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Abstract
Plant phenotyping involves measuring the morphological and physiological traits of plants and is key in agricultural research,
breeding, as well as crop management. Detecting single plant instances is the first step to extract plant-level traits and can be
achieved via imaging techniques. Most modern visual instance segmentation systems rely on deep learning approaches, which are
powerful but usually require a large amount of training data to achieve accurate and robust performance. Our approach enables
automatic generation of plant instance labels from RGB images by combining foundation models with geometric techniques,
eliminating the need for human annotations. Our method leverages current state-of-the-art vision-language foundation models and
domain-specific knowledge to generate training data without the need for human annotations. We use our automatically generated
labels to enhance the capabilities of learning-based approaches, incorporating our predicted instances as additional input or as
labels during training. We evaluate the quality of our generated labels on various datasets and compare to heuristic and deep-
learning methods. The experiments demonstrate that our generated labels match or exceed heuristic and learning-based baselines,
achieving a max vegetation Intersection-over-Union of 78.7% when used in combination with Grounded SAM 2.1 and a max
Panoptic Quality of 67% when used in combination with Florence2 + SAM2 on the PhenoBench dataset. These results show that
the combination of general-purpose models with our novel domain-specific post-processing is a viable and scalable solution for
plant phenotyping, enabling a broader applicability without the requirement for manual annotations.
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1. Introduction1

Modern image-analysis tools performing semantic and panoptic segmentation have huge potential to help plant2

scientists and agricultural researchers extract information about plant growth and phenotypic information. There exist3

general segmentation systems [1, 2] as well as domain-specific ones, optimized for urban driving scenes [3, 4, 5],4

industrial inspection tasks [6, 7], or agricultural robots [8, 9, 10].5

The instance segmentation problem was originally tackled using heuristic-based techniques, which exploit geo-6

metric background knowledge about the domain. One example in agriculture is knowing that most crops are planted7

in rows. Such knowledge can be useful for specific applications and can be combined with learning-based systems to8

bootstrap approaches when training data is unavailable or hard to obtain [11, 12].9

Brice et al. [13] used regions as base units for images and partitioned the picture using a decision tree. Similarly,10

Tomita et al. [14] segmented the image in regions with uniform properties using statistical methods. Subsequently11

∗Corresponding author
Email address: groggiol@uni-bonn.de (Gianmarco Roggiolani)

1



/ Information Processing in Agriculture 00 (2026) 1–21 2

Figure 1: Example of a robotic platform equipped with downwards facing RGB camera to capture images of agricultural fields for
monitoring purposes. We can use our approach to perform plant instance segmentation in the captured images and assign a unique
identifier to each plant, as shown in the bottom right image, where each color represents a different plant instance.

Wang et al. [15], Pun et al. [16], and Reddi et al. [17] investigated the use of multiple thresholds to capture seg-12

ments and instances in the images, and make the thresholds adaptive to the gray-scale and lighting conditions of each13

processed image. A separate line of works [18, 19] went in a different direction and investigated the idea of directly de-14

tecting object boundaries. Lastly, graph-based instance image segmentation was proposed by Felzenszwalb et al. [20],15

where the similarity between each pair of pixels was evaluated to find where to cut the edges and split the different16

instances.17

With increased computational power and the availability of bigger datasets, learning-based methods gained pop-18

ularity, especially in complex scenarios where manually tuned heuristics are difficult to design. Most of the classi-19

cal machine learning techniques such as random forests [21, 22], K-means clustering [23, 24], support vector ma-20

chines [25, 26], and also graphical models [27] were initially applied. Currently, the task is commonly addressed21

with neural networks [28, 29] based on convolutions (CNNs) or transformer architectures [30, 31]. Several architec-22

tural enhancements have been proposed, such as atrous convolutions [32] to extend the receptive field and the context23

considered for each pixel, or an image-pyramid strategy [33] to inspect the image at different scales.24

Different neural networks have been directly tested in the agricultural domain. Champ et al. [34] investigate the25

capabilities of Mask R-CNN [2]. The approach consists of two steps: object detection and then the generation of a26

pixel-wise mask. Another well-known approach is PanopticDeepLab [1], which is a general-purpose architecture to27

perform panoptic segmentation, predicting a center for each object in the scene and offsets for every pixel that belongs28

to that object. Although offset predictions require post-processing to obtain the final instances, this method usually29

outperforms the embedding-based ones, i.e., models that predict a high-dimensional embedding for each pixel in the30

image and then clusters similar embeddings into single objects. Weyler et al. [10] compute instances using a similar31

methodology: they predict offset vectors for each pixel and cluster regions defined by covariance matrices predicted32

from the learned feature maps. Our previous work [8] targets a joint semantic, plant, and leaf instance segmentation33
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Figure 2: Framework of our approach. A vision-language foundation model (purple) performs a first instance segmentation from
language prompts and RGB images (yellow). Then, we use domain-specific heuristics (blue) to classify pixels without detections
and to split instances of overlapping plants. The output (green) is a plant instance segmentation, where each color corresponds to
a different instance.

using a similar methodology: predicting centers and offsets. The architecture leverages the natural hierarchy of these34

three tasks to improve the final performance.35

However, both heuristics- and learning-based approaches often require to be adapted or re-trained to achieve a36

satisfactory performance on a new crop species or field. This depends on the diversity of the crop varieties, the37

common “closed world” assumption of the models that are trained on a small subset of classes, and on the ambiguous38

definition of crops and weeds in different agricultural settings, i.e., what is a crop in one field can be a weed in another.39

In order to adapt such approaches, one usually needs access to vast amounts of labeled data. Several techniques40

have been developed in order to reduce the reliance on manual annotations by using pre-trained networks [35, 36, 37],41

i.e., initialized with weights optimized for a different task, weakly-supervised paradigms [38, 39], i.e., using partially42

or incompletely labeled data, or multi-modal foundation models [40].43

Relying on general-purpose multi-modal foundation models trained on large datasets of paired texts and images is44

now a common way to address perception tasks. These so-called vision-language models (VLMs) [41] have competi-45

tive performance compared to fully supervised methods in many computer vision zero-shot tasks, i.e., tasks performed46

without adapting the model using additional training examples from the new domain. However, the performance dete-47

riorates with increasing task complexity or when the application domain diverges too much from the original training48

dataset [42]. The domain gap is often tackled by fine-tuning the models on annotated data from the new application49

domain [43, 44].50

In the context of agricultural applications, Shinoda et al. [45] introduced an evaluation benchmark for detection51

and classification of crops and plant diseases, showing that vision-language models achieve promising results but52

struggle with fine-grained tasks. Awais et al. [46] address this limitation by means of an expert-tuning approach to53

build a dataset to align the vision-language models with the agricultural domain. Most existing approaches, including54

