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Abstract— Agricultural robots have the prospect to enable
more efficient and sustainable agricultural production of food,
feed, and fiber. Perception of crops and weeds is a central
component of agricultural robots that aim to monitor fields and
assess the plants as well as their growth stage in an automatic
manner. Semantic perception mostly relies on deep learning
using supervised approaches, which require time and qualified
workers to label fairly large amounts of data. In this paper, we
look into the problem of reducing the amount of labels without
compromising the final segmentation performance. For robots
operating in the field, pre-training networks in a supervised
way is already a popular method to reduce the number of
required labeled images. We investigate the possibility of pre-
training in a self-supervised fashion using data from the target
domain. To better exploit this data, we propose a set of domain-
specific augmentation strategies. We evaluate our pre-training
on semantic segmentation and leaf instance segmentation, two
important tasks in our domain. The experimental results
suggest that pre-training with domain-specific data paired with
our data augmentation strategy leads to superior performance
compared to commonly used pre-trainings. Furthermore, the
pre-trained networks obtain similar performance to the fully
supervised with less labeled data.

I. INTRODUCTION

Sustainable crop production is fundamental to meet the
increasing request for food, fuel, and fiber. It, however, must
become more effective to fulfill all demands. Furthermore,
the lack of workers is a key challenge, which is even
increased during the recent COVID pandemic. Robots are
a crucial component to analyze and monitor plants in an
automated way [28], followed by targeted fertilizing and/or
protection [13]. Before targeted actions can be performed,
the underlying perception problems need to be solved. Deep
learning approaches improved the performance of these sys-
tems using large neural networks. Such networks for object
detection or semantic segmentation can help the farmers to
evaluate the status of the plants [17] [27], spot and locate
weeds [39], detect plant diseases [15], and understand the
growing conditions among different areas of the field [40].
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Fig. 1: Results on semantic segmentation with different amounts
of data and pre-trainings. We achieve better or comparable results
with 1

4
of the epochs and 1

1000
of the images. The dotted circles

highlight the errors in the results.

Deep learning-based approaches, however, generally need
a large amount of labeled data, which is hard to get because
it needs time and specialized workers. Some researchers use
semi-supervised approaches to reduce the need for labeled
images [26] or leverage background knowledge [30]. Re-
cent work in self-supervised pre-training showed promising
results, where we can pre-train a network without relying
on supervision by labels. Pre-training on the ImageNet
dataset [9] is a common way to reduce the number of training
samples and the training time for the network to converge.
Several other methods use a contrastive loss and strong
augmentation techniques [4] [6] [16] [19] [46]. Embeddings
produced in such a way are more robust to the augmentations
applied. However, the applied data augmentations need to
be selected carefully so as not to lose relevant features. In
this work, we study self-supervised representation learning
to improve the perception of agricultural robots.
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Fig. 2: For each image we build two augmentations to produce two
embeddings. We fill a matrix C with their cross-correlation and then
compute the loss, that forces C to be an identity.

The main contribution of this paper is providing a pre-
training strategy for the plant domain, which will reduce
the number of labeled images needed and a newly defined
augmentation policy. We study existing augmentation and
propose domain-specific ones to boost performance. Specif-
ically, we target semantic and leaf instance segmentation
and investigate how self-supervised pre-training on domain-
specific data leads to better models that can learn with less la-
beled data. In sum, we make three key claims: (i) pre-training
on datasets of the same domain improves the performance of
the downstream tasks, (ii) using domain-specific pre-training
can further reduce the number of labeled images needed,
and (iii) the augmentation policy needs to be domain-specific
and take into account the order and design of the augmen-
tations. Our code is available at https://github.com/
PRBonn/agri-pretraining.

