promising, as we boost the unsupervised leaf
instance segmentation from 2.8% to 13.6% of mAP. However, we still require
fine-tuning over a labeled dataset to obtain a reliable segmentation. A more
accurate graph representation could improve the performance, even considering
the aforementioned risk. Recomputing the graph during training with different
hyperparameters could enhance the network capabilities and avoid the consistent
use of a graph representation of unknown quality. On top of that, instance
segmentation is now commonly performed by predicting centers and offsets. This
is not trivial in the unsupervised setting, as we need to know which points belong
to which leave to supervise centers and offsets. Changing our pre-training to
such a paradigm would increase the alignment with the supervised approaches,
enhancing the usability of the learned features. Nevertheless, this would highly
depend on the quality of the centers and offsets used as pre-training labels.

7.4 Conclusion

In this chapter, we proposed a novel, task- and domain-specific self-supervised
pre-training strategy for leaf instance segmentation, and a novel embedding-based
post-processing. Unlike general-purpose pretraining approaches, our method is
tailored to the structural and semantic features of the agricultural domain. Our
method exploits the large amount of data that is easy to collect and tries to re-
duce the labeling effort required to obtain state-of-the-art performance on the leaf
instance segmentation task. The approach relies on domain-specific data augmen-
tations and a task-specific loss, plus domain-specific automatic post-processing.
We implemented and evaluated our approach, provided comparisons to other
pre-training approaches and to state-of-the-art post-processing methods. The
experiments suggest that our pre-training based on graph distances is a better
initialization for the target task, and it boosts the final performance across all
the investigated scenarios. We achieve better performance when using the same
amount of data and computational power, and we can achieve the same perfor-
mance using fewer resources. Notably, our automatic post-processing outper-
forms standard clustering algorithms, exhibiting greater robustness to real-world

noise patterns such as uniform and Gaussian noise.
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7.4. CONCLUSION

By enabling robust and efficient leaf-level instance segmentation with minimal
supervision, our method paves the way for more scalable and accurate robotic crop
monitoring. Now that we have reliable 3D reconstructions of individual leaves, we
are well-positioned to move to the next stage: estimating biologically meaningful
leaf traits. This will be the focus of the next chapter.

124



Chapter 8

Exploiting Leaf Morphology for
Trait Estimation

N the previous chapter, we proposed an approach to improve the perfor-

mance of 3D leaf instance segmentation, while reducing the reliance on

labeled data. Now, with the knowledge of leaf instances, we can perform

the final step of the phenotyping pipeline proposed in this thesis: extract-
ing relevant morphological traits. Leaf trait estimation refers to the process of
quantifying attributes relevant for the understanding of plant behavior affecting
its throughput and resistance to stress and diseases [36,[120,200]. Leaf traits, such
as leaf area, leaf angle, and the leaf blade length and width, are crucial indicators
of plant health and function [149,198,201].

Traditionally, these traits are manually measured by workers, making this pro-
cedure expensive, time-consuming, and difficult to scale [234]. This limitation is
evident in agricultural datasets, which often provide only the average traits com-
puted over a few manually selected leaves, reducing the granularity and accuracy
of successive analyses. On top of that, this type of annotations are often not
enough to evaluate approaches that aim to estimate per-plant traits and is even
more problematic for training deep learning approaches, which usually require
large amounts of labeled data for supervised training [140]

In this chapter, we address the challenge of the limited availability of training
data by developing a generative approach to obtain leaf point clouds of given
lengths and widths. We can then use our generated data to optimize approaches
for the estimation of such leaf traits. Prior works [136,209,223] on trait estimation
focused on leaf instance segmentation on images, treating the number of leaves as
the main trait. However, images provide a limited understanding of angles and
curvatures, which are needed to estimate the length and width of bending leaves.
3D point clouds can better capture the geometry of the leaves, allowing for more

accurate estimation of geometric leaf traits, such as the leaf width and length.
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8.1. PROBLEM FORMULATION

Most of the approaches for 3D data are rule-based [50, 093,141, 157] instead of
data-driven [35,[143] since the lack of data with reference traits does not allow for
training of learning-based methods to estimate traits different from the number
of leaves. However, all approaches still require fine-tuning on labeled data to
achieve satisfactory performance in estimating any of the morphological traits.

The main contribution of this chapter is a novel approach for generating leaf
point clouds with their associated leaf traits. Our work paves the way for de-
veloping and benchmarking the next generation of trait estimation techniques,
previously limited by data scarcity. Unlike the traditional template leaf model,
a mechanistic rule-based representation developed by expert plant scientists to
capture the leaf morphology, we use a generative network trained on real-world
data. As input, our network receives a point cloud representing a leaf skeleton
with its traits as high-level descriptors. The network generates realistic point
clouds of leaves as output. Training on real-world data encourages our approach
to generate leaves similar to the real ones, without the need for additional expert
knowledge for each different plant species. We generate new leaves by providing
a skeleton of the desired length and width. In this chapter, we decompose the
problem of trait estimation into two parts: a generative method produces leaf
point clouds with their respective leaf width and length, and then, we use the
generated data to optimize the parameters of a trait estimation approach. We
illustrate how we decompose the problem in Fig. El]

We benchmark our approach against other heuristics- and learning-based leaf
generation methods, demonstrating that our generated leaf point clouds have a
high probability of being drawn from the real-world leaves distribution. Then,
since our approach addresses the challenge of data scarcity for trait estimation
methods, we tune different off-the-shelf trait estimation approaches on our gen-
erated data and demonstrate that these result in more accurate and precise trait
estimation of real-world leaves. We evaluate our results on multiple datasets of
different crop species. In summary, this chapter validates that using our gen-
erated leaves to tune trait estimation approaches achieves better performance
compared to using other generated or real-world leaf point clouds. Our experi-
mental evaluation confirms that all generated leaf point clouds respect the leaf
traits we condition on and have a high probability of being sampled from the
real-world leaf distribution.

8.1 Problem Formulation

We formally define the problem before explaining our proposed method for gen-
erating point clouds of leaves. Leaf trait estimation is performed by a method

that we express as a function

126



8. EXPLOITING LEAF MORPHOLOGY FOR TRAIT ESTIMATION

AR
c — S
— S 2
qt-': < ‘l‘“’
Q s 2 £
° @ ‘© a
5] 2 w
%3S o = =
g 2 8 g
c O += =
O (0]
O 5 £
=
(2]
o i
A
5
= = \ 4
G N .
®© IS o
o = =
S g | w =~ ®
Q. [0} = s}
< < El S S S
2 2 3 |8 s
- — - — =
© 8 S E | 8 £
g < a L
o) c o) Qo
8 £ 5 2 || U
© £
A £ 5
D (@) >
i £
5= =
S =
n f 0
)
c
o
o
o9
Q
X
%)
_J
j\
)
= )
<
I A
o & 3 -
= o = O
- e 35 o (3)
32 e 5 2
@ © O S = S
T g E O =
= S &
o
— / — J
\ -

Figure 8.1: Outline of the training and inference procedure for generating a leaf point
cloud P; with given traits t; (top), and for estimating leaf traits t; from a given point
cloud P (bottom). We highlight the generative approach ¢ in green and the trait
estimation approach f in yellow. We color the training pipeline in purple and the
inference pipeline in blue.
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8.2. OUR APPROACH FOR GENERATING ANNOTATED LEAF POINT CLOUDS

where P; is the input leaf point cloud, @ are the approach’s parameters, t; €
R” is the vector of T estimated traits for the input leaf P;, each one a scalar.
The f function is represented in Fig. El] with a yellow block. We can find the

optimal parameters of the approach given a dataset of |D| leaf point clouds with
traits D = {(P;, t;)}2] as

0;, = arg mm Z f(P;,0), t;) = arg reneig Ze (ti, t,), (8.2)

