Classifying Obstacles and Exploiting Knowledge about Classes
for Efficient Humanoid Navigation

Peter Regier Andres Milioto

Abstract—1In this paper, we propose a new approach to
humanoid navigation through cluttered environments that ex-
ploits knowledge about different obstacle classes and selects
appropriate robot actions. To classify objects from RGB images
and decide whether an obstacle can be overcome by the robot
with a corresponding action, e.g., by pushing or carrying it
aside or stepping over or onto it, we train a convolutional
neural network (CNN). Based on the associated action costs, we
compute a cost grid of the environment on which a 2D path can
be efficiently planned. This path encodes the necessary actions
that need to be carried out to reach the goal. We implemented
our framework in ROS and tested it in various scenarios with
a Nao robot. As the experiments demonstrate, using the CNN
the robot can robustly classify the observed obstacles into
the different classes and exploit this information to efficiently
compute solution paths. Qur system finds paths also through
regions where traditional planning methods are not able to
calculate a solution or require substantially more time.

I. INTRODUCTION

As humanoid robots are designed to work in human
environments, one of the tasks that need to be solved consists
of navigating through a cluttered environment where stepping
over or onto obstacles or moving an object out of the way
might be necessary. Finding suitable robot motions in these
cases imposes a high level of complexity and is difficult to
solve efficiently.

Common approaches to humanoid navigation in com-
plex environments involve whole-body motion planning and
multi-contact planning [1], [2]. These approaches usually
take several seconds up to minutes to compute a solution.
Other frameworks employ footstep planning [3], [4], [5].
However, if a blocking object needs to be moved aside to
reach the goal location, they do not yield a solution.

In this paper, we present a novel approach to humanoid
navigation that combines fast 2D path planning with 3D foot-
step planning and object manipulation actions in obstructed
regions of the path. We consider an indoor environment from
which the robot creates a 2D grid map with static obstacles in
the absence of clutter using a standard mapping approach [6].

During navigation, the robot adds information about ob-
jects of different classes perceived with its camera to the
map. We hereby use a convolutional neural network (CNN)
to classify the objects and to decide whether an obstacle
can be stepped over or stepped onto, or moved out of the
way by pushing or carrying it aside. For the classification
task, we use our recently developed real-time CNNs that are
capable of segmenting RGB images to detect given object
classes [7]. This framework provides reliable information

All authors are with the University of Bonn, Germany.

Philipp Karkowski

Cyrill Stachniss Maren Bennewitz

‘u' 3

%

b\a

2d path

TYPE:
toy blogks

TYPE:
stuffed toy

ACTION
pick up &
move aside

continue
2d path

Fig. 1. Application example, in which the path of the robot is blocked.
Based on classified non-static obstacles (in this case a stuffed toy and toy
blocks) and their associated actions and costs, our system computes a cost
grid on which a 2D path can be efficiently computed. The path also encodes
the actions that need to be executed by the robot during navigation to reach
the goal. As can be seen, the robot moves the stuffed toy aside to clear its
path and can then continue walking along the 2D path.

about specific object types (e.g., books, boxes, toys etc.) that
we map to appropriate action types, which allow the robot to
navigate across the corresponding area. Our approach adds
the associated stepping and manipulation costs to a 2D map
that is used for path planning. In this way, we greatly simplify
the full planning problem, as we split the whole plan into
several parts, while each part is solved individually. Fig. 1
illustrates a motivating example, where the robot can only
reach its goal by manipulating an object. According to the
resulting cost map after classifying the obstacles, our planner
chooses a path where the robot needs to move the stuffed
toy aside.

We implemented our framework in ROS and tested it in
various experiments with a Nao humanoid. As the experi-
mental results demonstrate, the robot can robustly classify
the observed obstacles into different classes and use this in-
formation to efficiently find solution paths through passages
where objects are in the way.

II. RELATED WORK

Stilman and Kuffner were the first who considered navi-
gation amongst movable objects where the robot can move
objects aside if necessary to reach the goal location [8].