II. RELATED WORK

Robotic applications in agriculture aim at improving field
monitoring and interventions diminishing the use of agri-
cultural chemical inputs and production costs [32] [38]. Se-
mantic segmentation and instance segmentation are two key
steps for weed control and plant phenotyping. The majority
of recent solutions for these tasks employ large convolutional
neural networks [23] [24] [32], requiring large amounts of
labeled data. Some of them exploit spatial information about
the fields [25] or vegetation indexes [30], while others
focused on the architecture side, as Potena et al. [31] where
they use two CNNs to detect the vegetation and then classify
it, Weyler et al. [39] which employs a Feature Pyramid
Network to detect the instances, or in the works from
Buzzy et al. [3] and You et al. [45] that use deep neural
networks.

Two main paths have been investigated to reduce the num-
ber of labeled images: domain adaptation and pre-training.
In the domain adaptation setting, the network learns how
to perform a task on a source domain and is expected to
have a good performance on a different one. Approaches
often use generative adversarial networks [22] [44]. Their
application on the plant domain shows already promising
results for classification [14], object counting [1], and object
detection [18]. However, these methods require training the
network on a source domain dataset for which we might need
vast amounts of labeled images.

In contrast, pre-training aims at initializing the weights
of a neural network, such that it needs fewer labels and
converges faster. Erhan et al. [10] shows that unsupervised
pre-training guides the networks towards the minimum, from
where supervised training can proceed faster and with less
available data. In literature, pre-training on ImageNet is a
common choice [35], since it is big enough to provide a
good initialization for various tasks and domains.

Lately, self-supervised pre-training received increasing at-
tention due to its promising results on several downstream
tasks compared to supervised pre-training [6] [19] [7] [46].
Especially, contrastive approaches firstly used large mem-
ory banks [43] that were later replaced by a momentum
encoder [19] to reduce the required memory to store negative
samples. In particular, Chen et al. [6] introduced a projec-
tion head for learning embeddings of positive and negative
examples that showed superior performance and were later
integrated into momentum contrast [7]. They also investigate
various data augmentation techniques and show the relevance
of different augmentations, but also an order dependence
of the augmentations. Grill et al. [16] build upon earlier
work [6] and proved that negative examples are not strictly
necessary for pre-training. Zbontar et al. [46] extends this
idea of using only positive examples by measuring the cross-
correlation between two augmented views of the same image.

Recently, He et al. [20] challenged the need for pre-
training and showed that, given enough iteration and data,
a randomly initialized network can reach the same perfor-
mance. Their work also confirms that pre-training is an
effective way to reduce the need for labeled data and time
to converge. McCormac et al. [29] compare the model pre-
trained on ImageNet versus the model pre-trained on their
synthetic RGB-D dataset, whose domain is aligned with the
target dataset and task. Their domain-specific pre-training
performs better than the ImageNet pre-training, especially
when using depth information.

In contrast to the supervised approaches, we aim at ex-
ploiting the large amount of unlabeled images that we can
record using robotic systems. For the self-supervised pre-
training, we use Barlow Twins [46]. We evaluate the im-
portance of pre-training directly in the agricultural domain,
instead of adopting a general pre-training on ImageNet. In
our work, we show the advantages of domain-specific aug-
mentations, for which there is not much literature [8] [34] and
we examine how their order and application may influence
the performance of the final system on the downstream task.

III. OUR APPROACH

We aim at learning an abstract representation that will
serve as a starting point for further learning tasks in the
domain of the perception of plants. By deploying robots in
the fields, we can quite easily collect a large amount of
unlabeled data. This offers the potential to build systems
to train networks in a self-supervised fashion. For our
perception task, we pre-train the network encoder following
Barlow Twins (BT) proposed by Zbontar et al. [46]. We
decided for BT to avoid the problem of negative pairs since in
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Fig. 3: We applied all of our augmentations to a single image to show one possible outcome for each one. In our pre-training strategy
they are applied sequentially producing even more variations of the input.

the agricultural domain most of the images represent plants;
the pre-training approach, as well as the architecture for the
tasks, is not our main focus. We propose a domain-specific
augmentation policy to boost the performance of the final
system. We evaluate our pre-training on semantic and leaf
instance segmentation.

