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Abstract— Monitoring the traits of plants and fruits is a
fundamental task in horticulture. With accurate measurements,
farmers can predict the yield of their crops and use this
information for making informed management decisions, and
breeders can use it for variety selection. Agricultural robotic
applications promise to automate this monitoring task. In this
paper, we address the problem of monitoring fruit growth
and investigate the matching of fruits recorded in commercial
greenhouses at different growth stages based on data recorded
from terrestrial laser scanners. This is challenging as fruits
appear highly similar, change over time, and are subject to
severe occlusions. We first propose a fruit descriptor, which
captures the topology of the fruit surroundings to facilitate the
matching between different points in time. We capture and
describe the relationship between a fruit and its neighbors
such that our descriptors are less affected by the growth
over time. Furthermore, we define a matching cost function
and use an optimal assignment algorithm to match the fruit
observations taken in different weeks. The experiments show
that our descriptor achieves a high spatio-temporal matching
accuracy, which is superior to the commonly used geometric
point cloud descriptors.

I. INTRODUCTION

To satisfy food demand for an ever-growing population,
we have to grow more crops more consciously in the follow-
ing years than ever. Robotics and automation have become
increasingly popular in supporting farmers in monitoring and
management actions. Autonomous robots have the prospect
of revolutionizing agricultural production systems [12], [40]
and can also boost phenotyping to assess plant performances
when breeding new varieties. Phenotyping is the task of
measuring plant properties and assessing the performance
of plant varieties [13], [41] to better select cultivars for
the following seasons. Today, phenotyping involves humans
manually measuring individual plants [15], which limits
spatial and temporal phenotyping throughput. Instead, robots,
when equipped with high-resolution sensors, provide an
attractive way to monitor plants at a large scale continuously,
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Fig. 1: Top, our UGV system is navigating inside the greenhouse to
collect data. Bottom, the same section of the greenhouse one week
apart, where we can appreciate the different sizes and the different
ripeness of the fruits. Such changes in the scene’s appearance make
it difficult to establish correspondence between fruits.

having, at the same time, the ability to inspect plants and
fruits closely.

One challenge is the temporal tracking of fruits that allows
for monitoring fruit growth and traits such as shape and
color over time. However, recognizing the same fruits in
different recordings is challenging due to the similarity of
most fruits and the changes in the scene, and the fruits
themselves deriving from growth and recording conditions.
Fig. 1 shows the same portion of a strawberry greenhouse
as an example. Within a week, plants can grow substantially,
new fruits develop, existing fruits change shape and color,
and some fruits may get harvested. Such changes must be
considered when tracking individual fruits over time.

This problem somewhat resembles detecting loop closures
in SLAM systems [36] in changing environments and shares
similarities with visual place recognition [39]. However,
solutions to those problems typically rely on distinctive man-
made structures, such as buildings, poles, etc.

Therefore, this paper’s main contribution is a practical
approach that allows for fruit matching across different times,
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Fig. 2: We define a descriptor that captures the relationship between each fruit and its neighbors. This allows us to match individual fruits
over time, even if the scene looks different because of harvested or newly developed fruits, but also due to changes in color and radius.
We show here the descriptors for fruits in different weeks. We observe a high similarity of the corresponding descriptors for the same
fruit (blue and green). For different fruits (blue and red), we see a significant difference between the corresponding descriptors.

exploiting a novel 3D fruit descriptor to robustify matching
results and thus enabling the monitoring of fruit traits such
as color and radius over time. Our approach exploits dense
high-precision point clouds recorded with a terrestrial laser
scanner (TLS) together with fruit detections represented as
bounding boxes. For matching fruit detections at different
points in time, we utilize a relational histogram descriptor
that leverages the fact that fruits maintain a similar constel-
lation over time while individual fruits change substantially.
With this, we can match fruits using the Hungarian method
by defining a cost function that combines positional distance,
descriptor distance, and radius variation. Experiments on
strawberries in a greenhouse show that the proposed fruit
descriptor combined with Hungarian matching is more ef-
fective than matching with descriptors based solely on the
appearance of individual fruits. As shown in the evaluation,
using the proposed pipeline enables us to identify fruits and
model them over time robustly.