VL-PAW [47] and E-CLIP [48] follow the trend of re-training or fine-tuning vision-language models on in-domain55

datasets to improve their performance. Chong et al. [49] take a different direction by avoiding the open-vocabulary56

inference and combining SAM [50] with BioCLIP [51] to obtain zero-shot semantic segmentation on agricultural57

images.58

In this article, we focus on plant instance segmentation using images obtained in the agricultural domain, specifi-59

cally images of crop fields [52], as shown in Fig. 1. The goal of the task is to assign a different ID to every observed60

plant. This task is central to image-processing pipelines for high-throughput phenotyping, where accurate per-plant61

information enables downstream analysis [10, 53]. An automatic pipeline for plant instance segmentation directly62

supports precision-agriculture practices, including yield estimation and targeted application of water or fertilizers,63

thus reducing the waste of resources [54]. Plant instance segmentation is particularly challenging for both heuristic64

and learning-based methods, due to overlapping foliage and the irregular and complex shape of leaves. Advanc-65

ing robustness in this task is essential for autonomous field-monitoring systems and for future autonomous in-field66

intervention that would rely on such perception systems.67

In contrast to the general trend, we propose to fuse the capabilities of existing vision-language models and back-68

ground knowledge of the agricultural fields to label plant instances without using labels. This allows us to avoid69
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re-training the vision-language model and to limit the hyperparameters of the heuristic-based post-processing that70

would need to be adapted to every new scenario. We predict a first instance segmentation using the vision-language71

model Grounded SAM2 [55] and then refine the predictions using domain-specific heuristic post-processing to im-72

prove our generated labels. At the same time, we do not need to provide additional manually annotated images,73

reducing the cost of labeling while outperforming state-of-the-art automatic labeling methods. Our pipeline can be a74

useful tool to automatically label images and use them to train or adapt fully supervised methods on the desired field75

setting.76

We show in extensive experimental evaluation that our approach can be a valuable asset to generate plant instance77

segmentation labels and that we can use our labels to train fully supervised deep learning methods, requiring fewer78

manually acquired labels and boosting their final performance.79

As we will see in the experiments, our approach (i) generates better plant instance labels than other state-of-the-80

art automatic labeling methods, improving the vegetation Intersection-over-Union (IoU) of 15.9 and Panoptic Quality81

(PQ) of 9.3 percentage points in average; (ii) boosts the performance of neural networks when used as additional82

input; (iii) reduces the need for labels when used as ground-truth annotation, producing comparable results using half83

of the manually annotated images; and (iv) helps the network generalize better on different fields without ground-truth84

annotations, improving zero-shot PQ performance of 21 percentage points on average.85

2. Method86

We propose an unsupervised framework for plant instance segmentation that leverages vision-language models87

combined with a domain-specific post-processing. The vision-language model provides an initial instance segmen-88

tation for an input RGB image I ∈ RH×W×3 of height H and width W , by means of zero-shot textual prompts P .89

Building on these coarse predictions, we introduce a heuristics-based post-processing method that corrects for the90

common problems of the VLM predictions, such as missing detections or overlapping plants that are merged into a91

single instance. Our method leverages in-domain crop knowledge and geometrical cues to refine the coarse predic-92

tions without requiring any manually annotated data, keeping the pipeline unsupervised. Fig. 2 illustrates the overall93

pipeline, which we describe in the following sections.94

2.1. Zero-Shot Instance Segmentation via Vision-Language Models95

The first step of our approach is built on Grounded SAM2 [55]. Although we illustrate our approach using96

Grounded SAM2, one of the state-of-the-art VLMs, any architecture producing instances could serve as an initial step.97

Our goal is not to evaluate the best approach, but to demonstrate how our domain-specific post-processing improves98

the results obtained from any detection pipeline. For the extraction of initial candidates, they employ Grounding99

DINO [56], that given an input image I and text prompts P generates bounding boxes BBi for each object oi in I100

conditioned on P . We use P = {soil, crop, weed, single plant, vegetation}, and by using multiple synonyms for the101

vegetation class enables the model to capture more accurately the different vegetation components [57].102

Grounding DINO is a transformer-based architecture that, from each input pair (I,P), extracts image XI ∈103

RNI×d and text features XP ∈ RNT×d, where NI is the number of image tokens, NT the number of text tokens,104

and d corresponds to the feature dimension. These features are fused as X = XIX
⊤
P and then passed to a decoder105

to obtain the detected objects O. The approach uses two thresholds, one on the confidence of the bounding box106

prediction and one on the alignment with the text prompts to filter out uncertain detections and undesired objects. We107

kept the standard value of 0.3 for both thresholds.108

The filtered bounding boxes BBi from Grounding DINO are the input for SAM2 [58] to extract a pixel-wise109

mask Mi for each bounding box. The mask has one associated “semantic class” which is the text prompt pi ∈ P with110

the highest confidence score. For further details, we refer to the original paper [55].111

2.2. Plant Instance Segmentation112

The second step of our approach uses the outputs of the zero-shot instance segmentation and refines them. There113

are two main short-comings of the outputs from the previous step: (i) Grounded SAM2 detects objects but allows some114

pixels in the image I not to be part of any detection; (ii) because of the difficulty of correctly separating overlapping115

plants, some detections need a refinement step to assign a unique ID to each plant. We show in Fig. 3 both of these116
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Figure 3: Output of Grounded SAM2, where soil is colored in purple and the vegetation instances are colored in different colors
and surrounded by their bounding boxes. The leaves (A) in the upper-left corner is not segmented, as well as the weed (B) in
between the two detected instances (C and D). Additionally, C and D both consist of multiple overlapping plants.

problems in an exemplary image from PhenoBench, where some leaves in the upper left corner (A) and a weed in the117

middle of the image (B) are not detected and where multiple plants are segmented as a single instance (C and D).118