The idea of their NAMO approach is to decompose the
environment representation into disjunct regions and search
for obstacle motions that connect two disjoint regions al-
lowing the robot to transition between them. Stilman et al.
employed the framework on a real humanoid to navigate
through an environment with movable chairs and tables [9]
where the world state was observed by an external motion
capture system. In contrast to this approach, we perform fast
grid-based planning on a map which can be easily obtained
by using standard mapping algorithms [6]. Furthermore, we
classify objects perceived by the robot and encode different
actions associated to the object classes in navigation costs.
We then combine the planning on a 2D cost grid with local
3D footstep planning and object manipulation.

Levihn et al. approached a variant of that problem in
which the robot can utilize objects to get to locations that are
otherwise out of reach for the robot [10]. The authors intro-
duced the concept of relaxed-constrained planning where the
planner is allowed to violate certain constraints. The violation
is then locally resolved by using suitable objects, e.g., to
overcome a high step height.

Hornung er al. addressed the task of collecting objects and
delivering them to designated places while clearing cluttered
obstacles out of the robot’s way [11]. The authors proposed
to apply a high-level planner with integrated perception,
world modeling, action planning, navigation, and mobile
manipulation. Our navigation framework is orthogonal to that
approach and could be integrated into such a higher level task
planning framework.

Grey et al. recently presented an approach that uses so-
called randomized possibility graphs to traverse environ-
ments with arbitrary obstacles, in which footstep as well
as whole-body motion planning is required [1]. The authors
distinguish between passages that are definitely passable by
the robot and ones that are definitely impossible to be passed
by using approximations of the constraint manifold. So far,
their approach has only been tested in simulation with no
perception involved. Lin and Berenson considered navigation
in uneven terrain using contact planning of palm and foot
locations and learned estimates about the traversability of
regions [2]. The idea of this approach is to use the learned
traversability estimates as a measure how quickly the planner
can generate feasible contact sequences. This measure is used
in the heuristic function of the contact space planner to guide
the search to areas with more contactable regions. While
these approaches also aim at speeding up the search for
viable solutions paths, the authors do not take into account
the possibility of actively modifying the environment.

The method proposed by Kaiser e al. extracts affordances
of geometric primitives to support the planning of whole-
body locomotion and manipulation actions [12]. Navigation
through cluttered passages has not been considered in their
scenario.

Although some of the above mentioned approaches pro-
vide a robust way to plan through environments containing
cluttered regions, they neglect the semantics of the objects.
Semantic information, however, is a key component of hu-

RGB-D sensor

RGB @

v

static
2D map,

object
mapping

depth image

classified
RGB image

semantic

path
planning

segmentation
segmented path with
point cloud eq. actions,
plan
execution
Fig. 2. Overview of our framework. The different components are

summarized in Sec. III.

man navigation. Current advances in computer vision using
deep CNNs to extract semantics of the environment [13],
[14], [15] have made it possible to infer the semantic
classes of objects in cluttered scenes with high accuracy.
Such approaches allow us to map each object class to a
different action type that we can use for planning in an
efficient way. Running our classifier in a fast manner is
necessary to avoid adding a large computational overhead to
our approach. Thus, we build on top of recent work focusing
on real-time CNNs [7], [16], [17], [18]. Since, training deep
CNN models is a data intensive task, we alleviate this by
generating a large-scale dataset of our interest clutter classes
with minimal effort in a semi-autonomous way by crawling
images from the Internet.

III. SYSTEM OVERVIEW

Before we describe our approach in detail, we present
an overview of the individual components, which are also
illustrated in Fig. 2. The first important component is the
semantic segmentation of the input RGB image. The se-
mantically segmented image is then provided to the object
mapping, which additionally uses 3D point cloud data from
the input depth image aligned with the RGB data, and a
2D grid representation of static obstacles in the environment.
This 2D static map is constructed using a standard mapping
system [6] in the absence of cluttered objects. The output
of our object mapping is a 2D cost grid, encoding static
obstacles as well as the detected and classified objects, on
which the path planning takes place. The execution of the
computed path, which comprises actions corresponding to
the detected objects, is done by the plan execution. The plan
execution additionally uses the segmented point cloud when
necessary, while invoking the required object actions.