A. Barlow Twins

BT learns representations in a self-supervised fashion
via redundancy reduction. Here. we briefly summarize its
relevant parts and refer for more details to the original
paper [46]. It uses a siamese network with shared weights,
which can be seen in Fig. 2. The two inputs are two different
augmentations of the same input image. The encoder is a
ResNet50 [21] without the final classification layer, followed
by a projector network. The projector network has two
identical blocks — linear layer, batch normalization, and
rectified linear units — followed by one linear layer.

Zbontar et al. build for each input image I two augmented
views I1, I2 that are fed into the network to produce two
distinct embeddings z1, z2 ∈ RD. They compute the loss
directly on z1 and z2. The first step is to construct the cross-
correlation squared matrix C ∈ RD×D from the embeddings
normalized over the batch dimension. This matrix has values
between −1 (anti-correlation) and 1 (correlation). Then, the
loss is:

LBT ,
∑
i

(1− Cii)2 + λ
∑
i

∑
j 6=i

C2ij , (1)

where λ is a weight to trade-off two parts: the invariance
term, which forces the diagonal elements of C to be 1, and
the redundancy reduction term, which forces all the non-
diagonal elements of C to be 0.

B. Augmentations

Augmentations play a fundamental role in self-supervised
learning. The stronger they are, the more the network focuses
on relevant and stable features to represent the images. We
use our augmentation policy as common in the literature [16]
plus domain-specific knowledge. In Fig. 3, we show the
result of each augmentation applied to one sample image
for illustration purposes. Our augmentations are:

1) Affine Transformation: The affine transformation,
Taffine ∈ R3×3 rotates, translates, scales, and shears the input
image. It makes the network invariant to such transformations
which are common when working with robots of different
sizes and cameras. More specifically, Taffine is given by

Taffine =

[
A t
0T 1

]
, (2)

where A ∈ R2×2 contains an isotropic scaling factor in
[0.5, 2], a rotation in [−π, π] and the shearing along
the two axes randomly sampled in [0.25, 0.75], while
t ∈ R2 is a translation vector with each component
tx, ty ∈ [−0.25 ·W, 0.25 ·H], where W and H are the im-
age width and height respectively.

2) Color Jittering: Color jittering changes the brightness,
contrast, hue, and saturation of the image. Instead of the
symmetrical range of values for the hue (−0.1, 0.1) from the
literature, we use (0, 0.125) as range. This transformation is
crucial for the classification of ill or damaged plants, where
color is a dominant discriminator [37].

3) Gaussian Blur: We blur the image using a random
standard deviation ∈ [0.1, 2]. The purpose of this augmen-
tation is to help the network focus on the image structure
across different scales and resolutions.

4) Mixing: Zhang et al. [47] propose to mix two images
via linear interpolation, we instead use a single image I .
We create two copies of the image I , one flipped on the
x-axis Ix and one on the y-axis Iy . We sample each pixel
in the augmented image from I , Ix, or Iy using a uniform
probability over the three images. This can simulate motion
due to the wind or water uptake, or holes eaten by insects.

5) Random Erasing: Random erasing [48] selects multi-
ple rectangles inside of the image and substitutes the pixels’
values with random values in [0, 255]. Given the minimum
percentage of the image that has to be removed, it picks
rectangles of different sizes and aspect ratios until the deleted
area is at least the minimum desired area. We slightly change
the implementation to enforce the use of multiple rectangles
with respect to a big one. We use this augmentation to make
the network less sensitive to occlusions and shadows.