To solve the first problem, we compute the average RGB color for all pixels assigned to the vegetation and soil119

classes after the first step. We then use the cosine similarity to assign all not-segmented areas of I to the class –120

vegetation or soil – with the most similar color. Every area assigned to the vegetation class also gets a new instance121

ID. In this way, we correct for undefined objects in the field, i.e., stones, wires, and pipes, that we want to assign to122

the soil class, and for missing vegetation detection. At the end of this step, all pixels have a semantic class, and every123

vegetation pixel is part of an instance.124

To solve the second problem, we need to detect which instances to refine. Using crop-specific knowledge, we can125

design a split function f that takes as input one instance binary mask Mi and return True if the instance needs to be126

split. In our implementation, we use Eq. (1) and the aspect ratio a = Hi

Wi
to detect if the instance needs to be refined.127

We define the split function as follows:128

f(Mi) =

{
True , if a > τa

False , otherwise
, (1)

where τa is the aspect ratio threshold. At this point, we can also have an estimate of how many instances Ni have129

been aggregated according to our threshold, as130

Ni = ⌈a/τa⌉. (2)

We use the aspect ratio because it is independent of the size of the plant and the image resolution. In this way, we131

do not consider the number of pixels of the plant growth stage. Since the number of instances can only be an integer,132

in Eq. (2) we take the integer part of the result, which implicitly provides a tolerance, i.e., an aspect ratio a = 1.3133

with a threshold τa = 1 detects only one instance with a margin of 0.3 of difference in the ratio. We enforce the134

instance number to be at least one. If this assumption is violated and Ni < 1, it means that the crop row in our image135

is horizontal instead of vertical. To compute the real number of instances, we would need to rotate the image to have136

a vertical crop row which translates to compute the inverse of the aspect ratio 1
a = Wi

Hi
.137
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(a) Instance before refining (b) Iedges (c) Ie+inst (d) Ie+inst after erosion

(e) Largest Ninst components (f) Assignment of all compo-
nents

(g) Final points’ assignment (h) Mask after cleaning

Figure 4: Step-by-step images depicting how we address the splitting of instances. In (a), we see the unified instance in red, while
in (b) we show its edges. (c) shows the results of the XOR operation between the instance mask and Iedges. In (d), we can see the
result of the erosion; eroded points are colored in blue. In (e), we show the largest components colored in white, azure, green, and
pink, while in (f) we see the assignment of all the other components. After assigning the blue points using a voting mechanism, in
(g), we use red dotted circles to highlight points assigned to one instance but not connected to it. In (h), we show the final instance
segmentation after cleaning.
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Algorithm 1 Post-processing for one instance mask

1: Input: image IRGB, mask Mi, aspect ratio threshold τa, erosion kernel γ
2: Output: instance image Iinst
3: Iinst ∈ NH×W = 0 ▷ initialize final instance image with zeros
4: a = Hi

Wi
, Ni = ⌈a/τa⌉ ▷ compute aspect ratio a and number of expected instances Ni

5: if Ni < 2 then ▷ if we detect less than 2 instances, the oroginal mask is already the final instance
6: assign all pixels in Mi to a new instance ID in Iinst
7: return Iinst
8: Iedges = canny(IRGB ⊙Mi) ▷ compute edges using Canny edge detector within the instance mask
9: Ie+inst = erode(Iedges ⊕Mi, γ) ▷ exclude edges from instance mask and erode with kernel size γ

10: C = conn comp(Ie+inst), where C ∈ {0, 1}H×W×Nc ▷ extract binary masks of all Nc connected components
11: S = TopNi(C, Ni) ▷ take the Ni largest components of C
12: assign pixels of each component in S to a new instance ID in Iinst
13: assign pixels of all components not in S to the closest instance ID based on distance between centers
14: for each pixel in Mi not assigned do ▷ here we consider all the eroded pixels
15: assign pk to the instance ID ocurring the most between its neighbors
16: for each instance ID in Iinst do ▷ cleaning to enforce each instance is connected
17: keep the largest connected component assigned to that instance ID
18: assign all other components to the closest connected instance or a new instance ID
19: return Iinst

Suppose multiple instances have been segmented together because they share a boundary. We need to detect the138

boundary to separate the instances. We refer to Fig. 4 to illustrate better the next steps, and to Algorithm 1 for the139

pseudo-code of the implementation. Fig. 4a shows one red instance that our approach decides to split. This means140

that after computing Ni at line 2 of our algorithm, Ni ≥ 2. We can compute the edges Iedges ∈ {0, 1}H×W from the141

original RGB image with any edge detector. In our implementation, we first apply a smoothing to the image and then142

use the edge detector by Canny et al. [59]. Iedges is shown in Fig. 4b and computed at line 6 of the algorithm. We143

then exclude the edges from the instance mask with a bit-wise XOR operation between Iedges and Mi, and we call the144

output Ie+inst shown in Fig. 4c. Since we cannot guarantee that the edge detector finds smooth and optimal edges to145

separate our instances, we erode Ie+inst using a kernel of size γ. This will expand our edges and better separate the146

instance, as can be seen in Fig. 4d. These two operations are combined in line 7 of our algorithm, where the argument147

of the erosion is the result of the bit-wise XOR operation, denoted as ⊕ . We apply connected components to Ie+inst148

and obtain a set of binary masks C ∈ {0, 1}H×W×Nc , where Nc is the number of connected components detected,149

as shown in line 8 of the algorithm. Each binary mask in C corresponds to one connected component in Ie+inst. At150

line 9, we select the Ni components with the largest areas as our starting point for the new instances. At line 10, we151

assign a new unique ID to the Ni detected instances, which we colored in white, light blue, green, and pink in Fig. 4e.152

We iteratively assign all the other components in C that have not been selected as starting instances to the closest153

new instance, computing the Euclidean distances between the centers of the components. The result of this iterative154

process is shown in Fig. 4f.155

Now, we take care of pixels belonging to the original instance removed with the erosion, depicted in blue in Fig. 4f.156

At line 13, we compute for each of these pixels the set of neighbor pixels and which instance they belong to. Then,157

we assign the pixel to the instance that occurs the most in its set of neighbors, implementing a voting mechanism.158