(,Pwt t;€D

where © is the set of possible parameters @, and e (fi, ti) is a function computing
the error between the estimated traits ¢; and the ground truth traits t; in D.
The error function e used may depend on the estimated traits, e.g., the cosine
similarity is appropriate for the angle between the leaf and the plant stem, but
not for the length of the leaf blade. The error function is the white block in
Fig. @ As in any optimization procedure, the final performance of the trait
estimation approach f depends on the dataset’s completeness and reliability. As
already mentioned in the introduction of this chapter, the real-world agricultural
datasets D, associate multiple leaf point clouds P{eal with the same average
traits computed over a few manually selected leaves. We want to tackle the
problem of generating a dataset with known traits for each leaf point cloud. We

introduce the generative problem as defining a function

g9(t;) =P, (8.3)
that generates leaf point cloud P; for given traits t;. The generative approach g
is represented in Fig. @ as a green block. In this way, we can generate a new
dataset

Dy = {(g(t:), t:) 12} - (8.4)

This new dataset D,, with per-leaf ground truth traits t; is used to find the

best parameters 03‘% for any given trait estimation method f. The generative

function ¢g(t) must generate realistic data to obtain a valuable dataset and, thus,
parameters 0;59 that perform well on real-world point clouds.

8.2 Our Approach for Generating Annotated
Leaf Point Clouds

We propose a novel approach that generates synthetic leaf point clouds P with
known traits. Instead of relying on a mechanistic model, we train a 3D convolu-

tional neural network to generate synthetic leaf point clouds of desired traits t.
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Figure 8.2: Overview of our approach. We illustrate the input point cloud P comprising
skeleton points in black and points sampled from the Gaussian Mixture Model (GMM)
in white. Our network predicts per-point offsets depicted as arrows. Adding the offsets
to the point positions we obtain P. We supervise the network using real leaf point
clouds Prea!,

This is the g function of our problem formulation in Eq. (% An overview of
our approach is shown for an exemplary tomato leaf in Fig. 8.2.

In our work, we consider the leaf blade length and width as traits. Such traits
are intrinsic in the leaf skeleton point cloud extracted from real-world leaves. We
do not need their actual values to train our network. In Sec. , we illustrate
how to obtain the skeleton point clouds S from the point clouds of real leaves P e,
We do not pose constraints on how to acquire the real-world point clouds. The
datasets we use have been created by means of a laser scanning system with sub-
millimeter accuracy or using photogrammetric reconstruction including bundle
adjustment [207] on a set of images of the field. Then, in Sec. , we describe
how we add more points to the skeleton point cloud P to capture the shape
of the whole leaf and obtain the input P for our network. We then explain
the network’s architecture. In Sec. , we explain the loss we minimize dur-
ing training, and Sec. describes how we build skeletons and compute their
traits from the functions that define the skeleton. Our network starts from these

skeletons to generate new leaf point clouds of known leaf blade length and width.

8.2.1 Extraction of Leaves Skeletons

The first step of our approach extracts skeleton point clouds P of real-world
leaves P2, We use two existing approaches by Marks et al. [141] and by Mag-
istri et al. [138] showing that our approach is independent from the skeleton
extraction method. The skeleton serves as a structural backbone of the leaf, cap-
turing the petiole, the main axis along the leaf length, and the lateral axis along
the leaf width. In the literature, there is no universal definition of leaf width.
Marks et al. [141] define the leaf width on their template, while for the approach
by Magistri et al. [138], we define it as the width at the midsection of the leaf.
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() (d) (e)

Figure 8.3: We show the extracted skeleton using the approach by Marks et al. []
(top) for a sugar beet leaf, and the approach by Magistri et al. [] (bottom) with our
adaptation for a maize leaf. The skeleton P is always shown in black circles. We
show the view from the side (a) and the top (b). For the maize leaf in (c), we show the
skeleton extracted along the main axis and the points of the leaf slice cut around m in
(d). In (e), the final skeleton with main and lateral axes.

Marks et al. [] manually define all the points and faces for a template mesh
of a leaf that they deform to fit it to real leaf point clouds P™*. They also define
which points in the template represent the center, tip, right and left corners of
the leaf, and which subsets of points represent the main axis, the lateral axis, and
the petiole. The template targets sugar beet plants, and new template meshes
are needed for each new crop species. Since they define the points in the template
belonging to the main and lateral axis, after fitting the template mesh to the leaf
point cloud P we use the positions of such points as points for our skeleton
point cloud P*¢. The top row of Fig. @ shows the extracted skeleton for one

exemplary sugar beet leaf.

We use the approach by Magistri et al. [] to extract the skeleton point
clouds P! of leaves of tomato and maize plants. The main limitation of their
approach is that it only provides the points of the skeleton along the main axis
of the leaf, which usually represents the leaf length. Thus, their approach does
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not detect the points of the lateral axis, i.e., along the width direction of the
leaf. Magistri et al. [138] generate a chain of 3D points and fit it to the leaf
point cloud. In the bottom row of Fig. , we show how to use their approach
to also compute the points of the skeleton along the width direction of the leaf.
After computing the points of P*! along the main axis, we compute the median
point m € R?, and the direction n of the lateral axis of the leaf as the second
principal component extracted using principal component analysis on P We
then cut a slice of the leaf around m, preserving all points in the direction of n
and removing points whose distance from the line 1 = m + c¢n, where ¢ € R, is
larger than 7;. This slice represents the central section of the leaf, from which we
want to extract the points representing its width. In Fig. @ (d), we show the
skeleton along the main axis over the points that we keep at the end of this step.
We then apply the approach only on the points in the area of interest to detect
the skeleton points in the direction of the leaf width. We show in Fig. @ (e) the
final skeleton obtained by combining the points from this two-step approach.

8.2.2 From Skeletons to Network Outputs

We generate the leaves using a neural network, specifically a 3D U-Net [186]
based on KPConv [205]. At the end of the previous section, we obtained the
skeleton point cloud P! with N points representing the leaf skeleton, we call
Peleton € RV*3 the matrix where each 3-dimensional row represents one point
of Pkl To reconstruct a complete leaf ), we add extra points beyond those of
the skeleton to have enough points to ensure a realistic shape. We call N the
total number of points in the point cloud P that we use as input for the network.
We set N = N + 6N, where § € Z* is a parameter that scales the number of
total points according to the number of points in the skeleton P%¢!. We sample
the extra points Pgmpled € RINV>3 from a Gaussian mixture model [179] fitted to
the original skeleton points Pgeleton. A Gaussian mixture model is a probability

distribution of density

J
p(psampled,u) = Z Ty N (psampledm; ij E]) ) (85)
j=1

where Psampled.. € R? is the position of the u™ sampled 3D point, J is the number
of distributions in the mixture, 7; is the probability of selecting the j™ distribu-
tion, p; € R? is the mean and X; € R3*3 is the covariance of the j™ distribution.
When collecting the real point clouds P, we need to know if they include the
petiole. When the petiole is present, we set J = 2; otherwise, we set J = 1.
We require two modes when the petiole is present, as we expect one Gaussian

to capture the petiole and one to capture the leaf surface. When J = 2, we set
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(a) (b)

Figure 8.4: We show the point cloud P, i.e., the input of our generative function g.
The points of the skeleton are shown in black circles. The other points are sampled
from the Gaussian Mixture Model fitted on the skeleton. We show the view from the
side (a) and the top (b).

m; = 0.5Vj. We now call P the point cloud obtained by adding the points Pgumpied
to those present in the skeleton point cloud P%°. We show the resulting point
cloud P in Fig. @ for a sugar beet leaf, where one Gaussian is fitted to the
petiole and one to the leaf blade.

The output of our 3D U-Net is an offset vector o € R? for each point in the
input point cloud P. We compute the positions of each u — th point p, in the
output point cloud P as p, = pu + 0q.