6) Background Invariance: This transformation cuts
plants from the current image and pastes them into a different
soil background. Specifically, we perform the following
steps:

(i) Compute a normalized image as

Inorm(u, v) =
I(u, v)− µI

σI + ε
, (3)

where u, v are pixel coordinates, µI ∈ R3 and σI ∈ R3

are mean and standard deviation of I , and ε = 10−8.
(ii) Compute the vegetation mask M following Woebbecke

et al. [42]. Specifically, M is given by

M = 2IG − IR − IB , (4)
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Fig. 4: Comparison of the mIoU with different amounts of labels
after fine-tuning for 100 epochs (semantic segmentation). The
number of images for each label percentage is: 14 for 1%, 140
for 10%, 362 for 25%, 724 for 50%, and 1450 for 100%.

where IR,IG and IB are the color channels of Inorm.
(iii) Convert M to a binary mask using a threshold θ, i.e.,

all pixels above θ are set to 1, the others are set to 0.
(iv) Refine M using 2 rounds of erosion with kernel size

(2, 2), 4 rounds of dilation with kernel size (6, 6).
(v) Cut the vegetation and paste it at a random location on

a random soil image from a dataset of images whose
vegetation mask M is below a given threshold, i.e., less
than 5% of the image.

All the augmentations are applied with a certain probability,
tuned from the results in Sec. V-D.

IV. DOWNSTREAM TASKS

In an application, the pre-trained models are fine-tuned on
specific downstream tasks. Since the pre-training approach
is backbone invariant, we pre-trained ResNet50 for the
semantic segmentation and an ERFNet [36] encoder for the
leaf instance segmentation. For both tasks, we use ERFNet-
like decoders.

A. Semantic Segmentation

Semantic segmentation predicts a class for each pixel of
the image, in our application example, crop, weed, and back-
ground. The decoder outputs an image H×W×Cout, where
Cout is the number of semantic classes, H and W are the
height and width of the input image. Instead of connecting
the decoder at the end of the ResNet50, we discard the last
two layers to preserve more spatial information. We can
initialize the remaining part with the pre-trained weights
without changing anything. We follow Rahman et al. [33]
to directly optimize the IoU.

B. Leaf Instance Segmentation

Leaf instance segmentation predicts a pixel-wise mask
for each leaf. Such task allows discovering not only the
shape and size of individual leaves but also counting them,
which is fundamental in determining the growth stage of
the plant [12]. We use the network and loss proposed by
Weyler et al. [41]. One decoder predicts the center locations

TABLE I: Comparison of average precision (AP) and recall (AR)
on plants (p) and leaves (l) for the three main approaches. The
number of images for label percentage is: 7 for 1%, 74 for 10%,
186 for 25%, 373 for 50%, and 746 for 100%.

Pre-Training APp [%] ARp [%] APl [%] ARl [%]

100% of labels

none 54.3 60.5 48.7 68.3
ImageNet 55.1 61.2 59.7 68.9

ours 55.6 62.9 64.4 69.2

50% of labels

none 50.3 59.0 45.6 60.1
ImageNet 52.4 60.1 52.7 61.5

ours 54.6 60.8 54.6 62.7

25% of labels

none 48.0 55.2 42.0 46.1
ImageNet 50.2 56.1 50.6 56.6

ours 50.9 56.9 53.8 60.6

10% of labels

none 46.6 54.0 20.7 39.6
ImageNet 46.8 53.7 29.5 38.4

ours 48.0 54.2 42.5 49.2

1% of labels

none 0.0 0.0 0.1 0.3
ImageNet 0.0 0.0 0.4 0.2

ours 1.1 8.3 0.9 5.6

of each leaf, the other the offsets pointing at the specific
leaf and plant center plus clustering parameters for the post-
processing. The predicted and the ground truth masks are fed
to the Lovász Hinge Loss [2]. For more details, refer to the
original paper [41].

V. EXPERIMENTAL EVALUATION

The focus of this work is showing that a domain-specific
self-supervised pre-training together with augmentation pol-
icy has the potential to perform better than the commonly
used supervised pre-training on ImageNet. We show this for
images from the agricultural robotics domain. We present our
experiments to show the capabilities of our pre-training and
to support our key claims, which are: (i) pre-training on plant
images improves the performance of the downstream tasks,
(ii) using domain-specific pre-training can further reduce the
number of labels needed, and (iii) the augmentation policy
needs to be domain-specific and consider the design of each
augmentation to apply them in the best order.