The result is shown in Fig. 4g. As both the Euclidean distance assignment and the voting mechanism do not consider159

connectivity , we can see that there are pixels assigned to an instance but separated from it, which we highlight in red160

dotted circles. As the last step, we clean the instance mask. We keep the largest component for each instance ID as it161

is, while assigning the smaller components to an existing instance connected to it, or a new instance otherwise. This162

is performed at lines 14 – 16 in the algorithm, and the resulting refined instances are shown in Fig. 4h.163
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3. Results164

3.1. Experimental Setup165

The main focus of this work is a fully unsupervised pipeline for plant instance segmentation that exploits vision-166

language foundation models and domain-specific post-processing. The approach takes RGB images as input and167

computes plant instance annotations that we use to (i) boost the performance of networks on data for which we have168

labels and (ii) improve the generalization of a network on different fields.169

In Sec. 3.2, we show the results of different vision-language models and how our domain-specific post-processing170

improves their results on different agricultural datasets; then in Sec. 3.3, we show how to use our generated labels to171

improve the generalization capabilities and reduce the requirement for manually annotated data of fully supervised172

learning methods.173

Datasets. We test our approach on three RGB agricultural datasets. Two of them are recorded on fields of174

sugar beets: one was introduced by Weyler et al. [10] (denoted as SugarBeets in the following) and the other is175

the public benchmark dataset PhenoBench [60]. The third dataset is GrowliFlower [61], which is recorded on a176

field of cauliflowers. The three datasets have different image resolutions, lighting conditions, and growth stages;177

furthermore, only PhenoBench provides weed annotations. We use the official validation and test sets of PhenoBench178

and GrowliFlower. The SugarBeets dataset consists of 745 images for training, 272 for validation, and 278 for testing.179

Metrics. We compute the intersection-over-union (IoU) [62] for the vegetation, or as mean over crops and weeds.180

We also compute the panoptic quality (PQ) [63] to evaluate the quality of the instance segmentation.181

Details and Hyperparameters. Our approach has two hyperparameters: the kernel size γ and the aspect ratio182

threshold τa. We fix the aspect ratio threshold τa = 1 and the kernel size γ = 3, which is the default value in most183

libraries [64, 65]. We train all networks using the configuration suggested in their original papers unless they give184

different parameters for the specific dataset.185

Baselines. We compare against heuristic-based approaches similar to our domain-specific post-processing, and186

the results of the vision-language models without our post-processing. In particular, we try two different object187

detectors, Grounding DINO [56] and Florence2 [66], and two versions of the Segment Anything Model [58], SAM2188

and SAM2.1 [67]. These changes do not alter the input that we provide or the outputs that the foundation models189

provide to our domain-specific post-processing. Detailed information about the different object detectors and pipelines190

can be found in the original papers.191

We use a general-purpose graph segmentation method for RGB images [20] as a first heuristic baseline, where192

each pixel is a node in the graph and all neighboring pixels share an edge. The approach uses multiple thresholds193

to decide where to split the graph according to a dissimilarity function computed on the RGB values of each pixel.194

The second heuristic-based baseline is the vegetation mask based on the hue histograms [68], which is a commonly195

used option that does not suffer from the changes in lighting and weather conditions affecting the RGB values of the196

images. The third one is the excess green index [69], where we use a threshold on the excess green index computed197

over the RGB values of the image to get a mask based on the predominance of the green color in the vegetation.198

For all the heuristic baselines, we compute the plant instance segmentation from the vegetation masks via connected199

components.200

We use four deep-learning baselines for the experiments that exploits the generated plant instance labels. The first201

is Mask R-CNN [2] (denoted as MR from now on), a common choice for object detection and instance segmentation.202

It is a two-stage approach based on region proposals that are then processed to produce pixel-wise masks and classes203

for all instances. The second learning-based baseline is PanopticDeepLab [1] (denoted from now on as PDL), for204

which we use MobileNetV2 [70] as the backbone. PDL predicts offsets and centers for each instance and needs a205

post-processing step to produce an instance mask. We compare against two domain-specific approaches for plant206

instance segmentation. Firstly, the approach by Weyler et al. [10] focuses on the post-processing stage, where they207

use covariances to specify areas close to the center of the plants where all pixels should be or point to. Our previous208

work HAPT [8] is used as a second baseline. It introduces a new hierarchical design for skip connections to exploit209

the features of three semantic tasks to boost the final performance.210

3.2. Experiments on Unsupervised Label Generation211

The first experiment evaluates the performance of our approach for label generation, i.e., the combination of212

foundation models and our domain-specific post-processing. The experiments show that our approach improves the213
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Approach SugarBeets GrowliFlower PhenoBench

IoU PQ IoU PQ IoU PQ
he

ur
is

tic Felzenszwalb et al. [20] 58.1 47.8 62.7 35.2 68.3 3.9
Hassanein et al. [68] 67.8 34.8 71.3 13.9 74.5 2.6

Woebbecke et al. [69] 73.1 66.8 76.3 24.5 75.1 22.6

V
L

M
s Grounded SAM2 [55] 72.9 78.6 72.0 74.1 58.2 60.6

Florence2 [66] + SAM2 [67] 33.4 47.5 78.3 61.3 59.6 44.2
Grounded [56] SAM2.1 [67] 69.9 86.3 66.4 84.0 45.3 62.7

ou
rs

Grounded SAM2 [55] + ours 75.2 78.1 88.1 79.0 77.3 66.3
Florence2 [66] + SAM2 [67] + ours 72.2 75.4 80.9 82.9 62.9 67.0
Grounded [56] SAM2.1 [67] + ours 75.1 83.3 88.6 85.2 78.7 66.0

Table 1: Results of the vegetation IoU (soil IoU is not considered) and PQ for all of the baselines and all the different datasets. In
bold the best results for each metric and dataset. All results given in %.