II. RELATED WORK

Image-based phenotyping for the automatic monitoring of
plants is gaining increasingly importance in various agricul-
tural environments. Thanks to the advances in deep learning
in the agricultural context [31],such techniques have been
applied to yield estimation in vineyards [20], [27], to ripeness
estimation and fruit counting in greenhouse [18], [33], but
also to phenotyping [6], [42], [43] and disease spotting [17]
in crop fields. While image-based phenotyping has received
significant attention, few works propose methods to extract
phenotypic traits from 3D data. Lehnert et al. [22] use a

camera array to compute the next best view to maximize fruit
coverage. In follow-up work, Zaenker et al. [44] combine
local and global viewpoint planning for improving fruit
coverage. Gibbs et al. [16] propose an active vision approach
to compute high-quality 3D surface reconstruction of plants.
Underwood et al. [38] measure canopy volume from 3D
models of almond orchards and estimate flowers and fruits
density. Binney et al. [5] fit cylinders to point clouds of trees
to recover missing data. Sodhi et al. [34] address the problem
of mapping plant sub-units called plant phytomers to their
phenotype value. In our prior works, we estimate the shape of
fruits [25] and plants [23], [26] in the presence of occlusions
without considering the temporal growth of plants and fruits.
One of the reasons behind this gap between 2D and 3D
analysis can be found in sensor limitations. For example,
traditional sensors equipped on robots like 3D LiDARs and
RGB-D cameras often provide a 3D spatial resolution too
coarse for agricultural scenes. A possible solution is using
terrestrial laser scanners to obtain dense, colored, and precise
point clouds. Sun et al. [37] exploit such a sensor for stalk
and node detection in cotton fields showcasing TLS potential.
The drawbacks of TLS are the long data acquisition time
required and the need for manually placing the TLS in the
environment. While reducing the acquisition time reduces
the scan precision, placing the TLS on a robotic platform
aallows the data to be collected automatically [29].

Compared to the 3D case, fewer works address the prob-
lem of finding plant and fruit correspondences over time,
i.e., in 4D. Chebrolu et al. [8] exploit a skeletal structure



to compute correspondences between the same plant over
a period of two weeks. In follow-up works [9], [24], the
same authors propose an improved skeletal representation
by adding semantics information to the skeleton’s nodes and
being able to estimate leaf growth parameters. The main
differences with our work are two-fold: On one hand, they
use data collected in controlled lab environments where
each plant was spatially separated from the other plants
and manually scanned thoroughly. We, instead, use more
realistic data from commercial greenhouses. On the other
hand, the skeletal structure, a clever way to represent a
plant, cannot be easily extended to our fruit-matching task.
For computing data association over time, we rely on the
Hungarian method [21], which has been used for various
applications, including robot exploration [35].

Carlone et al. [7] propose an expectation-maximization
framework to register point clouds of a crop field at different
points in time. In this way, they can monitor plant growth
at a plot level. Dong et al. [10] solve a similar problem
using a factor graph. The main difference to our work is the
resolution of the spatial registration since we are interested
in monitoring individual fruits rather than plots consisting of
several plants.

III. OUR APPROACH

Our work aims to accurately match fruits over time to track
the development of individual fruits. More formally, given a
pair of aligned point clouds Pt and Pt+1, taken within the
same environment but collected at different times. Given a set
of fruits F t = {f t0, . . . , f tN} and F t+1 = {f t+1

0 , . . . , f t+1
M }

extracted from the data, we want to find a set of associations
A = {a0, . . . , aK} with ak = (f ti , f

t+1
j ). In our setting, each

fruit fi has three different features: a position pi ∈ R3 in
the global reference frame of the aligned point clouds, an
RGB color ci ∈ R3, and the fruit’s radius ri. Given the
association A, we can derive the changes in color ∆ci and
radius ∆ri.