During navigation, our system continuously updates the
representation of the environment with information about
newly sensed obstacles that might be blocking the way of
the robot and replans the robot’s path toward the goal if
necessary.

IV. SEMANTIC SEGMENTATION

Our approach aims at inferring possible robot actions from
the objects in the environment in real-time. This requires

,

1

Variable Receptive
Downsample modul P
ownsample MOAWe | | Field Non-bottlenecks

Fig. 3. Top: encoder-decoder semantic segmentation CNN based on the
non-bottleneck concept behind ERFNet [17] inferring an image from our
dataset. Bottom, left to right: original RGB image, prediction from CNN,
and alpha blend for visual qualitative performance assessment. Best viewed
in color.

a visual classifier that can recognize individual objects ac-
curately from a dictionary of possible classes, while still
running fast on a power- and payload-constrained machine,
such as a humanoid robot. The state of the art in object
detection and semantic segmentation using CNNs makes the
accuracy of such algorithms acceptable for this approach
to be feasible, but most CNN pipelines are computationally
intensive and require large amounts of training data. We rely
on a lightweight architecture to achieve a good runtime vs.
accuracy trade-off. To approach the amount of training data
needed, we use pre-trained models from Bonnet’s library [7],
which already provides useful features in the convolutional
layers and we create a large dataset by mixing images
recorded by ourselves and a huge amount of scavenged data
from the Internet for refining the pre-trained models.

We opt in favor of a semantic segmentation pipeline which
maps each pixel of the robot’s camera images into one of the
eight classes: “balls”, "books”, "boxes”, "cars”, “dolls”,
”stuffed toys”, “toy blocks”, and "background”, where each
class has at least one navigation action assigned to it. Note
that our approach is not limited to these classes and could
easily be extended.

A. Bonnet

Fig. 3 shows a diagram of the encoder-decoder CNN
architecture used in our approach. The chosen architecture
is based on ERFNet [17], which proposes to change each
computational bottleneck introduced in ResNet [14] and
ENet [16] with a “separable non-bottleneck” of a variable
receptive field. This module uses a set of separable filters
of sizes [1 x 3] and [3 x 1] and different dilation rates,
which makes each layer effectively wider without increas-
ing computational cost, allowing the network to be more
descriptive without affecting runtime. The choice of using
different dilation rates allows the network to have a bigger
equivalent receptive field in the image space, capturing long-
range dependencies, which is key for big objects. By using
a model with these properties, and adjusting the number
and width of the layers to fit our data, we can achieve a

PR
S 2899«
Qoo 09
Books Dolls Cars
- = e
Boxes Stuffed Toys Toy blocks

Fig. 4. Examples of pairs of classes with low inter-class distance,
challenging for the CNN, but important for our approach due to different
associated object interactions.

model that is descriptive enough to provide us with accurate
semantic labels while running in real time.

We start from a pre-trained encoder from a model which
was trained with the COCO dataset [19] and therefore
provides rich features even before the training. We attach
a small decoder that is trained from scratch using random
weights and fine-tune the model training end-to-end using
back-propagation and a pixel-wise cross-entropy loss with
a dataset of 5,000 images containing roughly 20,000 toys
instances with their respective masks, which we explain in
the following section.