A. Experimental Setup

Our best model has the encoder pre-trained for 250 epochs,
with batch size 128, learning rate 2 · 10−4, and a weight
decay of 10−6. We use 18,000 images from four different
locations (Ancona in Italy, Bonn and Stuttgart in Germany,
and Eschlikon in Switzerland, see also the dataset paper [5])
for pre-training. We compare it with a publicly available
supervised pre-training on ImageNet. For the semantic seg-
mentation task, we use a dataset that contains 2,148 images:
1,450 for training, 478 for validation, and 220 for testing.
For the leaf instance segmentation, we use a dataset with
1,316 images; 746 for training, 292 for validation, and 278
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Fig. 5: The average |DiC| for the three approaches with increasing
number of labeled images. The lower the better.

for testing. We pre-trained on a single NVIDIA RTX A6000
GPU and fine-tuned on a single Quadro RTX 5000 GPU. We
plan to publish the datasets used both for pre-training and
fine-tuning.

We evaluate the results on semantic segmentation using
the mean intersection over union (mIoU) [11] over soil, crop,
and weed. For the leaf instance segmentation task, we report
the average precision (AP) and recall (AR), and the absolute
difference in count (|DiC|) of the leaves.

B. Our Pre-training vs. Non-specific Pre-training

The first experiment analyzes how self-supervised domain-
specific pre-training improves the effectiveness and de-
creases the labeled images, time, and computational re-
sources needed. We fine-tuned our model and the model pre-
trained on ImageNet with different amounts of labels.

Semantic Segmentation. Fig. 4 suggests that when using
a sufficient number of labels, different pre-training strategies
perform similarly. The fewer labels we use, the wider the
gap. The ImageNet pre-training requires more labeled data
to adjust to the agriculture domain. Our pre-training performs
better requiring less data for pre-training i.e. 18,000 images
against the 1,281,167 from ImageNet, and epochs i.e. 250
against 1,000. Only for this experiment, we also pre-trained
on domain-specific data with the augmentations from the
literature. The results confirm that domain-specific augmen-
tations are a key component to obtain the best performance.

Leaf Instance Segmentation. Tab. I confirms the utility
of pre-training on domain-specific data to boost the perfor-
mance and reduce the number of labeled images needed. Our
pre-training boosts every metric in every scenario. In Fig. 5,
the difference in count shows a similar trend. When using
less than 10 images none of the approaches can properly
segment the leaves, but using 74 images (10%) our pre-
training can already reduce the uncounted leaves to ≈ 6 per
image (each image can have between 2 and 5 plants in it).

C. Our Pre-training vs. No Pre-training

This experiment aims to compare the results and com-
putational resources when using the pre-trained model with
respect to training the network after a random initialization.

errors

Fig. 6: Leaf instance segmentation with 50% of the labels. From
top to bottom, we show the result with no pre-training, ImageNet
and our pre-training, then the ground truth.

Semantic Segmentation. In Fig. 4, we see how pre-
training boosts the performance when using the same routine
and number of labeled images. Our pre-trained model per-
forms better using up to 25% of the annotated data. With less
than 10% of the labeled data, pre-training on ImageNet hurts
the performance. The reason may be that the network expects
to see objects from the ImageNet dataset distribution and
requires the labeled data to adapt to the agricultural domain.
Our pre-training does not suffer from this issue.

Leaf Instance Segmentation. Training the randomly ini-
tialized network with few labeled images deteriorates rapidly
the performance. Fig. 5 and Tab. I show that we can obtain
the same performance using half of the data. Our pre-training
boosts all of the metrics, and it produces instance masks
using only 7 images (1%).

D. Relevance and Order of the Augmentations

We used a shorter training routine to analyze which
augmentations work better for the plant domain. Each com-
bination has been pre-trained for 50 epochs on a subset
of the pre-training dataset, then fine-tuned on a subset of
the dataset for semantic segmentation. Chen et al. [6] did a
similar experiment whose results agree with ours.