8.2.3 Loss Functions

The objective of our generative function ¢ in Eq. (@), is to generate leaf point
clouds P respecting the traits t defined by the skeletons P!, and whose points
distribution is close to the real-world one. To achieve this, we combine different
loss functions in the training procedure. We divide the loss functions into two
main groups. The first group consists of reconstruction loss functions defined
on the real-world point cloud P/ from which we extract the skeleton P! and
the output point cloud P;. The second group consists of loss functions based
on the points distribution for all P{eal € Dyear- The first group of loss functions
aims to produce a leaf point cloud P, which respects its skeleton P!, looks like
the original point cloud P™ from which P was extracted, and has a smooth
surface. The second group of loss functions forces the output point cloud P to
have a similar point distribution compared to the point distribution in the real
leaf point clouds P™*. Our approach minimizes the total loss

L= )\lﬁskeleton + )\2£chamfer + /\S»Cedges + /\4£smooth + )\5 (['CMMD + EFID + EPR) )
(8.6)
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where we weight the different loss functions using A\,, a € {1,2,3,4,5}. The recon-
struction loss functions are Lgeleton, Lchamfers Ledges; aNd Lgmooth, While Lenvb,
Lrip, and Lpg are distribution loss functions.

Reconstruction Loss Functions. The reconstruction loss functions use the
generated leaf point cloud P and the real leaf point cloud P from which we
extracted the skeleton P!, Their main purpose is to encourage the network to
generate a leaf respecting the traits t defined by P*¢!. The first term Lexeleton
forces the network to keep the skeleton points Pgeleton in their original positions,
thus preserving the desired traits t. To keep the skeleton points fixed, we enforce
that the offsets predicted for those points have all components equal to zero,
resulting in the loss term

skeleton Z ’ 0; ‘ ]1 pz ,PSkd] (87)

where 1[p; € P*!] is an indicator function evaluating to 1 when the points p;
belongs to Pkl

The second term Lgamfer 18 the Chamfer distance. In the literature, this
distance is used to evaluate the distance between two sets of points [139,146]. We
include it in our loss to enforce that the points of the generated point cloud P
are as close as possible to the points of the real-world point cloud P!

. real ~
Echamfer = E min | ‘p e

preal gPreal f)EP

(8.8)

27

where p*® € R? is a point belonging to the real-world leaf point cloud P2, We
compute the Chamfer loss in both directions, i.e., we compute the closest point

real and the closest point in P for each p.

in P for each p

The third term Leqges is a regularization loss to enforce that the distance
between neighboring points in P is close to a user-defined value I. This loss
enforces that points are evenly distributed in space, penalizing areas that are too
sparse or too dense. We compute a k-NN graph over the output point cloud P
defining a maximum distance d,., for two points to be connected, i.e., we define
an edge e,, € E of length [,,, = ||p. — Pv||, between points p, and p, if p, €
NN (pu), where NN(p,,) is the set of k neighbors with distance from p,, smaller
than d,... We then compute the loss as

£edges - N Z |NNk Z Z - Z||17 (89)

u=1 vENNk(pu)

where |NNg(p,)| is the cardinality of the nearest neighbors of point p,, and
|[lu.s — I||1 is the absolute distance of edge [, from [.
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The last term Lgo0tn IS a regularization loss to enforce the generated leaf
point cloud P to have a smooth surface. This loss acts like a denoising operation
and penalizes single points that are too far from their neighbors and that would
lead to sharp changes of the leaf surface. We use the edges computed before via
the k-NN graph to compute the Laplacian matrix L € RY*¥ as

—1 Jdfu=wv
1 .
Lu,v = W ,lf Eleu,v S (810)
0 , otherwise

Then, we compute the Laplacian smoothing objective as Q = LIS, where
P € RV*3 is a matrix where each row is a point p, € P. We define the loss as

N
ﬁsmooth = Z |Qu‘ ) (811>
u=1

where Q, € R? is the u' row of Q.

Distribution Loss Functions. The second group of loss functions enforces
that the distribution of the points in our generated dataset Doy of size |Dous|,
is as close as possible to the points distribution of the real-world dataset D,c, of
size |Dyeal|- We use three commonly used metrics for data generation and phrase

them as losses. The first term Leyp is the maximum mean discrepancy of the
3D CLIP embeddings [85] given by

‘Doursl |Dours‘

1
EC = VCLIP, VCLIP
MMD | Dours| (| Dours| — 1) ; Z ( Ty g )
J#i
|DrCal| |Drcal‘
CLIP CLIP
8.12
|,Drea1’ |’Dre31’ - 1 ; Z > ( )
J#i
2 ‘IDO‘JYS| |Dreal|
CLIP _CLIP
YT v, Vi),
‘DourSHDreal’ ; ; < ri o 0 Vg >
where vCLIP and V%IP are the CLIP embeddings of the i*" real-world point cloud

and of the J™ generated point cloud, and (-, -) is the cosine similarity opera-
tion. Jayasumana et al. [97] were the first to propose the use of CLIP embed-
dings, initially for the evaluation of generated images. Exploiting the work by
Hegde et al. [85] who provide 3D CLIP embeddings trained on point cloud-image-
caption triplets, we compute the CMMD on point clouds.

The second term Lpip comes from the Fréchet inception distance. As for the
previous term, we first compute embeddings for all point clouds, both the real-

world Dy, and the generated ones Dy,ys. We can use the model by Hegde et al. [85]
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to obtain CLIP embeddings or any other neural network to extract embeddings
from the point clouds. Once we have the embeddings v, ; for all the real-world
point clouds and v ; for all the generated point clouds, we fit Gaussians N (i, o)
and N (pys, o) to the two embedding distribution. We compute the FID as

Lo = Nl — gl + tr (B + B - 2/53) (8.13)

where 3, and X, are the covariance matrices of two distributions, and tr(-) is
the trace operation over the matrix.

The third term Lpr comes from the precision and recall metrics. These
metrics have been extended for evaluating generative approaches by Kynkaan-
niemi et al. [115]. In the following, we shortly explain how the metrics are
computed and how we adapt them to use them as losses. As for the previous
distribution loss functions, we need point cloud embeddings. We call ®, and ®;
the sets of features extracted from the real and generated point clouds. For each
set, we estimate a manifold in the feature space by sampling a set of points and
surrounding each with a hypersphere that reaches its k™" nearest neighbor. We
then evaluate whether an embedding v is inside the volume estimated from the
set of features ® as

: (8.14)

sw.ay— { L i Sven v Vi, < IV - NN, @)
"7 ) 0 ,otherwise

where NNy (v, ®) returns the k-th nearest embedding of v/ from ®. We now
compute the precision Pr and recall R as

1
Pr = %] > b(vy, @) (8.15)

VfE{)f

1
R = b(v,, ®y). (8.16)
] 25
In contrast to the previous loss functions, which are distances, we cannot use
the precision and recall as they are, since we aim to maximize them. Thus, we

define the precision-recall loss as

1 1
EPR = 10g10 <m) + lOglO (R——FE) s (817)

where € is a small value to ensure numerical stability. In the original paper [115],
the authors noticed that the score is inaccurate when measuring the quality of
a generated sample that falls into an area of the manifold where only a few real

samples are present. Thus, they introduce the realism score
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r NN, raq)r
realism (v, ®,) = max{ v (v ), }, (8.18)

vr va - VT’HQ

which is used to filter out elements in such sparse areas of the manifold. The
higher the minimum realism score, the more we are pruning our manifold ®,.,
thus yielding accurate and higher scores.

Since the real-world data distribution does not change during training, we
can easily pre-compute the target values for all the distribution loss functions
Lcovvp, Lrip, and Lpg, i.e., v, N (., 0,), and ®,..