B. Data Collection

As previously stated, training deep CNNSs requires a large
amount of labeled training data to obtain the accuracy
required to run other approaches on top of the obtained
semantics. This effect is particularly magnified when using
a semantic segmentation pipeline, because a holistic knowl-
edge of what each image contains is not enough, and labels
are required at a pixel level, increasing the effort required
to label each image considerably. Even though a using pre-
trained model helps to reduce the amount of required labeled
data, a particular case which makes the training more data-
hungry is having low inter-class distances, like in our case
(see Fig. 4). To circumvent this problem, we collected a
dataset with 1,000 objects focusing on the hard examples of
inter-class distance, i.e., focusing mostly on labeling objects
whose appearance is similar, but which have a different
semantic label. This is done to train CNN features that are
sensitive enough to allow the classifier to fit the classification
hyper plane effectively. To generate a dataset for semantic
segmentation, we need pixel-wise masks for each individual
object. Since such a labeling is expensive, we collected the
data with an RGB-D camera and segmented the objects in
the depth channel to obtain the ground-truth mask, before
feeding them to the CNN as a 3-channel RGB-only image.

In order to scale up the dataset and make it an order
of magnitude bigger, we wrote a script to automatically
download images from the Internet with properly formatted
queries returning images fulfilling the following conditions:
(i) the image contains only one of the desired classes in
the dictionary, and (ii) the image contains either an alpha
channel making the background transparent or has a blank

S5 N
Fig. 5. Examples of generated clutter images with added background. Left:
RGB image, right: ground truth. Best viewed in color.

TABLE I
EXAMPLE ASSOCIATION OF ACTIONS TO OBJECT CLASSES. THE
ACTIONS ARE CHOSEN BY AN EXPERT USER ACCORDING TO THE
ROBOTIC HARDWARE, IN THIS CASE A NAO ROBOT.

Object class Action type
balls push

toy blocks step over
boxes, books step onto
stuffed toys, dolls, cars | pick up

background. Under these restrictions, the script returned
roughly 25,000 images using Google. We further reduce it to
roughly 20,000 images after six hours of supervised cleaning
by a human. The supervision consists of navigating quickly
through the crawled images and identifying objects that
either do not belong to the specific class we are interested
in, or whose alpha channel does not fit the object boundary.
For our CNN to be usable in realistic environments, the
last step in this dataset generation method is to generate
5,000 clutter images from our raw data, containing one
of 300 different backgrounds and any number of random
objects from the database from 0 to 20 objects per image.
This can be considered as “synthetic” data, but it is a step
closer to the real world, because the images are of real-world
objects (Fig. 5).

V. PATH PLANNING UTILIZING OBSTACLE INFORMATION

In this section, we describe our method to exploit the
semantic information about segmented objects during path
planning.

A. Object Mapping

We use the semantic segmentation from Sec. IV and
combine it with the depth information of the RGB-D image
to get a segmented point cloud of the corresponding ob-
jects (see Fig. 6). Afterwards, we project the segmented point
cloud onto a 2D grid map representation of the environment
containing inflated static obstacles as illustrated in Fig. 7a.

a) right wall —>

VT AR

left wall

Fig. 6. Data processing for the RGBD data. a) The original RGB image
containing a doll and toy blocks between two walls. b) Semantic segmenta-
tion results using the Bonnet framework [7]. ¢) Segmented point cloud of the
corresponding objects, using the depth image to get the spatial information
of each marked pixel.

2) 5 ol ol
@ toy blocks 5’31

—
50cm

Fig. 7. a) Visualization of the projection of the objects onto a 2D grid.
Inflated static obstacles are represented as black cells and cells with detected
objects from the segmented point cloud (see Fig. 6¢) are color coded. Yellow
cells correspond to the doll, brown cells to the toy blocks. b) Resulting
2D cost map for planning with the costs of the object actions encoded in
the border cells of the objects. The border cells of the toy blocks (light gray),
which can be stepped over, have lower cost than the cells corresponding to
the doll (dark gray), which needs to be moved away. The overlapping border
cells of the inflated objects are the sum of their action costs.

Inflating all objects with the robot radius is a general concept
to prevent the robot from colliding with obstacles in case
of localization errors. We maintain an object database that
contains the information about objects in form of object ID,
object class, and the set of corresponding 2D grid cells. Note
that obstacles that cannot be classified by the CNN and, thus,
are considered as background are mapped as static and are
not stored in the database of objects that can be manipulated.