In Fig. 7, we see that changing the transformation’s order
impacts the mIoU and the training time. The combinations
that took more time are those that make the task much harder,
i.e., if we first apply color jittering and then background
invariance, it will be challenging to correctly identify the
plants, with the vegetation mask corrupted by the changes in
color. Focusing on the highest-performing combinations we
see that swapping them leads to lower values, confirming
that the order in which they are applied is a key aspect
when designing the augmentation policy. On the diagonal,
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TABLE II: The mIoU [%] after fine-tuning (100 epochs on semantic
segmentation) with 20, 40, 60, 80 and 100 epochs of pre-training
using only the color transformation.

pre-training epochs

Approach 20 40 60 80 100

standard 23.44 23.77 23.89 19.92 13.89
our 17.61 21.11 31.28 32.52 42.80

where we apply only one augmentation, the mIoU values
are all in the mid-lower range, the highest values being the
strongest augmentations. This pattern is also visible in the
other combinations; strong augmentations such as random
erasing and mixing lead to better performance, not always
at the price of longer training time.

As explained in Sec. III-B.2, we changed the usual pa-
rameters for the color jittering augmentation. To evaluate if
this choice makes a difference we pre-trained our encoder
only with color jittering and used the weights at different
stages for the semantic segmentation task. We demonstrate
in Tab. II that a longer pre-training period with the standard
color augmentation degrades performance. One reason could
be that the augmentation is so strong that the network does
not take color into account anymore, making the semantic
segmentation task harder. Our augmentation instead provides
better performance the more the encoder is pre-trained.

E. Influence of Pre-training Length

We pre-trained up to 500 epochs, evaluating intermediate
checkpoints on the semantic segmentation task. We want to
determine how many epochs are needed to achieve satisfying
results and to find out how much we can improve by
continuing training. This allows us to find a compromise
between performance and computational resources. In Fig. 8
we show that the mIoU increases until 250 epochs, where

0 100 200 300 400 500
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70
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m
Io
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]

Fig. 8: The mIoU after fine-tuning for 100 epochs using different
pre-training epochs. There is no improvement after 250 epochs. The
starting value is obtained with a randomly initialized network.

TABLE III: Comparison of mIoU, mean precision (mP), and mean
recall (mR) after fine-tuning for 100 epochs (semantic segmenta-
tion) with our augmentation’s probabilities vs. applying always all
the augmentations.

Approach mIoU [%] mP [%] mR [%]

all augmentations 78.09 88.61 87.68
our policy 81.77 91.07 89.99

we see a diminishing effect. Therefore, if not otherwise
specified, we pre-train for 250 epochs in our experiments.

F. Ablation on Augmentations’ Probabilities

Each augmentation is applied with a probability based on
the results of the previous experiments to increase variance.
For evaluation of the effectiveness of our policy, we compare
it against a pre-training in which all augmentations are
always applied.

The results in Tab. III show that the probabilities we assign
to each augmentation result in higher performance on all
metric evaluations. We propose to assign a probability of
1.0 to color jittering and random erasing, 0.9 to gaussian
blur and mixing, and 0.8 to background invariance and affine
transform.

VI. CONCLUSION

In this paper, we presented an approach to exploit a vast
quantity of unlabeled images from the agricultural domain
to learn useful representations in a self-supervised fashion.
Our experiments rely on domain-specific data and domain-
specific augmentations during the pre-training. This allows
us to successfully use our pre-training for different down-
stream tasks obtaining good performance using less labeled
images. We implemented and evaluated our pre-trainings
on two tasks, semantic and leaf instance segmentation in
the agriculture domain. We compared our results with those
obtained without pre-training and pre-training on ImageNet
and supported all claims made in this paper. The experiments
suggest that pre-training on a domain-specific dataset and
exploiting domain knowledge to define the augmentation
policy can reduce the number of labeled data required to
achieve the same performances as without pre-training.
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