Figure 5: Qualitative images from Grounded SAM2 (left), and Grounded SAM2 + our post-processing (right). We highlight in red
dotted circles the errors by the two approaches, and in green the correct prediction.

performance compared to only using the foundation models and outperforms the performance of heuristics-based214

methods. We note that we improve the IoU solving the first issue of VLMs, i.e. missing detections, and we improve215

the PQ using our heuristic-based post-processing to solve the second issue, i.e., overlapping plants.216

Tab. 1 shows the results on all three datasets for all baselines. On the SugarBeets dataset, the VLMs and heuristics-217

based methods all have similar IoU results, except for Florence2, which produces fragmented masks. The other VLMs218

have a better PQ than all heuristic-based methods. Adding our post-processing improves the IoU in all investigated219

cases, but worsens the PQ for the models based on Grounding DINO, i.e., Grounded SAM2 and Grounded SAM2.1.220

We investigate this further looking at the qualitative results. In the image shown in Fig. 5 Grounded SAM2 had a221

vegetation IoU of 61.7% and a PQ of 95% since it only missed the plant in the red dotted circle. After our post-222

processing, the IoU is 75.5% because we are correctly identifying the missing plant as vegetation, but we also classify223

the weed at the bottom as vegetation. This error brings our PQ to 87.5%, since weeds are labeled as soil in the ground224

truth a correct vegetation detection for a weed is considered an error. This usually has a higher impact on the PQ than225

on the IoU because the number of pixels misclassified is low compared to the total number of vegetation pixels but226

the number of wrong detections is high compared to the number of total detections in the image.227

For the GrowliFlower dataset, we show in Tab. 1 that all approaches yield good performance in differentiating228

vegetation and soil, probably thanks to good lighting conditions. However, the presence of various growth stages229

makes the instance segmentation task harder. GrowliFlower has some images with grass that should be detected as230

soil since it is not a crop to harvest or a weed to remove. It is hard for VLMs and heuristics-based methods alike to231

correctly classify grass as soil. We see that the VLMs have performance similar to the heuristic-based approaches232

regarding the IoU but superior results in the PQ. Using our domain-specific post-processing improves the results of all233
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Figure 6: We show the results of the deep-learning networks (o) against the results obtained by the same networks when augmenting
the input with our predicted instances (□), or with the predicted instances and the offsets computed from them in the x and
y direction (△). Each colored line represents a different architecture to better show the trends of the metrics when using our
additional inputs.

VLMs, both in IoU and PQ. The two most impressive results are the IoU of Grounded SAM2.1, improved by 22.2%,234

and the PQ of Florence2 + SAM2, improved by 21.6%. These improvements show that we correct both for missing235

vegetation detection and for wrongly merged instances.236

The last columns of Tab. 1 show the results on the PhenoBench dataset, the only dataset that provides weed237

annotations. The dataset has images from late growth stages when many leaves overlap and create shadows, which238

makes the segmentation task challenging for both heuristic- and neural network-based approaches. The presence of239

shadows, weeds, and different growth stages limits the semantic segmentation of VLMs, all scoring lower IoU than240

heuristic-based methods. However, the VLMs have superior abilities in differentiating single plant instances, even241

with their reduced set of correct vegetation pixels. We see again that our approach improves the IoU and PQ of all242

methods, surpassing heuristic-based methods in terms of IoU and boosting the plant instance segmentation.243

3.3. Experiments on Exploiting Our Generated Plant Instances Labels244

In this section, we evaluate different ways to use our results to boost the performance of deep-learning approaches245

on the plant instance segmentation task. The results illustrate that: our approach (i) boosts the performance of neu-246

ral networks when used as additional input; (ii) reduces the need for labels when used as ground-truth annotation;247

(iii) helps the network generalize better on different fields without additional ground-truth annotations.248

3.3.1. Generated Instances as Additional Input249

In this set of experiments, we can see that even when we have access to labeled data we can use our generated la-250

bels to improve the performance of learning-based systems. We conduct two types of experiments. First, we augment251

the input of the networks concatenating our labels to the RGB image as additional channel. Second, we ulteriorly con-252

catenate the offset vectors for each instance we detected. To compute the offset vectors, we first determine the center253

of each instance. Then, for all pixels belonging to the instance, we calculate the difference of the pixel coordinates and254

the instance center. This vector represents the offset needed to move each pixel towards its instance center, enabling a255

clustering of the different objects. Since two of the segmentation baselines investigated, i.e., PDL and HAPT, directly256

predict instance offsets to perform instance segmentation, this information should be particularly beneficial for them.257

We evaluate this experiment on all three datasets and with all the learning-based approaches. We run all experiments258

under the same configuration and with a fixed random seed so that the only change is in the additional input provided.259
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Figure 7: Results of three deep-learning networks, when using our approach instead of manual labels. On the x-axis we show the
percentage of manual labels used during training. The first row depicts the IoU, i.e., crop on SugarBeets and GrowliFlower, and
the mean of crop and weeds for PhenoBench. The second row shows the PQ.

Fig. 6 shows the results of the experiments on the three different datasets. We can see that over all experiments,260

the additional input boosts the final performance on both PQ and IoU. This is not true only in a few cases, and only261

for the IoU metric. MR with the predicted instances on SugarBeets and the approach by Weyler et al. [10] with the262

predicted instances on GrowliFlower have a lower IoU. However, the difference is in both cases below 1 %. Since the263

model with the best IoU can differ from the model with the best PQ, which we chose as our best model, picking the264

model with the best IoU would eliminate this problem at the price of having a smaller PQ improvement.265

For the PhenoBench dataset, we can see that all approaches have improved their IoU and PQ when using our266

additional inputs. Since this dataset has crop and weed annotations, the IoU reported in Fig. 6 is the mean IoU over all267

the classes. It is interesting that for this specific dataset, it seems that the additional inputs are helping the IoU more268

than the PQ. We think this is because the PhenoBench dataset has high-resolution images
(
1mm

px

)
, and it presents269

small plants, which could be hard to detect for convolutional networks with big receptive fields. The additional inputs270

make small instances more visible to the network.271

3.3.2. Labels Substitution272

This experiment aims to show the capability of our approach to reduce the need for human-generated labels.273

For all datasets and all baselines, we run 3 different experiments, progressively substituting the humanly annotated274

training labels with the output of our pipeline. We run the experiments substituting 50%, 75%, and then 100% of the275

human-generated labels. We point out that the approach by Weyler et al. [10] is a bottom-up method that requires leaf276

instance labels as the first supervision. We decided to conduct the experiments with this approach by substituting only277

the plant instances with our approach and analyzing the results, knowing that the approach by Weyler et al. could still278

be capable of inferring the manual plant labels from the provided leaf instances.279