We assume that an expert user assigns for the individual
object classes possible actions defining how the robot can
overcome such obstacles during planning. The possible ac-
tions for the object types inherently depend on the specific
robot. As an example, Tab. I shows the actions associated
with the object classes for a Nao. The actual execution of
the actions is planned during plan execution (see Sec. V-C).

Our approach uses a 2D cost grid map for path planning
that encodes, in addition to the static obstacles, the costs
of the actions according to their estimated complexity and
corresponding estimated execution time in relation to just
walking straight (which differs for the deployed robot types).
In Fig. 7b, the cost value is represented by the gray level of
the object border cells. Hereby, the costs of the overlapping
border areas between the inflated segmented objects are the
sum of the corresponding action costs of the objects, which
means that in these regions several object actions will be
necessary.

B. Path Planning

Since the cost map contains the information about all
obstacles, i.e, static and not static, and encodes the potential

TABLE II
CLASSIFICATION METRICS ON VALIDATION SET FOR DIFFERENT INPUT IMAGE RESOLUTIONS.

Per-class AP

Resolution | mAP Ball Books Boxes Cars Dolls Stuffed toys Toy blocks mloU
320 x 240 | 0.792 | 0.908 0.747 0.733 0.768 0.801 0.828 0.759 0.585
640 x 480 | 0.875 | 0.946 0.878 0.876 0.847 0.874 0.874 0.831 0.715
TABLE III object classes (rather than the actual costs) for better visual-

RUNTIME FOR SEGMENTATION AT DIFFERENT IMAGE RESOLUTIONS.

Resolution Runtlme

GTX1080Ti Jetson TX2
320 x 240 | 10ms (I00FPS) 89 ms (11 FPS)
640 x 480 33 ms (30FPS) 245 ms (4 FPS)

object actions and their associated costs, we can efficiently
use A* search with the Euclidean distance heuristic function
to find a path for the robot on the cost grid. If the path leads
through any object area, the corresponding class and, thus,
the action can be derived from the object database. In the
example shown in Fig. 6 and Fig. 7, our approach computes
the green path with the action to step over the toy blocks.

C. Plan Execution

The execution of the computed 2D path then depends on
the necessary actions involved.

No objects: If the path does not contain any object crossings,
the robot’s walking controller follows the 2D grid path.

Push: If the path crosses an object that needs to be pushed
away, the robot follows the 2D path to the last free grid
cell before the crossing and starts the pushing action via
the plan execution. Thus, the robot senses the object
locally using the segmented point cloud, moves to a
target position relative to the object, and pushes the
object out of its way in forward direction.

Step over and step onto: If the path traverses an area with
objects that need to be stepped over or onto, the robot
applies footstep planning in the corresponding region
on a height map computed from the point cloud using
our previous work [20].

Pick up: If the path contains an object that needs to be
picked up and moved out of the way, the robot again
follows the 2D path to the last free cell before it crosses
the object and then identifies the object in the segmented
point cloud, finds the target position relative to the
object, grabs it, rotates 180° and puts the object onto
the ground.

After the object action has been executed, the robot updates
the cost grid and replans its path.

VI. EXPERIMENTAL EVALUATION

In this section, we present experiments to evaluate
the performance of the CNN-based classification frame-
work (Sec. VI-A), to demonstrate the performance of our
planner in a larger simulated environment (Sec. VI-B),
and to show the real-world applicability with Nao hu-
manoid (Sec. VI-C). Throughout this section, the illustrated
grid maps are similar to Fig. 7a, i.e., they show the inflated

ization. The resolution of the grid maps was set to 5cm for
all experiments.