Under natural operational conditions, identifying and as-
sociating fruits at different points in time is challenging as
the environment is non-rigid. Classic features such as color
and radius change substantially even over short periods, see
Fig. 2. Thus, the matching results using only such features
can be suboptimal. Additionally, between two data collection
campaigns, some fruits may be harvested, and new fruits
may develop, increasing the layer of complexity to our
problem. In the following, we express the point clouds in
the same reference frame. In our implementation, we achieve
the alignment of

{
Pt, Pt+1

}
using a RANSAC [14] scheme

combined with G-ICP [32]. In the following sections, we
describe our fruit extraction setup, present our relational
histogram descriptor using fruit neighborhoods, and the as-
sociation approach based on the Hungarian method to match
fruits over time.

A. Fruit Descriptor

Our main observation is that fruits belonging to the same
plant undergo similar transformations during plant movement

Fig. 3: A conceptual overview of the fruit descriptor generation.
Given a fruit fi, we determine the angle of neighboring fruits fj
relative to fi and determine if the relative z coordinate is above 0,
which determines in which part the neighboring fruit is counted,
i.e., green or purple.

or growth; thus, our objective is to generate a feature able to
cope with the morphological changes of the fruits over time.
We define a descriptor that encompasses the relationship
between each fruit’s neighbors.

To make the notation more concise, we omit below the
time index from the set of fruits. Let fi be the fruit for
which we want to compute our fruit descriptor di ∈ R2S

capturing the neighborhood of the fruit organized in an
angular discretization into sectors. The term

S =

[
2π

θ

]
(1)

is the number of sectors determined by the aperture of the
predefined angle θ. Let (xi, yi, zi)

> be the center of the ith

fruit fi.
For each fruit fj belonging to the set of neighbors of

fruit fi, we now determine the corresponding histogram bin
index bj as follows:

bj =

[
θ̂ij
2π

]
+ I
{
ẑij > 0

}
S, (2)

where I{·} is the indicator function that returns 1 if its
argument is true and 0 otherwise. Furthermore, θ̂j and ẑj
are the relative angles and relative z-coordinate of the jth

fruit with respect to fruit fi, respectively:

θij = arctan2(xj − xi, yj − yi) (3)

zij = zj − zi. (4)

Given the bin indexes bj of each neighboring fruit fj , we
now increment the corresponding histogram entry, see Fig. 3.
After adding the counts of all neighboring fruits, we nor-
malize the histogram di by the length of the corresponding
vector ‖di‖2, which equals the number of fruits belonging
to the neighborhood. In our experiment, we set its size to 27.

B. Fruit Matching

We use the Hungarian algorithm [21] to solve the fruit
matching problem, initially designed to assign a set of n jobs



to a set of n machines but later generalized to assignments of
sets with different cardinality [35]. The Hungarian method
computes the optimal, i.e., minimal-cost solution given a
fixed cost function in O(n3). More precisely, given a cost
matrix C, it computes the optimal solution of the following
minimization problem:

X = argmin
X
‖C ◦X‖F (5)

s.t.
n∑
i

Xi∗ = 1 and
m∑
j

X∗j ≤ 1, (6)

where ◦ refers to the Hadamard product, i.e., the element-
wise matrix multiplication, and ‖·‖F is the Frobenius norm
of a matrix. The term X is a selection matrix in which
Xi,j = 1 if the match (i, j) contributes to the solution;
otherwise, Xi,j = 0. Intuitively, the term ‖C ◦ X‖F in
Eq. (5) computes the sum of all individual assignment costs
that contribute to the solution specified through the selection
matrix X. Additionally, the first constraint in Eq. (6) ensures
that each node in the first scan is connected to only one
node in the second scan. The second constraint in Eq. (6)
guarantees that each keypoint in the second scan is connected
to at most one node in the first scan.

We start by creating a cost matrix Ca ∈ RN×M where
columns represent fruits belonging to F t and rows represent
fruits belonging to F t+1. With this setting, using the Hun-
garian algorithm, we obtain a number of associations equal
to the cardinality of the smaller set, |A| = min(|F t|, |F t+1|).
This is suboptimal given that fruits in F t may not be present
in F t+1 due to a harvesting or pruning/thinning action. Thus,
we define a second cost matrix Cu ∈ RN×N where each
element stores the same constant value u, representing the
cost of the fruit not being assigned. Our complete cost matrix
C ∈ RN×M+N is then defined as:

C =
[
Ca Cu

]
. (7)

This strategy allows the Hungarian method to compute
solutions with unassigned fruits in F and F t+1.