8.2.4 Generating New Leaves

Our generative model g takes as input the desired leaf length and width. However,
our network needs as input a point cloud P computed from a skeleton point cloud
Pskel " as explained in Sec. 8.2.1. Thus, we need to define how to build a skeleton
point cloud P! without extracting it from a real-world leaf. As mentioned in
Sec. , the skeleton consists of three parts: petiole, main axis, and lateral
axis. We construct the skeleton in the 3D Cartesian frame, building the main
axis along the x direction and the lateral axis along the y direction. The petiole
is a line of function

Zpetiole(T) = AT, T € [Tmin, 0], (8.19)
53
all these points still need a y coordinate, which we fix to 0. The petiole can be

where a ~ U ( ) and Ty, ~ U (—1,—-0.25). Since we want a 3D point cloud,
removed from the generative procedure when it’s known that the petiole is not
present in the training data D,e,. We do not use the petiole for the maize leaves
since the petiole is not present in the used real-world point clouds P™. The
central axis is defined as a hyperbolic tangent

et —e

er + e’

z€[0,1], (8.20)

Zcentral (ZL’) -

where we clamp the hyperbolic tangent between x = 0, where the petiole starts,
and x = 1. All points have y = 0. We then scale the axis to different sizes.

We define the point where the central axis intersects the lateral axis as
Peross = [Peross.zs 0s Peross,z] > Where Perosse ~ U(0.25,0.75) and Peross,. is given by
Eq. . We use a parabolic function,

Zlaterzﬂ(y) =a 92 + by + ¢, (821>

to represent the lateral axis, where all points have £ = Peross . To compute the
parabola coefficients a, b,and ¢, we need 3 points. One point iS Peross, and the
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.
.
.
.

(a) (b) () (d

Figure 8.5: In (a) and (c) we show two generated skeletons seen from the side, while in
(b) and (d) we see them from the petiole. The axis angle, the petiole length, and the
extremities of the lateral axis vary.

other two are the extremes on the right and left. We define them as

Pr = [pcross,xa 05, Pcross,z + Zr]T

(8.22)
P = [pcross,:m _0-5; Pcross,z + 2

]T
where 2z, and 2z are two distinct values sampled from U(—0.25,0.25). It is im-
portant that the width of the leaf projected on the y axis is 1, we can then scale
it to different sizes. The final skeleton is the collection of points sampled along
the curves in Eq. (), Eq. (), and Eq. () We then scale this paramet-
ric skeleton by multiplying all  coordinates of the points for the length scaling
factor s;, and all the y coordinates for the width scaling factor s,. The scaling
factors are the only user-defined parameters that influence the length and width
of the generated leaves. Thanks to the different randomly sampled parameters
O, Tnins Peross., 2r, and 21, we obtain a large variety of leaves whose lengths and
widths are centered on the user desired dimensions.

We calculate the final length and width of the leaf using the formula for
computing arc lengths. The width of leaf Ly;q¢, is computed as

Luiaen — / VIR + () dy / y) dy = / (2ay +b) dy, (8.23)

Sw Sw

where 2'(y) = 0 because all points on the lateral axis have £ = Peross and
we compute 2'(y) deriving equation Eq. . The length of the leaf Liengn is
computed as

S| 0 Sy
Liength = \/z/(x)2 + v/ (x)?dx = / adr +/ (1 — tanhQ(x)) dx, (8.24)

-')A:min Lmin 0
where T, is the resulting minimum value for x we got multiplying x;, for s,
y'(x) = 0 because all points of the main axis have y = 0, and we derived Eq.

and Eq. to sum the length of the petiole and the length of the leaf blade. We
show two exemplary skeletons in Fig. @ We can see from the side view of the

137



8.3. EXPERIMENTAL EVALUATION

skeletons in Fig. @ (a) and Fig. @ (c) that they have different stem lengths, leaf
angles, and intersection points of the two axes. The two skeletons also present a
lateral axis with opposite orientation. In the views from the petiole, Fig. @ (b)
and Fig. @ (d), we can see that the lateral axes are skewed, not being perfectly
symmetrical with respect to the main axis. One can make the skeletons more
complex using different functions, or polynomials of higher grade to represent the
axes. However, the results of our generative procedure suggest that our skeletons

capture the characteristics of the used crop species.

8.3 Experimental Evaluation

The main focus of this work is an approach for generating 3D leaf point clouds
of known length and width. Using our data improves the performance of trait
estimation approaches and enables a more fine-grained analysis of crop growth
and productivity. We present our experiments to demonstrate that using our
generated leaves D, to tune trait estimation approaches outperforms using
other generated leaf point clouds. All of our generated leaves respect the leaf
traits we condition on and have a high probability of being sampled from the
real-world leaf distribution.

8.3.1 Experimental Setup

Datasets. We use the BonnBeetClouds3D [142] dataset introduced in Chap-
ter H, and Pheno4D [193], a dataset captured with a laser scanning system. Both
datasets provide single-leaf point clouds. We show in Fig. @ (a) to Fig. @ (f) im-
ages of sugar beets plants from BonnBeetClouds3D [142], in (i), (j), and from (n)
to (p) tomato plants from Pheno4D [193], and in (g), (h), and from (h) to (m)
we show maize plants from Pheno4D [193]. For the tomato and maize plants, we
show one plant from the first date and then the same plant from the last date.
We can see that leaves at the early stages are more similar, but they grow into
very different shapes and structures in the later growth stages. For the sugar
beets, we do not have access to earlier growth stages, so we present two distinct
plants from the dataset. However, sugar beets are dicotyledonous plants, thus
resembling tomato plants in the early growth stages, as the ones depicted in (g)
and (h). Since BonnBeetClouds3D [142] was captured in the field and not in
a controlled environment, we can see that the bottom part of the plant is oc-
cluded and not entirely present in the point cloud, which increases the challenge
in estimating the correct traits.

Metrics. We evaluate the estimated traits by comparing the mean and the
standard deviation estimated by all approaches when trained on the different

138



8. EXPLOITING LEAF MORPHOLOGY FOR TRAIT ESTIMATION

Figure 8.6: Exemplary plants of the three crop species. (a)—(f) are sugar beet plants,
(g), (h), (k)=(m) are maize plants, and (i), (j), and (n)—(p) are tomato plants. For
maize and tomato, we show the same plants at the first (g)—(j) and last date (k)—(p)
of data acquisition. For every plant, one different color is assigned to a unique leaf.
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generated datasets. Additionally, we compute the Fréchet inception distance
(FID) [88], the CLIP Maximum Mean Discrepancy (CMMD) [97], and the F-
score computed by the precision (Pr) and recall (R) [115] explained in Sec.
to estimate how close the distributions of the generated and real data are. We
employ the pre-trained networks from Mohammadi et al. [154] and Hedge et
al. [85] to extract the embeddings v. Both networks provide open-source code
and pre-trained models. Embedding-based metrics, as the ones employed in our
evaluation, are the standard approach to evaluate generative methods [[19,89,115,
153,[190]. These metrics provide a semantic and perceptually relevant comparison,
allowing for distribution-level comparisons that would not be possible for distance
metrics based on the raw points’ positions. To verify that we are not generating
the same leaf when conditioned on one specific skeleton, we compute the mean and
standard deviation of two different metric distances between multiple leaves P
generated from the same skeleton input P!,

Training details and hyperparameters. We train our network using the
Adam optimizer [107] with a learning rate 0.001. In our loss, we set the weights
of the different components to \g = 1, Ay = 0.1, Ay = 0.1, A3 = 10, A\, = 0.01.
These weights help preserve traits while producing realistic leaf point clouds.
We use different scaling factors for different crop species: s; ~ U4(0.02,0.50) and
sw ~ U3, s1) for the sugar beets, s; ~ U(0.15,0.90) and s, ~ U(75, %) for
the maize and s; ~ ¢/(0.10,0.50) and s,, ~ U(3},s;) for the tomato leaves. We
use J = 2 for sugar beets and tomato leaves, and J = 1 for maize leaves.