A. Classification Results

As detailed in Sec. IV-B, we train a semantic segmentation
CNN with 5,000 images, generated from a database of
20,000 different object instances, and over 300 backgrounds.
The network is then evaluated on a test set containing
1,000 real-world images collected in our lab and pixel-wise
annotated. Semantic segmentation approaches which assign a
label to each pixel in an image are typically evaluated using
the mean Jaccard index, also called mean intersection over
union (mloU), defined as

1 & tp;
mloU = — - ="
C ;tpi+fpi+f”i

where C is the number of classes, and tp, fp, and fn are
the pixel-wise number of true positives, false positives, and
false negatives per-class, respectively. For approaches that in
the end work on objects, a commonly used measure is the
mean average precision (mAP):

1 <

C 411

i=1

mAP =

>

re{0,0.1,...,1}

pi(r),

where r corresponds to a value of recall in the precision-
recall curve for each class, and p;(r) is the value of precision
corresponding to recall r for class i. Predicted instances are
defined as a positive detection when they have more than
50% IoU overlap with the ground truth mask.

In our experiments, we found that the quality of the
classification depends mostly on the size of the input images,
and therefore report in Tab. II the results for two resolutions
of the used sensor (ASUS Xtion PRO). For a resolution of
320 x 240, we achieve a mAP over all classes of 0.79 and
for 640 x 480 the mAP increases to 0.88. These results are
encouraging since they show that starting from pre-trained
weights, a network can be trained solely on images crawled
from the Internet and few hours of human supervision to
clean the dataset from improper objects present in the query
results and wrong masks in the alpha channel. In future work,
we will explore using a mixture of computationally intensive
models to do the dataset cleaning automatically and train our
lightweight CNNs. The limitations of off-line batch training
in terms of labeled data collection and pre-definition of the
classes are hard to circumvent and currently an open research
area in computer vision.

As with the accuracy of the model, the runtime of the CNN
is also highly dependent on the input resolution. In Tab. III

@ balls
@ boxes
@ toy blocks

ACTION:
step over

Grid Map

“v<v p—
g’)
Local

Height Map A‘v‘

footstep plan
%‘ -
~ 3D footstep planning

Fig. 8. Path planning through a region with several obstacles of three
different classes. Our framework computes a path on a cost map that
contains information about the segmented objects, which are projected onto
the grid with an inflation radius (cf. grid map) and performs 3D footstep
planning where necessary (cf. local height map).

we show the runtime of the model in different hardware
and using different resolutions. The results show that the
approach is usable also in resource-constrained hardware,
such as the NVIDIA Jetson TX2, where we achieve a
framerate of 4Hz-11Hz depending on the image resolution.

B. Simulation Experiment

In order to demonstrate the combination of our newly de-
veloped navigation framework with a state-of-the-art footstep
planner [20], we performed an experiment in a simulated
environment with a dimension of 9m x 8m, see Fig. 8. Here,
we simulate a humanoid with a maximum step size of 30 cm
forward and 20 cm sideways.

Our combined approach found the solution shown in Fig. 8
on the grid map, taking into account the object actions
encoded in the cost map. The solution provided by our
system involved stepping over the toy blocks and it took only
1.35ms to compute the path using the 2D grid. For actually
stepping over the toy blocks, the footstep planner computed
the path in 2.83 ms. Combined, this greatly reduced the plan-
ning time to only 4.18 ms, compared to finding a full footstep
plan from start to goal, which took 491 ms. All experiments
in this section were performed on an Intel Core i7-4710MQ.
We did not include the time for the semantic segmentation
of the obstacles (Tab. III) since the classification runs in the
parallel thread of the perception system and, thus, does not
influence the planning time.

Note that in more complex scenes, more sophisticated
planners (e.g., whole-body, multi-contact planners) might be
necessary, which makes the planning more time consuming.
In such settings, our approach is even more advantageous as
it performs fast 2D grid-based planning on a cost map of the
classified obstacles to generate paths containing necessary
object manipulation actions, which are planned separately.
In this way, a humanoid using our path planning system can
instantly react to changes in the environment

@hballs
@boxes

robot pose

Fig. 9. Real-world experiment with a Nao robot (left) and segmented
objects with inflation radius projected onto the grid map (right). Left: a) The
robot detects the box and the ball in its way toward the goal and decides to
push the ball in order to clear the path since this is the cheapest path on the
corresponding cost map. b) After the robot has followed the path close to
the object, it performs the pushing action. ¢) The robot continues walking
along the path, which does not contain any further objects.