We propose to encode in Ca the absolute position, the
radius of each fruit, and the descriptors defined in the
previous section:

Ca = αP + βD + γ S, (8)

where:

Pi,j = ‖pt
i − pt+1

j ‖, (9)

Di,j = ‖dt
i − dt+1

j ‖, (10)

and

Si,j = ‖rti − rt+1
j ‖. (11)

The element Pi,j represents the Euclidean distance be-
tween the position of fruit fi ∈ F t and fj ∈ F t+1. Similarly,
the element Di,j represents the Euclidean distance between
the descriptors of fruit fi ∈ F t and fj ∈ F t+1, and the
element Si,j represents the absolute difference between the

Parameter α β γ u

Value 0.15 0.62 0.93 2.7

TABLE I: Parameters found by Optuna and used in Eq. (8) for our
approach. α weighs the position term, β the descriptor term, γ the
radius term, and u is the constant penalty cost for unassigned fruits.

Features Precision [%] Recall [%] F-score [%]

FPFH [30] 51.97 52.45 52.21
Spin Images [19] 58.90 58.89 58.89

Our 66.34 64.11 65.21

TABLE II: 4D fruit matching using TLS data. Our approach is, on
average, 6 % and 13 % better in all three metrics compared to Spin
Images and FPFH.

radius of fruit fi ∈ F t, and fj ∈ F t+1. Computing the
optimal assignment using the Hungarian method has a time
complexity of O(n3), where n is the number of fruits that
need to be matched. In our scenario, it typically takes around
150 ms to match fruits between two points in time. Thereby,
the Hungarian method considers the possible data association
between approximately 700 fruits.

IV. EXPERIMENTAL EVALUATION

The primary focus of this work is to build a pipeline able
to match individual fruits over time, allowing the tracking of
fruits’ traits. We show that our system can match fruits over
time and that our descriptor benefits the task, enabling us to
monitor fruit traits such as color and radius over time.

A. Dataset and Metrics

We collected our dataset using a high-precision laser
scanner in a commercial strawberry greenhouse near Bonn,
Germany. We collected the dataset in 3 different sessions,
where we scanned weekly the same environment, resulting
in roughly 50 million points and more than a thousand
individual fruits. We selected a specific row of strawberries
of 5 meters long as our restricted dataset space. We manually
labeled around 700 fruits per each time section, divided the
environment into two non-overlapping sets, and manually
labeled their fruit correspondences. We used the smaller set,
representing 20% of the scene, to find the best parameters
for our descriptor Eq. (8) using Optuna [2]. Then we used
the remaining part of the scene to run all the experiments. To
evaluate the matching performances, we compute precision,
recall, and f-score utilizing the definition of true positive,
false positive, and false negative.

B. 4D Matching Performances

To compare our proposed solution with classic 3D geo-
metric histogram descriptors [3], we specifically select Spin
Images [19] and Fast Point Feature Histogram (FPFH) [30]
as geometric descriptors due to their proven performance
for 3D object matching [19], [11], [28], 3D point classifica-
tion [3], and place recognition [30], [1]. As reference frame
for computing the histogram descriptors, we used the global
coordinate frame and a kD-tree [4] from Open3D for the
nearest neighbor search. For Spin Image, we used 20 bins,



Fig. 4: Four examples show the matching results between two different time sections of fruits that belong to the same area. The green
lines represent the correct matches between corresponding fruits, while the wrong ones are depicted in red. Each example is a partial
visual representation of the matching results from the entire experiment.

which resulted in a descriptor of length 400. For FPFH, we
use 33 bins. We report our approach’s parameters of Eq. (8)
in Tab. I. As shown in Tab. II, our proposed fruit matching
pipeline outperforms both baselines in terms of the three
metrics. In particular, our approach is, on average, 6 percent
points and 13 percent points better in all three metrics com-
pared to Spin Images and FPFH, respectively. This is because
our descriptor captures the distribution of neighboring fruits,
which helps in the presence of morphological changes in the
fruits. In Fig. 4, we can observe a qualitative evaluation of

the performances of our method in four different examples
extracted from the dataset space.