Baselines. We evaluate our approach by comparing our generated leaf point
clouds D,s to the leaves generated by three possible g functions in our problem
formulation in Eq. (@) First, a set of leaves generated using the procedural agri-
culture simulation software Helios [11] exported by means of a simulated LiDAR
sensor, from now on called Dy. Second, we apply transformations specific to the
agricultural domain from our previous work [182] to the leaves obtained from
Helios to obtain a larger variety of leaves, denoted as Dyr, where HT stands for
“Helios + transforms” Third, we train LiDiff [163] to generate leaves conditioned
on the skeletons using diffusion, from now on denoted as Dr;piz. Lastly, we also
use the real-world per-plot ground truth data D,., to highlight the importance of
per-leaf traits to improve the performance of the leaf trait estimation methods.

8.3.2 Trait Estimation

The first experiment evaluates how fine-tuning off-the-shelf trait estimation ap-
proaches on D, improves the performance compared to other datasets. We
show that fine-tuning on D,..s provides better estimates in terms of mean and
standard deviation without relying on costly manual annotations. We test the

fine-tuned approaches on the validation set of BonnBeetClouds3D [142], which
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Figure 8.7: We show the leaf blade length and width estimated by the approaches for
BonnBeetClouds3D [] after tuning them on the different datasets. Each bar plot is
centered on its mean, the size corresponds to its standard deviation, and we show the

maximum and minimum estimated values.
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only provides mean and standard deviation per sub-areas of the field of size 1m
by 1m, that they call patches.

We use three trait estimation approaches f: (i) the approach by Choud-
hury et al. [p0] fits a polynomial to the skeleton of the leaf and then computes
the leaf length via integration; (ii) the approach by Huang et al. [93] uses the
principal components to define the direction of the length and width of the leaf
and then computes the longest shortest geodesic distance along those directions
via A* [80]; (iii) Coherent point drift [157] uses Gaussian mixture models to find
the best correspondences between two set of points. Coherent point drift needs a
source point cloud to deform, i.e., a leaf point cloud template, for which we use
the leaf template defined by Marks et al. [141]. As explained in Sec. 8.2.1, this
template mesh already defines the points belonging to the main and lateral axes,
allowing us to compute the length and width of the leaf after the deformation
carried out by Coherent Point Drift.

For Dy, Dyr, and D,,s, we have per-leaf traits, while D, only provides
per-patch averages. This introduces a systematic error since all leaves from the
same plot will have the same ground truth. For Dypig [163], we use our skeletons
of known traits, without changing the noise generation and training procedure.
For our skeletons, we also know the leaf angle. However, since this was not in the

ground truth measurements, we were not able to use it for evaluation purposes.

In Fig. @ (a), we illustrate the results obtained by tuning Choudhury et
al. [b0] on the validation patches of the BonnBeetClouds3D dataset. We see
that the second patch is the one where tuning over D, performs worse. This
suggests that our generated leaf point clouds do not align well with the leaves in
this patch, which is, interestingly, the one with the larger leaves. This could also
explain why we are the only one underestimating the size of the fourth patch,
where using Dy and Dyt results in smaller variances and better maximum and
minimum estimates compared to the other patches. In general, the maximum
and minimum estimates obtained by tuning on D, are better, even when other

datasets provide a mean closer to the ground truth.

The results of Huang et al. [93] in Fig. @ (b) provide similar estimates across
all patches and datasets, suggesting an algorithmic limitation rather than dataset
influence. The pipeline has a few hyperparameters to remove outliers and define
the path cost of the A* algorithm [80] for computing the traits. We believe
that the PCA-based method struggles with the complex heart shape of the sugar
beet leaf and with occlusions, misidentifying the main axis and, thus, leading to
estimation errors. Failures to identify the main axis would also explain the large
differences in maximum and minimum estimates. The differences in the results
likely depend on the dataset’s resolution and sparsity, which would impact outlier

detection and the computation of distances.
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Figure 8.8: Two leaves generated by LiDiff, where we show in black dots the skeleton
used for the conditioning and in green the generated point clouds. The point clouds
have the appearance of leaves, but do not respect the skeleton traits. We highlight the

errors in red circles.

We show in Fig. @ (c) that tuning Coherent point drift [157] on Dy, provides
means closer to the ground truth but with larger standard deviations. The second
patch remains problematic, confirming the trend observed for the approach by
Choudhury et al. [50]. While Dy and Dyt perform better on the second patch,
the uniformity of their results suggests a potential overfitting or a failure to
capture the data diversity. Tuning the approaches on D,., yields diverse results
but large standard deviations, especially for the blade width, likely because of the
lack of per-leaf ground truths. Similarly, also using Dyp;g shows high standard
deviations, likely because the generation procedure does not preserve the traits
accurately. We provide qualitative examples of the leaves generated by LiDiff in
Fig. @ The leaves appear realistic but do not accurately follow the skeletons,
depicted as black dots, representing our desired input traits. In Fig. @ (a),
the leaf is shorter than expected, leaving one skeleton point outside of the leaf
blade, thus providing an incorrect leaf length. In Fig. @ (b), we see the opposite
problem; the last skeleton point is actually inside the leaf blade that overshoots
the expected leaf length. This problem is hard to address because it is not
systemic, i.e., we do not always have shorter or always longer leaves. Using
inaccurate traits during the optimization leads to the same problem of using the
ground truth “per plot” measures.

The results show that using accurate per-leaf traits, even when artificially
generated, improves the estimation results on real-world leaves. Our approach en-
ables precise trait estimation without manual labeling or expensive expert knowl-
edge. This is crucial for breeders and agronomists assessing plant traits linked
to crop growth and productivity. However, ambiguity in defining leaf width

(e.g., midsection vs. widest point) complicates evaluation. Mismatches in width
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Figure 8.9: Examples of sugar beet leaves generated by our approach with different leaf
angles, stem lengths, and blade lengths and widths. We show a side (blue rectangle)
and a top view (purple rectangle) of three plants generated using the same leaves
with different orientations and positions. We show zoomed in views of the first (green

rectangle) and second plant (orange rectangle).

definitions across datasets, generative models, and estimation methods introduce
systematic errors, highlighting the need for standardization in trait measurement.

8.3.3 Realistic Data Generation

The second set of experiments assesses how closely our generated leaf point clouds
match real-world distributions. We demonstrate that our approach generates leaf
point clouds with features similar to real-world data, making them valuable for
tuning trait estimation approaches to use in real-world scenarios. Additionally,
our method generated diverse leaves while maintaining specified blade length and
width, bridging the gap between simulated and real-world data. As detailed in

Sec. B.3.1], we evaluate the generated point clouds with the metrics explained in

Sec. B.2.3. They compare distributions of embeddings, which we extract using

the two different pre-trained networks mentioned in Sec. 8.3.1.

8.3.3.1 Leaf Distribution

We use the validation set from BonnBeetClouds3D, from now on called Sugar-
Beets dataset, and the unlabeled plants from Pheno4D as real-world target point
clouds. We illustrate examples of the leaves generated by our approach trained
on BonnBeetClouds3D in Fig. @, where we use the information from the skele-
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8. EXPLOITING LEAF MORPHOLOGY FOR TRAIT ESTIMATION

Table 8.1: Evaluation of the Fréchet inception distance (FID), F-score, and CLIP Max-
imum Mean Discrepancy (CMMD) for the leaf point clouds generated by the different
approaches compared to the test sets. Our approach outperforms the others on most

metrics across the different datasets.