C. Real-World Experiments

We performed two real-world experiments with the Nao
robot equipped with a ASUS Xtion PRO to show the full
capability of our navigation framework. For 6D localization
we apply Monte Carlo localization as developed by Hor-
nung et al. [21] and extended by Maier et al. [22] for depth
camera data.

In the situation depicted in Fig. 9a, the robot detected
a box and a ball that obstructed the way. To reach the
goal location, the robot could either push the ball aside or
step onto the box before continuing walking. Based on the
computed cost map our planner found a path across the ball.
The robot followed the path to the vicinity of the ball and
then performed a push action (see Fig. 9b). After pushing
the ball aside, the path to the goal was free and the robot
continued walking (see Fig. 9c.)

The experiment in Fig. 10 shows a scenario with two
different routes to the goal. Since the balls were too large for
the Nao to step over them (Fig. 10a), the robot could either
push the balls out of the way or take a detour around the large
central obstacle. Our planner found a path that included the
detour, since pushing multiple balls out of the way would
have required more effort and, thus, had higher associated
costs. In Fig. 10b another obstructing object, in this case a
stuffed toy, was detected along the detour, where our planner
decided to perform a pick up action to clear the path.

These experiments demonstrate the advantages of our
planning system as opposed to a existing footstep or whole-
body-motion planners, as none of these approaches would
be capable of finding a solution to the goal.

VII. REMARKS

Instead of mapping only one action to each object class,
several actions may be used. The different possible action
types per class may be determined more accurately by using
detailed point cloud data. This would be advantageous, e.g.,
in the scenario in Fig. 10a, where stepping over the balls
might be a possibility if the balls were small enough.

balls @

stuffed toys @

50cm

ACTION:

Fig. 10. Real-world experiment with a Nao humanoid (left) and segmented
objects with inflation radius projected onto the grid map (right). a) The
robot perceives seven objects classified as balls in its way and decides to
take the detour around the L-shaped static obstacle since this appears to be
the cheapest solution according to the cost map. b) On its way to the goal,
the robot detects a further object (in this case a stuffed toy). Our framework
now decides to pick up the object to reach the goal location.

Note that the path planner generally provides only sug-
gestions regarding the action types. Should the execution
module not find a solution with any of the proposed actions,
e.g., due to object-environment configuration or classification
errors, the object would be marked as impassible such that
our planner would seek a different solution.

VIII. CONCLUSION

In this paper, we proposed a novel framework that exploits
the knowledge about obstacle classes during path planning.
We trained a convolutional neural network to distinguish
different object classes and use this information to construct
a cost grid during navigation. The cost grid represents the
static obstacles in the environment as well as the costs
of actions that need to be carried out by the robot to
cross regions containing observed obstacles, i.e., step over
or onto objects, push an object, or pick it up and put it
aside. During navigation, the robot then uses the cost grid
to efficiently (re)plan its path to the goal location, which
implicitly contains all necessary actions.

As we showed in various experiments, the trained neural
network is able to robustly distinguish between the different
obstacle classes. Furthermore, we demonstrated that a Nao
robot can exploit the knowledge about classified obstacles
during navigation and efficiently find appropriate actions
to deal with the objects. Finally, we illustrated that more
complex planning frameworks can be integrated with our
system to efficiently find paths through challenging regions.

REFERENCES

[1] M. Grey, A. Ames, and C. Liu, “Footstep and motion planning in
semi-unstructured environments using randomized possibility graphs,”
in Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA),
2017.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[91

[10]

[11]

[12]

[13]

(14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

Y. Lin and D. Berenson, “Humanoid navigation in uneven terrain using
learned estimates of traversability,” in Proc. of the IEEE Intl. Conf. on
Humanoid Robots, 2017.