C. Ablation Study

We run an additional set of experiments to verify the
impact on the final results of each term in Eq. (8). We
report the results of this study in Tab. III. As expected,
we notice that the global positions alone are insufficient to
achieve good performance. This can be seen in the 45.7% of
recall, which is by far the lowest score in the experiments.
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Fig. 5: Growth tracking of individual strawberries. In the middle, we plot the evolution of phenotypic traits from nine matched fruits,
such as color (as a proxy for ripeness) and volume of individual fruits. On the sides, we show four different point clouds of the same
fruit over time out of the nine described in the plots, where the rectangles’ color matches the line color.

Interestingly, by adding the radius term, we see a significant
increase in the results. Notably, we are able to reach an F-
score above 60% only using our proposed descriptor. The
results highlight the importance of our descriptor in robustly
tracking fruits over time. We expected such behavior, given
that this term describes the relative position of each fruit in its
neighborhood. This supports our initial idea that neighboring
fruits have similar deformations. In fact, fruits close to each
other most likely belong to the same plant branch, which
is one of the most critical factors in terms of the temporal
displacement of the fruits. When using radius information
with our descriptor, we see a slight gain in performance,
showing our descriptor’s robustness.

D. Monitoring Traits of Individual Fruits

We showcase an example of fruits’ growth estimation to
support the claim that our approach allows monitoring fruit
traits such as color and radius over time. For each fruit, we
compute the color by averaging its points’ RGB values and
estimating its volume by approximating it with a sphere.
Given the computed associations between the three sessions
of our dataset, we can track the aforementioned traits over
time. In Fig. 5, we plot the evolution of each fruit’s green
component and volume. We show the green component of
the fruits’ color since unripe strawberries are green and turn
red when they are ready to be harvested. On the side, we
show the point clouds representing the same fruit scanned on
different weeks to appreciate the development of individual
fruits. The colors of the rectangles match the line colors in
the plot. Note that we plot only a tiny subset of the fruit’s
tracking for better visualization.

V. CONCLUSION

In this paper, we address the problem of finding cor-
responding fruits between point cloud data collected at
different points in time. We propose a 4D matching pipeline
that is robust to structural changes of the fruit, such as color,
radius, and fruit position. This enables accurate tracking
of fruit traits over time and monitoring the growth state.
We implemented and evaluated our approach on real-world

Features Precision [%] Recall [%] F-score [%]

positions 56.22 45.70 50.42
positions + radius 61.16 57.97 59.52

positions + descriptor 66.99 62.88 64.87
positions + descriptor + radius 66.34 64.11 65.21

TABLE III: Ablation Study. The results highlight the importance
of our descriptor in robustly tracking fruits over time.

greenhouse data collected over three weeks and provided
comparisons with traditional geometric descriptors. The ex-
periments show that our proposed solution has superior fruit
tracking performance and can robustly associate fruits over
multiple weeks.

In future work, we will investigate ways to remove the
terrestrial laser scanner from the pipeline, as TLS scanning
slows down data collection and often requires a specialized
operator. Instead, we consider automatizing the mapping
process by relying solely on sensors commonly mounted on
a robot. For instance, we could first use a SLAM system
to estimate the robot’s odometry and a course 3D map of
the environement, subsequently detect and track strawberries
throughout consecutive image frames, and finally compute
their global 3D position. This approach poses different chal-
lenges as commercial range sensors either have low accuracy
in outdoor environments (RGB-D cameras) or lack color
information (robotics LiDAR) which is a crucial cue in the
agricultural context. Moreover, each mentioned step might
produce a certain amount of error propagating throughout the
entire pipeline and compromising the final result. Nonethe-
less, despite the complexity of this solution, this allows col-
lecting significant amounts of data that farmers can analyze
and exploit in different scenarios, such as predicting the
necessary resources for harvesting, the prompt localization
of sick plants, or finding the best growth conditions.
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