Dataset Generated Data ‘ FID | ‘ F-score 1 F-score + CLIP 1 ‘ CMMD |
Dy 312.84 0.01 0.01 169.71
Dy 14.01 0.36 0.01 28.45
SugarBeets DrLiDift 26.89 0.35 0.11 22.05
Dours,rec 108.73 0.03 0.17 20.46
Dours 13.71 0.21 0.20 19.53
Dn 11.28 0.19 0.02 29.39
. Dur 0.17 0.39 0.17 16.36
Maize
Dripift 1.05 0.22 0.09 65.14
Dours 0.12 0.55 0.36 11.51
Dy 7.89 0.01 0.06 28.26
Dur 5.29 0.02 0.06 24.16
Tomato
Dripift 6.66 0.05 0.10 65.42
Dours 2.76 0.15 0.17 12.39

tons to merge our generated leaves in different plants. We compute all metrics
for Dyurs, Du, Dur and Dripig. Since LiDiff requires conditioning on skeletons
but does not provide a skeleton generation procedure, we use the skeletons of the
training set to generate new leaves, potentially giving it an advantage over meth-
ods relying on domain expertise or procedurally generated skeletons. Tab. @
shows the results of the CMMD, FID, and F-score. For the F-score, we use both
feature extractors, i.e., the network by Mohammadi et al. [154] and by Hedge et
al. [85], to isolate network-specific influences. Fitting a Gaussian on the CLIP
embeddings of the real-world point clouds was failing and starting with non-
default initializations provided inconsistent results, thus we do not include the
FID metric with CLIP embeddings. Since the improved precision and recall met-
rics depend on the number of neighbors used to construct the real and generated
data manifolds (®, and @), we evaluate the F-score across multiple values of k,
specifically k € {2,4,8,16,32,48,64,96}. We then report the mean F-score over
these values to provide a more stable and robust estimate.

We see that applying our domain-specific transforms to Dy improves all met-
rics across all datasets. The results are generally better on Pheno4D, likely be-
cause this dataset consists of leaves at different growth stages compared to the
SugarBeets dataset, which was recorded in one day. Overfitting to the exact

growth stage could lead to a boost, explaining the results of LiDiff, which uses
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the skeleton of the training point clouds. Our approach outperforms the others
across most of the investigated scenarios, except for FID + CLIP and the F-score
on the SugarBeets dataset, where the feature extractors yield conflicting results.
For the SugarBeets dataset, we also provide an ablation study on our approach,
namely Doy rec, Where we keep everything the same but we train using only the
reconstruction losses, without the distribution ones. We can see that using the
distribution losses improves all metrics, especially the FID and the F-score, which
is 7 times better. This proves the contribution of our distribution loss functions
and the importance of supervising the distribution embeddings while generating
the leaf point clouds.

Given the low F-score values in Tab. @, we compute the realism score as in
Eq. and re-evaluate the generative approaches on the SugarBeets dataset,
where the two feature extractors contradict each other. We noticed that the num-
ber of samples filtered out by the realism score was high, especially for low values
of k. Tab. @ shows the F-score filtering out elements with low realism and con-
sidering only results where more than half of the generated leaves were used. Most
results improve by increasing the minimum realism score, but many approaches
fail when the minimum accepted realism is too high. When realism exceeds 1.0,
only our generated leaves consistently allow F-score computation with both mod-
els, indicating strong alignment with real-world distributions. This explains why
tuning on our data enhances leaf trait estimation. The feature extractors still
disagree, highlighting the need for a standardized feature extractor, as it exists
in the image domain, or even a domain-specific one that could better capture
important features specific to agriculture in the data.

8.3.3.2 Leaf Variety

Our method generates leaf point clouds from pre-defined skeletons. However, we
want to ensure diversity by generating different leaves also when given the same
skeleton. This enhances the dataset variety without altering skeleton-building
procedures or training multiple generative networks g. A diverse dataset is crucial
during optimization of the trait estimation approaches to avoid overfitting to
common samples. In this experiment, we input the same skeleton multiple times
and compare the generated leaves by computing two distances. First, we use the
Chamfer distance. Second, we compute the meshes from the leaf point clouds
via ball pivoting [18] and measure the surface differences as the differences of the
distances from the meshes to randomly sampled 3D points. In Fig. , we show
a simplified 2D example of the point-to-mesh distance.

In Tab. @, we report the mean chamfer and point-to-mesh distances on 10
leaves generated with the same skeleton averaged on 10 runs. Since we cannot

condition the Helios software on a skeleton, we report the results only for our
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Table 8.2: F-score computed for all the approaches using different values of realism to
filter out the outliers. When less than half of the samples were valid, we do not report
any result (-). The more samples we filter out, the higher the metrics. Our approach is
the only one that always provides enough samples in the dense area of the distribution.

Realism Generated Data ‘ F-score 1 F-score + CLIP T

Du 0.01 0.01
0.0 Dur 0.36 0.01
DrLiDiff 0.35 0.11
Dours 0.21 0.20
Dy 0.01 0.01
0.5 Dur 0.48 0.02
DrLipift 0.33 0.11
Dours 0.22 0.23
Du 0.02 0.02
1.0 Dyur 0.45 0.04
DLibift 0.64 0.11
Dours 0.29 0.55
Dxu - -
1.5 Dur 0.80 -
Dripist - -
Dors 0.29 0.90

147



8.3. EXPERIMENTAL EVALUATION

Po .. P1

Figure 8.10: (a) and (b) are two leaves generated from the same skeleton. In (c), we
show that when using the Chamfer distance, the outliers in the blue circles are the only
ones providing a meaningful distance since most of the points are in the same area.
In (d), we show our proposed point-to-mesh distance, where we compute the difference

between the distances from each gray point to the two meshes.

Table 8.3: Average mean and standard deviation for the chamfer and point-to-mesh
distances, computed over 10 trials on 10 leaves generated conditioning the network with
the same skeleton.

Generated Data Chamfer distance [mm] point-to-mesh distance [mm|]
mean std ‘ mean std
Dripist 6.14 7.53 55.82 o7.87
Dours 2.69 1.69 67.69 17.58

approach and LiDiff. While the chamfer distances have similar means, LiDiff’s
standard deviation is approx. 4.5 times higher, likely due to the weaker compli-
ance with the skeleton. For the point-to-mesh distance, we see a larger difference
in the mean, more than 1cm, and again the standard deviation of LiDiff is more
than 3 times ours.

Given our previously reported results, we think that our approach provides
more precise per-leaf ground truths for tuning trait estimation methods. In con-
trast, LiDiff produces a wider variety of leaves, at the cost of higher leaf trait er-
rors. Since LiDiff is a general-purpose approach for conditioned diffusion, adding
specific losses could help the approach follow more closely the input skeleton and
improve the results.

148



8. EXPLOITING LEAF MORPHOLOGY FOR TRAIT ESTIMATION

8.4 Discussion

Traditional leaf trait estimation heavily relies on manual measurement, which is
accurate but also time-consuming, labor-intensive, and difficult to scale. There
are several image-based methods for estimating traits such as the number of
leaves, but these methods struggle to capture complex geometric properties. In
the 3D space, most approaches are rule-based, leveraging expert knowledge to
obtain crop-specific models and templates to extract the relevant traits. Learning-
based techniques are almost absent due to the scarcity of 3D datasets annotated

with per-leaf ground truth traits, which limits their application and robustness.

We propose a method to overcome the challenge of data scarcity for leaf
trait estimation. Our generative pipeline outputs realistic 3D leaf point clouds
conditioned on the desired traits, i.e., leaf blade length and width. Training
on real data, we capture the real-world data distribution without the need for
plant-specific parameters or hand-crafted templates. Additionally, our approach
provides accurate per-leaf ground truth annotations, resolving the data scarcity
problem. This enables tuning the large variety of rule-based methods on a more

granular level and opens the road for the development of data-driven methods.