R. Deits and R. Tedrake, “Footstep planning on uneven terrain with
mixed-integer convex optimization,” in Proc. of the IEEE Intl. Conf. on
Humanoid Robots, 2014.

M. Fallon, P. Marion, R. Deits, T. Whelan, M. Antone, J. McDonald,
and R. Tedrake, “Continuous humanoid locomotion over uneven
terrain using stereo fusion,” in Proc. of the IEEE Intl. Conf. on
Humanoid Robots, 2015.

A. Hildebrandt, M. Klischat, D. Wahrmann, R. Wittmann, F. Sygulla,
P. Seiwald, D. Rixen, and T. Buschmann, “Real-time path planning
in unknown environments for bipedal robots,” IEEE Robotics and
Automation Letters, vol. 2, no. 4, Oct 2017.

G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for
grid mapping with rao-blackwellized particle filters,” IEEE transac-
tions on Robotics, vol. 23, no. 1, pp. 34-46, 2007.

A. Milioto and C. Stachniss, “Bonnet: An open-source training and
deployment framework for semantic segmentation in robotics using
cnns,” Workshop on Perception, Inference, and Learning for Joint
Semantic, Geometric, and Physical Understanding, IEEE Int. Conf.
on Robotics & Automation (ICRA), May 2018.

M. Stilman and J. Kuffner, “Navigation among movable obsta-
cles: Real-time reasoning in complex environments,” Intl. Journal of
Robotics Research (IJRR), vol. 2, no. 4, 2005.

M. Stilman, K. Nishiwaki, S. Kagami, and J. Kuffner, “Planning
and executing navigation among movable obstacles,” in Proc. of the
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2006.
M. Levihn, K. Nishiwaki, S. Kagami, and M. Stilman, “Autonomous
environment manipulation to assist humanoid locomotion,” in Proc. of
the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2014.

A. Hornung, S. Boettcher, C. Dornhege, A. Hertle, J. Schlagenhauf,
and M. Bennewitz, “Mobile manipulation in cluttered environments
with humanoids: Integrated perception, task planning, and action
execution,” in Proc. of the IEEE Intl. Conf. on Humanoid Robots,
2014.

P. Kaiser, D. Gonzalez-Aguirre, F. Schueltje, J. Borras,
N. Vahrenkamp, and T. Asfour, “Extracting whole-body affordances
from multimodal exploration,” in Proc. of the IEEE Intl. Conf. on
Humanoid Robots, 2014.

L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. Yuille,
“Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs,” arXiv preprint, vol.
abs/1606.00915, 2016.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” in Proc. of the IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), 2016.

H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing
network,” arXiv preprint, vol. abs/1612.01105, 2016.

A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, “ENet: Deep
neural network architecture for real-time semantic segmentation,”
arXiv preprint, vol. 1606.02147, 2016.

E. Romera, J. Alvarez, L. Bergasa, and R. Arroyo, “ERFNet: Efficient
residual factorized convnet for real-time semantic segmentation,” IEEE
Trans. on Intelligent Transportation Systems (ITS), vol. 19, no. 1, pp.
263-272, 2018.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. Chen,
“Inverted Residuals and Linear Bottlenecks: Mobile Networks for
Classification, Detection and Segmentation,” arXiv preprint, 2018.

T. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays,
P. Perona, D. Ramanan, P. Dollar, and C. Zitnick, “Microsoft COCO:
Common objects in context,” CoRR, vol. abs/1405.0312, 2014.

P. Karkowski, S. Ofwald, and M. Bennewitz, “Real-time footstep
planning in 3d environments,” in Proc. of the IEEE Intl. Conf. on
Humanoid Robots, 2016.

A. Hornung, K. M. Wurm, and M. Bennewitz, “Humanoid robot lo-
calization in complex indoor environments.” in Proc. of the IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), 2010.

D. Maier, A. Hornung, and M. Bennewitz, “Real-time navigation in
3d environments based on depth camera data,” in Proc. of the IEEE
Intl. Conf. on Humanoid Robots, 2012.