In Fig. 7, we can see the results of the experiments. For SugarBeets and GrowliFlower, which only have crop and280

soil as semantic classes, we can see that even using less than half of the labeled data, the network can learn the task281

and perform well on the test set. The metrics are slightly lower than those obtained training on all the labeled data, but282

the difference of 2% points in performance is a good compromise if we need to label only 1/4 of the images. It is also283

interesting to notice that sometimes the metrics are better when using only part of the real labels. This effect is not284

consistent over the datasets or approaches: we can observe it in the IoU of MR for SugarBeets, in the IoU of HAPT285
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and in the PQ of Weyler et al. for the GrowliFlower dataset, and in the metrics of PDL on PhenoBench. We visually286

investigated these results and concluded that considering the performance shown in Tab. 1, the error introduced by our287

labels is considered part of the data noise when there are enough manual labels to drive the learning-based approaches288

in the right direction. For the SugarBeets and GrowliFlower datasets, our generated labels are likely to have weed289

instances that can be considered hard negatives for the network to better learn the final task, leading to a small290

improvement.291

3.3.3. Additional Labels292

In the last set of experiments, we assess if scaling up the number of images in our training data by adding images293

annotated by our approach can help us to perform better. We evaluate this capability by testing the models on a joint294

test set made up of the validation set from PhenoBench and the test set from GrowliFlower. We train on the labeled295

data from PhenoBench and additional datasets labeled with our approach. We then evaluate how this diversity helps296

or degrades the performance on PhenoBench and GrowliFlower.297

First, we use an additional sugar beets dataset introduced by Ahmadi et al. [71], which contains 287 images.298

This dataset provides a variation in the lighting conditions, growth stage, and image resolution, but not in the crop299

species. The ability to adapt to new scenarios, even if the objects in the scenes are the same, is part of what domain300

adaption algorithms try to solve. As a second experiment, we move more towards domain adaption, using a dataset301

of corn firstly presented by Ahmadi et al. [72] of 280 images. We point out that corn is not in our test set, containing302

PhenoBench and GrowliFlower, i.e., sugar beets, and cauliflowers. Nevertheless, we believe that a network can benefit303

from seeing different species of plants since our final goal would be to use it even on species that are not present in304

the training data. In the third experiment, we extend the training set with all the 1 542 images from the original305

GrowliFlower training set, using our predicted instance as instance labels. In this case, the data presented at training306

time has a more similar distribution to the test data, i.e., sugar beets and cauliflowers. The number of new images is307

comparable to the size of the original training set, so the networks should be able to optimize in a more fair way for308

both crop species. We run all experiments using MR, PDL, and HAPT and report the metrics in Tab. 2, Tab. 3, and309

Tab. 4. We cannot run the experiments on Weyler et al.’s approach since it needs supervision from the leaf instances310

and we cannot provide this for the additional data.311

We can see that introducing additional data always improves the PQ of the combined evaluation set and the PQ312

and IoU of GrowliFlower. For MR and HAPT there are many experiments where the performance on the source313

domain gets worse, this is expected since the weights need to be optimized for new crop species, growth stages, and314

field conditions. PDL is the architecture that benefits the most from the additional data. This depends on the use of315

centers and offsets, which is more general than the region proposal of MR, and on the network’s larger size making it316

less prone to overfitting. Looking for the best results, we can see that we obtain most of them using GrowliFlower or317

Corn as additional data; the first is expected since the training distribution matches the one for evaluation, while the318

second suggests that using different crop species can increment the ability of the networks to generalize even if the319

new species are not presents in the final evaluation data.320

3.4. Ablation on Prompt Sensitiveness321

In all of our experiments, we used the same set of prompts P = {soil, crop, weed, single plant, vegetation}. As322

stated in Sec. 3, providing similar prompts with different phrasings ensures the model does not miss detections due323

to vocabulary mismatch and improves the chance that at least one prompt aligns with the visual features. In this324

section, we evaluate how different prompt sets affect the performance of the VLMs. We run all the experiments on325

the PhenoBench dataset and show the results of the VLMs without our post-processing in Tab. 5.326

The results show that adding multiple prompts improves the panoptic quality. This trend suggests that the presence327

of multiple prompts helps the VLMs to correctly detect the single instances. To confirm this theory, we also tried to328

use P = {soil, crop} and P = {soil, single plant}, to see if fewer prompts with high specificity were more suitable329

for our problem. The results were similar to the first lines in our table, with a mean of ± 2 percentage points of330

difference, confirming the need for multi-prompts to enable a more accurate plant instance segmentation. In the case331

of VLMs based on Grounding DINO [56], the increase of the PQ corresponds to a slight decrease in IoU, which is not332

visible for Florence2. This may suggest that the networks are optimizing for smaller instances, increasing the number333

of positive detections, but missing bigger instances that would contribute more to the IoU.334
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Extra Data
Test Set IoU [%]

PQ [%]
PB GF soil crop weeds

none
✓ 97.3 70.9 23.7 45.8

✓ 76.8 9.0 - 7.9
✓ ✓ 90.5 50.2 23.7 32.8

Sugar Beets [71]
✓ (-0.5) (-4.2) (+16.2) (+1.0)

✓ (+1.2) (+6.9) - (+2.9)
✓ ✓ (+0.0) (-0.4) (+16.2) (+2.0)

Corn [72]
✓ (-0.4) (-7.7) (+16.3) (-0.3)

✓ (+9.9) (+25.4) - (+24.0)
✓ ✓ (+3.0) (+3.4) (+16.3) (+7.8)

GF (Train) [61]
✓ (-1.1) (-3.4) (+8.8) (-11.9)

✓ (+4.6) (+23.8) - (+27.2)
✓ ✓ (+0.8) (+5.8) (+8.8) (+1.2)

Table 2: Results on the validation sets of GrowliFlower (GF) and PhenoBench (PB), both independently and together, for MR
trained on the training set from PhenoBench, with additional labels provided by our approach on different crops.