When generating annotated synthetic data, the first aspect to consider is how
similar the generated data is to the real-world data, which is crucial to avoid
learning features that would not generalize to the final application scenario. The
second aspect is the accuracy of the associated annotations. We evaluated both
of these aspects in our experimental evaluation. We first showed that tuning
different trait estimation methods on our generated data yields more accurate
results on the estimation of real-world leaf traits. This already confirms that
the data distributions match and that the trait annotations are accurate, as the
approaches perform well on unseen real-world data. Then, we confirmed that our
generated data is significantly more aligned with the real-world data distribution
across multiple metrics and on different crop species. However, the results for leaf
trait estimation have been evaluated against per-plot ground truth measurements.
This makes it hard to assess the real error on the traits, since we do not have
access to the real measure for each leaf. It would be beneficial to obtain per-leaf
ground truth measurements to have a more accurate evaluation. For the second
part of the experiments, it is clear that, since the generative metrics are based
on features extracted by another network, we do not have full control over the
quality of the results. Different models output very different results, and it is
unclear how much they depend on the quality of the generated data and how
much on the gap with the training data of the feature extractor.

Although the results in this chapter are promising, there remains a long way

to go before achieving a fully autonomous trait estimation pipeline. First of all,
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we focused on only two traits, namely blade length and width, because of the
lack of available ground truth data to validate our method. However, leaf angle,
area, and shape are also crucial traits that should be evaluated for phenotyping
purposes. One limitation of our approach is that, while we do not require highly
accurate leaf models or templates, we still need to build a rough skeleton for the
network to generate a leaf. This may not be fully generalizable across all crop
species, especially for leaves with very complex shapes that may require a more
complex skeleton definition when there is not enough data available to learn the
distribution around the current simplified skeleton.

8.5 Conclusions

In this chapter, we address the data bottleneck in working with 3D point clouds
of leaves by presenting a novel approach that exploits real-world data to generate
realistic, trait-conditioned leaf point clouds. Our generated data mirrors the
complexity and diversity of natural leaves; thus, we can directly use it for training
or tuning off-the-shelf leaf trait estimation approaches that previously struggled
due to the limited coarse-grained data.

Our experiments show that optimizing the hyperparameters of different meth-
ods on our generated leaf point clouds significantly outperforms the results achieved
with traditional plot-level averages and other synthetic state-of-the-art genera-
tive methods. By enabling precise, per-leaf trait predictions without requiring
any labeling, our data generation pipeline opens the door to fine-grained phe-
notyping at scale, with direct implications for understanding crop development
and productivity. Even when real-world per-leaf ground truth measurements
are available, our approach can generate complementary leaves across varying
lengths and widths to fill potential gaps in the collected data. This reduces the
need for destructive measurements and expert annotation, paving the way for
more scalable, unbiased, and informative trait datasets.
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Chapter 9
Conclusion

HE increasing global population, coupled with the unsustainable na-

ture of conventional farming practices, is placing immense pressure

on our agricultural system. The production system must now meet

rising demands for food, feed, fuel, and fiber while being more sus-
tainable than ever before. To address this challenge, we must rethink our farming
procedures; boosting yield per unit area appears to be one of the main directions
to answer all of these challenges.

Robotic technologies present a promising and more sustainable alternative to
traditional methods, enabling farmers to adopt high-throughput practices. Un-
like conventional equipment, agricultural robots can perform precision tasks and
continuous monitoring, significantly reducing the reliance on agrochemicals and
supplying valuable data for breeders and agronomists to cultivate more resilient
and productive crop varieties. For robots to carry out these tasks effectively, they
require advanced perception systems capable of accurate field-level monitoring
and measurements. These systems typically rely on data-driven models trained
on manually labeled examples. To function reliably, they must be exposed to
extensive and diverse datasets that account for variations in plant growth stages,
lighting conditions, soil types, and crop species. However, producing such la-
beled datasets is both time-consuming and costly, creating a major obstacle to
the broader adoption of robotic solutions. In the agricultural domain, labeling
data is even more burdensome due to the complexity and variability of real-world
field conditions. Accurately annotating sensor data often requires domain exper-
tise to distinguish between similar crop species and to mark precise boundaries
between adjacent and overlapping plants and leaves. This process is even more
labor-intensive when we consider that it should be repeated across multiple sea-
sons, growth stages, crop species, and environmental conditions to ensure the
robustness of common fully supervised approaches. Such methods do not gen-

eralize well across unseen field conditions and struggle when facing variations in
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the data due to sensor setup, weather, soil composition, and vegetation density
and species. This lack of adaptability significantly limits the adoption of such
models in real-world deployments, since they would require a new round of data
collection and labeling to achieve satisfactory performance on the new scenario.
Fortunately, agriculture offers unique opportunities to address this limitation.
By leveraging existing knowledge about field structures and plant traits, we can
enhance robotic perception systems and simultaneously reduce their dependence
on large volumes of labeled data.

This thesis directly contributes to making robotic phenotyping more scalable
and accessible by developing a set of novel computer vision techniques to reduce
the reliance on manual annotations for all the perception tasks in the phenotyping
pipeline. We address the understanding of sensor data from agricultural robotic
systems to enable high-throughput and precise monitoring of plants at different
levels of granularity, covering the entirety of the typical phenotyping pipeline:
semantic segmentation, instance segmentation of plants and leaves, and the es-
timation of morphological leaf traits. The approaches we presented in this work
not only allow us to reduce the amount of manually annotated data, but also
to completely remove this dependency for semantic segmentation, plant instance
segmentation, and leaf trait estimation. Furthermore, all the proposed tech-
niques demonstrate improved generalization capability compared to their fully
supervised counterparts across diverse field conditions and crop species, address-
ing the key limitation that has hindered the broader adoption of robotic solutions
in agricultural procedures. The last contribution of this thesis is an approach to
generate leaf point clouds along with their associated morphological traits. This
can be the starting point for developing data-hungry methods for leaf trait esti-
mation, which were infeasible prior to our work due to the scarcity of single-leaf

ground truth trait annotations.

9.1 Summary of the Key Contributions

As a first contribution, we propose a method to jointly identify weeds, crops,
individual plants, and single leaves in RGB images from real-world fields. We
demonstrate that even a single domain-specific post-processing operation can
significantly improve the performance. The results obtained with this approach
led us to investigate how we can incorporate domain knowledge to reduce the
dependency on labeled data.

The second contribution of this thesis is an approach for task-agnostic pre-
training that leverages prior knowledge of the agricultural environment to improve
the performance of phenotyping tasks while reducing the need for annotated data.

However, pre-training is not enough to perform the desired in-field phenotyping

152



9. CONCLUSION

tasks. Thus, we decided to focus on single tasks to better leverage domain knowl-
edge and eliminate the need for labeled data.

As a third contribution, we present an approach that leverages the spatial
arrangement of managed agricultural fields to generate automatic labels for soil-
weed-crop segmentation. We then exploit the uncertainty of the network on the
less-present class in our automatically labeled data, i.e., the weed class, to refine
the network’s prediction and bridge the gap with fully supervised methods.

Fourth, proceeding along the phenotyping pipeline, we perform plant instance
segmentation without using manually annotated data. We exploit knowledge
specific to crops for refining instance proposals generated by foundation mod-
els or heuristics-based methods. Without our refinement steps, the investigated
approaches suffer because of the overlapping plants and the diversity of crops,

growth stages, lighting conditions, and soil textures.

For the fifth contribution, we shift our focus to the 3D domain, using point
clouds. This is, in the first place, motivated by our desire to compute leaf mor-
phological traits that are harder to detect in 2D images due to the lack of depth
information. We first propose an approach to pre-train 3D neural networks for
the leaf instance segmentation task. Together with our proposed automatic post-
processing, we leverage the plant morphology to reduce the need for 3D labels
and to improve the accuracy of the predictions. Given single leaves, we can now

focus on the final step of phenotyping: extracting morphological leaf traits.