Extra Data
Test Set IoU [%]

PQ [%]
PB GF soil crop weeds

none
✓ 99.0 81.5 21.0 24.4

✓ 78.4 35.5 - 30.8
✓ ✓ 92.1 66.2 21.0 26.5

Sugar Beets [71]
✓ (-1.6) (-1.2) (+1.6) (+6.1)

✓ (+11.4) (+29.9) - (+9.5)
✓ ✓ (+2.8) (+9.1) (+1.6) (+7.9)

Corn [72]
✓ (+0.1) (+3.2) (+8.1) (+12.0)

✓ (+15.6) (+43.0) - (+15.0)
✓ ✓ (+5.3) (+17.4) (+8.1) (+13.0)

GF (Train) [61]
✓ (+0.0) (+2.6) (+6.8) (+9.3)

✓ (+16.7) (+51.0) - (+26.0)
✓ ✓ (+5.6) (+18.7) (+6.8) (+15.5)

Table 3: Results on the validation sets of GrowliFlower (GF) and PhenoBench, (PB) both independently and together, for PDL
trained on the training set from PhenoBench, with additional labels provided by our approach on different crops.
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Extra Data
Test Set IoU [%]

PQ [%]
PB GF soil crop weeds

none
✓ 99.2 90.5 50.4 53.4

✓ 84.0 0.0 - 0.0
✓ ✓ 94.1 60.3 50.4 35.6

Sugar Beets [71]
✓ (-0.5) (-4.1) (-14.0) (-5.1)

✓ (+2.9) (+45.6) - (+28.6)
✓ ✓ (+0.5) (+12.5) (-14.0) (+6.1)

Corn [72]
✓ (-0.8) (-1.0) (-11.6) (-4.5)

✓ (+0.0) (+24.7) - (+21.8)
✓ ✓ (-0.5) (+7.6) (-11.6) (+3.3)

GF (Train) [61]
✓ (-0.4) (-1.5) (-23.2) (-8.2)

✓ (+10.0) (+78.5) - (+39.4)
✓ ✓ (+3.1) (+20.2) (-23.2) (+7.8)

Table 4: Results on the validation sets of GrowliFlower (GF) and PhenoBench (PB), both independently and together, for HAPT
trained on the training set from PhenoBench, with additional labels provided by our approach on different crops.

3.5. Analysis on Aspect Ratio Threshold τa335

In this section, we perform an analysis to validate our chosen aspect ratio threshold τa = 1. We compute the336

aspect ratio of all instances in the three datasets that provide plant instance labels, and show the results in Fig. 8.337

We notice that the SugarBeets dataset has a peak of instances with a smaller aspect ratio. This can be explained338

by the relatively early stages of the plants in this dataset, which develop two leaves on opposite sides. In contrast,339

GrowliFlower has several plants with a larger aspect ratio because the images are relatively close to the plants. This340

means that many plants are only partially visible in the image, thus producing an irregularity in the expected aspect341

ratio. We fitted a Gaussian to each distribution, to show that our threshold τa = 1 is at the peak of all three distribu-342

tions, validating our choice. In particular the three Gaussians have µ = [0.98, 1.03, 0.93] and σ = [0.41, 0.42, 0.35]343

for PhenoBench, GRowliFlower, and SugarBeets respectively.344

3.6. Analysis on Erosion Kernel γ345

In this section, we perform an analysis to validate our chosen erosion kernel γ = 3. We use the prediction coming346

from the same baseline, fixing the random seed, and computing per-image metrics to remove any stochasticity in the347

average per batch. Thus, we change the value of the erosion kernel γ from 1 to 9 and report the PQ to evaluate our348

choice and the parameter’s range.349

We show the result in Fig. 9. Firstly, we notice that the chosen value of γ = 3 is the one with the best PQ.350

Secondly, we see that ulteriorly increasing the value of γ degrades the performance, but the decrease is not constant.351

The difference in PQ decreases, as if it is reaching a plateau: the difference between γ = 6 and γ = 7 is 0.5 percentage352

points, for γ = 7 and γ = 8 is 0.4, and for γ = 8 and γ = 9 is 0.2. This trend suggests that with severe erosions,353

we are probably removing most of the vegetation pixels except for the core centers of the instances. In this way, the354

computational time increases as we have to iterate over all eroded pixels, but the performance only slightly changes355

due to the estimated instance centers.356

The maximum difference in PQ, between γ = 3 and γ = 9, is of 6.8 percentage points. We compute the357

normalized sensitivity coefficient of our approach with respect to the parameter γ as358

Sensitivity =
% change in output

% change in parameter
=

6.8

200
≈ 0.034. (3)

This means that a change of 1% in γ produces a variation of 0.034% in PQ, demonstrating the robustness of the359

approach to possible changes of the parameter.360
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VLM Prompts P Vegetation IoU [%] PQ [%]

Grounded SAM2
{soil, vegetation} 60.7 52.7

{soil, single plant, vegetation } 61.2 55.0
{soil, crop, single plant, vegetation} 59.8 55.4

{soil, weed, crop, single plant, vegetation} 58.2 60.6

Florence2 + SAM2
{soil, vegetation} 11.1 8.7

{soil, single plant, vegetation } 18.7 14.8
{soil, crop, single plant, vegetation} 57.8 29.8

{soil, weed, crop, single plant, vegetation} 59.6 44.2

Grounded SAM2.1
{soil, vegetation} 59.7 57.3

{soil, single plant, vegetation } 59.6 61.9
{soil, crop, single plant, vegetation} 54.2 62.1

{soil, weed, crop, single plant, vegetation} 45.3 62.7

Table 5: Results of the different VLMs while changing P to test their sensitivity to the inference prompts. We underline the newly
added prompt for each line.