As a final contribution, we introduce a method for generating realistic 3D
leaf point clouds along with their morphological traits, specifically the leaf blade
length and width. Our approach directly addresses the challoenge of the scarcity
of fine-grained labeled data for trait estimation, which is also the cause behind
the shortage of deep-learning algorithms for trait estimation. Our generative
method does not require labeled data, but only realistic leaf point clouds. We
use our generated data to validate and optimize heuristics-based trait estimation
methods, whose performance is limited when optimized using per-plot averages of
the traits. Our method opens the road to the development of deep learning-based
models, for which we provide large and accurately labeled synthetic data.

We proposed solutions to reduce reliance on labeled data for all steps in the
phenotyping pipeline. We demonstrated how to incorporate prior knowledge to
improve the performance across multiple perception tasks, from semantic seg-
mentation to the estimation of leaf morphological traits. Throughout this thesis,
we have shown the effectiveness of our proposed solutions on real-world datasets
collected in crop fields. This thesis advances the scene understanding of per-
ception systems in the agricultural fields, enabling fine-grained automatic plant
monitoring while reducing the cost and labor needed to achieve such performance.

While this thesis does not address all the problems and challenges of automatic
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in-field phenotyping, the contributions presented are key components to enable
autonomous in-field crop monitoring without the need for annotated datasets
covering all possible scenarios.

Our contributions meaningfully transform current agricultural systems and
offer a concrete direction for more intelligent and sustainable farming practices.
The reduced reliance on manual data and the integration of prior knowledge
enables the deployment of robust vision-based crop monitoring systems in unseen
real-world fields, where data collection is challenging, costly, and labor-intensive.
Employing our methods enables the gathering of detailed information about plant
health and development in an automatic fashion, allowing for fast and precise
targeted intervention in the fields. We provide techniques to enhance all steps in
the phenotyping pipeline, enabling their integration with pre-existing heuristic-
based or data-driven approaches. As already mentioned, in complex scenarios,
it is still possible to use our methods to bootstrap learning-based methods, thus

requiring fewer manually labeled examples to achieve better performance.

9.2 Future Work

In this thesis, we presented multiple new methods to leverage prior knowledge
of the agricultural domain, thereby reducing the reliance on manually annotated
datasets for visual inspection of agricultural fields. Although our methods demon-
strate notable improvements over existing state-of-the-art solutions, further re-
search is required to enhance the capabilities of agricultural perception systems
without increasing the need for manual annotations.

Multi-Modality. As for the work in this thesis, we developed approaches for
both images (2D) and point cloud (3D) data. Each modality, however, has its own
challenges and limitations. RGB images provide limited geometric information,
which limits their application in accurately separating plant or leaf instances and
in estimating phenotypic traits. Point clouds provide more geometric cues, but
their dependence on the sensor type and resolution often limits the generalization
of trained models across different acquisition setups. Data acquired with LiDAR
sensors commonly lacks color information, which is essential for tasks such as
disease detection and plant health monitoring.

Although the methods presented in this thesis address many of these lim-
itations and advanced automatic phenotyping in both 2D and 3D, we believe
that fusing the strengths of both modalities would further improve the perfor-
mance of perception tasks for agriculture. The architecture proposed by Jaegle
et al. [96] supports multi-modal input and output, enabling the joint use of RGB
images and 3D point clouds. This facilitates the fusion of latent information,

allowing geometric cues from 3D data to enhance 2D instance segmentation and
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trait estimation, and enabling 2D image features to correct 3D predictions when
sensor limitations degrade performance. Moreover, the availability of pre-trained
models and datasets is currently much greater for 2D images than for 3D point
clouds. The architecture by Jaegle et al. [96] could leverage these 2D pre-training
resources for 3D tasks, reducing both the time and the amount of data required
for effective model training.

Uncertainty Calibration. Modern deep-learning approaches often suffer
from poor calibration, meaning that their predicted probabilities do not accu-
rately reflect the true likelihood of outcomes. This issue affects our ability to
use uncertainty estimates for refining our semantic prediction in Chapter B In
particular, overconfident yet incorrect predictions would remain incorrect. This
overconfidence arises from multiple factors, including over-parametrization, the
use of normalization layers, overfitting, and the optimization procedure. Recent
advances aim to improve the uncertainty calibration, yielding a more reliable
likelihood for the network’s prediction. Since most of the overconfident erro-
neous predictions happen due to out-of-distribution and uncommon examples,
approaches such as the one by Park et al. [167] and Gong et al. [69] could directly
address these problems and consequently improve generalization under both do-

main and covariance shifts.

In Chapter E, we use an uncertainty-aware training loss to have a better-
calibrated uncertainty, but this does not entirely solve the problem. One possible
way to integrate current research with our model is to add a post-hoc calibration
method to refine the prediction confidence. Most post-hoc uncertainty calibration
techniques, such as temperature scaling [13,56] or isotonic regression [160,237],
were developed for classification tasks, and they often fail to accurately capture
pixel-wise uncertainties. As a second possibility, we could follow the previous
section of future work and add a second modality, such as point clouds, to enable
a cross-modal calibration. Since the use of Bundle Adjustment [207] allows the
reconstruction of high-quality point clouds from the sequence of images captured
in the field, we could deploy a 3D semantic segmentation network next to our 2D
semantic segmentation network and use the uncertainties of the two modalities
to have a better estimate of the prediction confidence.

Unsupervised Leaf Instance Segmentation. In Chapter H, we mentioned
that to better align our pre-training with the common paradigm of current in-
stance segmentation networks, we would need to find a self-supervised way to
supervise the predictions of centers and offsets. While our leaf instance seg-
mentation was the starting point for trait estimation, the approach presented
in Chapter E can also be employed to solve the limitation of our previous method.
We discussed how we can manipulate the generated leaf point clouds and assem-

ble them into single plants. In doing so, we gain access to a plant point cloud
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with leaf instance labels that we generated without using any labels. These plant
point clouds can be used as training data for the pre-training approach presented
in Chapter B, obtaining a complete alignment with the final task. On top of that,
the fine-tuning step employed to close the gap with the final task and data may be
redundant, as we would be able to perform the same task, and we demonstrated
that the data generated by the approach in Chapter E has high similarity with
the real-world data distribution.

Trait Estimation. In Chapter E, we tested our approach on different crop
varieties, all exhibiting similar shape complexity. Our approach also works on
more complex shapes, as compound leaves, if enough data is provided. Since the
network learns from real-world data, we can use the whole compound leaf as it is
and let the network learn its shape. Nonetheless, structural complexity presents
additional challenges, and some enhancements could improve the convergence
speed and the overall performance. One improvement involves modifying the
algorithm for building the skeleton. For example, we could combine multiple
skeletons to capture the morphology of a compound leaf. Adjusting the number of
Gaussians .J in the GMM can improve the initial position of the points, leading to
more efficient training. While these changes are not strictly required, they could
diminish the need for data and provide a better and more effective initialization
for complex leaf shapes. Another potential direction is to learn the shape of
single leaflets instead of the entire compound leaf. This method wouldn’t require
algorithmic changes, but it would require access to single leaflet point clouds
— harder to obtain than single leaves. Furthermore, knowledge about the leaf
structure would be needed to reconstruct complete leaves from the generated
leaflets via a post-processing step.

A second interesting direction would be the application of our method to
generate distinct varieties within a single crop species. This would require large,
variety-specific datasets, as the network must learn finer morphological details.
Currently, the primary limitation is the lack of available data. Moreover, existing
evaluation metrics often rely on networks pre-trained on large datasets of common
objects [31,51], which may struggle to differentiate between single crop species
varieties. A domain-specific foundation model tailored to plant data would yield
more reliable evaluations.

Additionally, we think our method would benefit from being combined with
plant growth models. Since our network can be trained on leaves from specific
growth stages, we can generate a large variety of leaves for each stage. Plant
growth models could provide the expected leaf blade length and width based
on environmental and nutritional input, allowing for more realistic simulations

without the need for external user-defined inputs.
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