4. Discussion361

The experiments presented suggest that our pipeline generates plant instance labels for training networks in the362

absence of manual labels. Our approach performs comparably to state-of-the-art fully supervised deep learning ap-363

proaches without the requirement for labels. When labels are available, our suggestion is to exploit our method to364

boost the performance and increase the generalization capabilities of the model.365

We show in Fig. 10 some qualitative images from the different datasets. On the top row, we show the masks366

produced by the VLMs. On the bottom row, we show the masks after our domain-specific post-processing. We point367

out that this visualization does not consider the possible double detections of VLMs, i.e., when the same pixels belong368

to different masks, nor missed soil detections, i.e., in the rightmost image, some pebbles and rocks were not assigned369

to any class. However, we can still notice how our post-processing improves the results, both detecting missing370

vegetation and obtaining a clearer separation of overlapping plants.371

The quantity of available labels and the testing conditions motivate the best way to use our pipeline. In the case372

of unknown testing field conditions, the best way to proceed is to train on one human-annotated dataset and integrate373

different fields labeled with our approach to improve the generalization abilities of the network, see Sec. 3.3.3.374

We showed the strengths of our approach, but there are also some failure cases due to our assumptions. Fig. 11375

illustrates two of these situations. Since we rely on the output of the VLM, if the resulting masks are very inaccurate, it376

is almost impossible for us to improve their result. The main reasons why VLMs can fail are: (i) they are often trained377

on web images that rarely include complex vegetation scenes; (ii) for the same reason, their vocabulary may not be378

well aligned with agricultural terms; and (iii) lighting conditions, shadows, and occlusions can make it hard to extract379

a correct mask. Our approach tries to solve some of these issues using multiple prompts and our domain-specific380

post-processing, but severe failures are still hard to recover from.381

The first example shows a soil mask which is also assigned to part of the plants and does not capture the whole382

soil. It would be hard for our approach to correctly segment the remaining pixels since the color of vegetation and383

soil are not reliable because of the wrong detections of the VLM. One possible solution would be to compute a soil-384

vegetation mask based on heuristics to check the overlap with the predicted soil mask from the VLM. This can help385

reject severe failure cases, using a vegetation mask as a semantic mask and connected components to initialize the386

instances. We could compute the standard deviation of the colors of the mask’s pixels and detect a severe failure when387

it is above a certain threshold. However, this would need several experiments to define a threshold without wasting388

correct detections.389

In the second case, the plant was not fully visible in the image, so the computed instance does not respect our390

desired aspect ratio. The aspect threshold τa is also a limiting factor of our approach. We performed all experiments391

with the same threshold τa = 1, however, different crop species or data acquisition procedures may require adapting392
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Figure 8: Histogram distributions of the aspect ratio of every plant instance in each dataset. We additionally plot the Gaussians
estimated from the histograms.

the threshold to better capture the new expected shape of the crops. Finally, we know that our approach has difficulties393

finding weed instances when these are connected to plants because they are smaller compared to the plant size and394

can get eroded in our refinement step.395

As our pipeline relies on the VLMs, it is complex to analyze the computational costs and inference speed. VLMs396

are usually large models between 500M and 2B of total parameters, making them computationally expensive to run397

on edge devices. The high number of parameters also makes their inference relatively slow, with times between 200398

and 700 ms per image, depending also on the GPU and image size. This makes the pipeline unfeasible for real-time399

operations in the field as it is. However, recent works are focusing on reducing the inference time and computational400

complexity of VLMs [73], making them more accessible for real-world applications. Our post-processing, being401

heuristic-based, only counts two hyperparameters. Its runtime heavily depends on the VLMs’ output, in particular on402

the areas without detections and the number of instances to split. For images of size 1024× 1024 and initial instances403

coming from one of the three VLMs investigated in this article, our post-processing has a runtime of 31 ± 15ms on404

QUADRO RTX 5000 GPU.405

5. Conclusion406

In this article, we presented an effective approach to perform plant instance segmentation of RGB images. Our407

method exploits vision-language foundation models and domain-specific knowledge, improving the results of founda-408

tion models without requiring any additional annotated data. The benefit of our approach, however, goes further. It al-409

lows us to supervise learning-based approaches with unlabeled data as an initial training step boosting the performance410

of the deep learning systems without new manually provided labels. We implemented and evaluated our approach on411

different datasets and provided comparisons to other existing techniques, both heuristic- and neural network-based,412

and supported all claims made in this article. The experiments suggest that our approach is a competitive alternative413

to current state-of-the-art labeling methods for plant instance segmentation. Our method can generalize better than414

the baselines to unseen crop fields, making it applicable to new datasets without manually labeled training data. It415

can also be used as a pre-training step to initialize any instance segmentation network and achieve good performance416

when fine-tuning even on small human-annotated agricultural datasets.417
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[4] A. S. Chakravarthy, M. R. Ganesina, P. Hu, L. Leal-Taixé, S. Kong, D. Ramanan, A. Osep, Lidar panoptic segmentation in an open world,442

Intl. Journal of Computer Vision (IJCV) Special Issue on Open-World Visual Recognition (2024) 1–22.443

[5] M. Sodano, F. Magistri, L. Nunes, J. Behley, C. Stachniss, Open-World Semantic Segmentation Including Class Similarity, in: Proc. of the444

IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR), 2024.445

[6] M. Sodano, F. Magistri, T. Guadagnino, J. Behley, C. Stachniss, Robust Double-Encoder Network for RGB-D Panoptic Segmentation, in:446

Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2023.447

17



/ Information Processing in Agriculture 00 (2026) 1–21 18

Figure 10: Qualitative results of the VLMs (top) and of the final masks obtained after our post-processing operation (bottom)
for images coming from the different datasets. The results show improvements in IoU and in PQ, as our post-processing finds
additional vegetation that was not detected and is able to separate plants that were assigned to the same instance.

[7] C. Yin, B. Wang, V. J. Gan, M. Wang, J. C. Cheng, Automated semantic segmentation of industrial point clouds using respointnet++,448

Automation in Construction 130 (2021) 103874.449

[8] G. Roggiolani, M. Sodano, F. Magistri, T. Guadagnino, J. Behley, C. Stachniss, Hierarchical Approach for Joint Semantic, Plant Instance,450

and Leaf Instance Segmentation in the Agricultural Domain, in: Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2023.451

[9] R. Sheikh, A. Milioto, P. Lottes, C. Stachniss, M. Bennewitz, T. Schultz, Gradient and log-based active learning for semantic segmentation452

of crop and weed for agricultural robots, in: Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2020.453

[10] J. Weyler, F. Magistri, P. Seitz, J. Behley, C. Stachniss, In-field phenotyping based on crop leaf and plant instance segmentation, in: Proc. of454

the IEEE Winter Conf. on Applications of Computer Vision (WACV), 2022.455

[11] P. Lottes, C. Stachniss, Semi-supervised online visual crop and weed classification in precision farming exploiting plant arrangement, in:456

Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2017.457
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