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A B S T R A C T

Adaptive informative path planning (AIPP) is important to many robotics applications, enabling mobile robots
to efficiently collect useful data about initially unknown environments. In addition, learning-based methods are
increasingly used in robotics to enhance adaptability, versatility, and robustness across diverse and complex
tasks. Our survey explores research on applying robotic learning to AIPP, bridging the gap between these two
research fields. We begin by providing a unified mathematical problem definition for general AIPP problems.
Next, we establish two complementary taxonomies of current work from the perspectives of (i) learning
algorithms and (ii) robotic applications. We explore synergies, recent trends, and highlight the benefits of
learning-based methods in AIPP frameworks. Finally, we discuss key challenges and promising future directions
to enable more generally applicable and robust robotic data-gathering systems through learning. We provide a
comprehensive catalog of papers reviewed in our survey, including publicly available repositories, to facilitate
future studies in the field.
1. Introduction

The field of robotics has witnessed remarkable advancements in
recent years, fueled by the growing need for automation and the
increasing complexity of tasks required in various application domains.
One of the key challenges in robotics is AIPP, which involves planning a
trajectory for an autonomous robot to follow that maximizes the infor-
mation acquired about an unknown environment while simultaneously
respecting its resource constraints. This problem is of critical impor-
tance in applications such as environmental monitoring, exploration,
search and rescue, and inspection across ground, aerial, and aquatic
domains [1–7].

Despite its importance, AIPP is a challenging problem due to the
inherent complexity of modeling and predicting new information in the
environment, as well as the need to balance the exploration of unknown
areas with the exploitation of newly acquired data [8]. Additionally,
noisy sensor measurements introduce uncertainties into the data ac-
quisition process, while actuation uncertainty can lead to deviations
from planned trajectories. Moreover, real-world environments are often
highly dynamic, which further complicates the modeling process and
makes prediction challenging. Decisions must be made in a sequential
manner to allow for continual refinement as more information becomes
available during a mission.
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(M.J. Kochenderfer).

Conventional approaches such as static pre-computed paths tend to
fail on AIPP problems because they often rely on strong assumptions
about the environment and cannot adapt to uncertainties or changes
online [9]. Additionally, these approaches scale poorly to large, com-
plex environments, and may not effectively account for the constraints
and capabilities of the robot itself. These conventional solutions applied
to the AIPP problem have been limited by computational complexity,
lack of adaptability, and an inability to generalize across diverse envi-
ronments and problems [10]. The growing popularity of learning-based
methods has led to a renewed focus on applying these new techniques
to AIPP, offering the promise of more flexible, adaptive, and scalable
solutions.

In this survey paper, we present a new perspective on AIPP by
exploring the potential of emerging robot learning techniques in ad-
dressing the challenges of AIPP. Different learning-based methods allow
for constructing path planning algorithms that can naturally account
for the inherent uncertainties and dynamic changes within a given
environment. This adaptability facilitates more robust and efficient
operations in complex environments because the robot can optimize
its path based on its evolving understanding of its surroundings. This
not only improves task performance, but also enhances resilience and
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Fig. 1. Overview of our survey paper. We review related work in learning-based methods for adaptive informative path planning (AIPP) from the perspectives of learning-based
approaches (left) and practical applications (right).
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versatility since the robot can react more effectively to new information
about its environment.

Fig. 1 shows an overview of the main topics addressed in our
survey paper. Our review includes different aspects of learning: super-
vised learning, reinforcement learning, imitation learning, and active
learning. We focus on how these techniques can be used for AIPP
in robotics. Furthermore, we discuss relevant application domains,
such as environmental monitoring, exploration and search, semantic
scene understanding, and active simultaneous localization and mapping
(SLAM).

While there have been previous surveys addressing aspects of AIPP
[11–16], our work distinguishes itself by specifically focusing on the
intersection of learning-based methods and AIPP. Previous literature
reviews have focused on specific subfields of robotic learning. For in-
stance, Taylor et al. [15] focus on active learning in robotics, highlight-
ing methods suitable for the demands of embodied learning systems.
Similarly, Argall et al. [17] address imitation learning, where robots
develop policies from example state-to-action mappings, while Garaffa
et al. [18] investigate reinforcement learning techniques that devise
unknown environment exploration strategies for single and multi-
robot exploration. Lauri et al. [19] exclusively examine the applica-
tion of Partially Observable Markov Decision Processes (POMDPs) in
robotics, and Mukherjee et al. [20] analyze robotic learning strategies
for human–robot collaboration in industrial settings. Other surveys,
such as those by Sung et al. [14], Aniceto and Vivaldini [16], and Bai
et al. [11] explore different applications of AIPP, such as environmen-
tal monitoring tasks or general path planning techniques [9–12,21].
However, these works do not underscore the applicability of learning
in adaptive scenarios.

The main objectives of this survey paper are to:

1. provide a comprehensive understanding and taxonomy of the
current state-of-the-art in learning-based methods for AIPP as
well as their applications;

2. introduce a standardized mathematical problem definition for
AIPP tasks, which provides a unified foundation for understand-
ing and comparing various learning-based methods and applica-
tion domains;

3. identify potential avenues for future research by highlighting the
limitations of current approaches.

We have cataloged the papers in our survey at https://dmar-bonn.
ithub.io/aipp-survey/. In particular, we highlight papers that have
pen-source implementations available.

. Mathematical formulation

First, we develop an underlying mathematical formulation to en-
ompass the works included in our survey. We study the general prob-
2

em of adaptive informative path planning (AIPP). The goal is to find an
optimal action sequence 𝜓∗ = (𝑎1,… , 𝑎𝑁 ) of 𝑁 robot actions 𝑎𝑖 ∈ , 𝑖 ∈
1,… , 𝑁}, where actions may be, e.g., acceleration commands, next
obot poses, using a specific sensor, or returning to a charging station.
he action sequence 𝜓∗ maximizes an information-theoretic criterion
𝐼(⋅):

∗ = argmax
𝜓∈𝛹

𝐼(𝜓), s.t. 𝐶(𝜓) ≤ 𝐵 , (1)

where 𝛹 represents the set of all possible action sequences, the cost
function 𝐶 ∶ 𝛹 → R maps an action sequence to its associated execution
cost, 𝐵 ∈ R is the robot’s budget limit, e.g., time or energy, and
𝐼 ∶ 𝛹 → R is the information criterion, computed from the new sensor
measurements obtained by executing the actions 𝜓 .

Our problem setup considers a robot gathering sensor measurements
n an initially or partially unknown environment. In this environment
⊂ R𝐷, AIPP requires online replanning during a mission to adaptively

ocus on areas of interest as they are discovered. Each point 𝐱 ∈ 𝜉,
e.g., a 𝐷-dimensional pose within the environment, is characterized
by its distinctive features, represented as 𝐹 (𝐱, 𝑡) ∈  . Here,  is a
eature space, which could include characteristics like the semantic
lass, temperature, or radiation level, and may vary over time. These
eatures may fluctuate during the mission, as defined by the feature
apping function 𝐹 ∶ 𝜉 × R →  . The notation used to describe our

AIPP formulation is summarized in Table 1.
Areas of interest within the environment the robot operates in are

characterized by their features, which indicate interesting phenomena
as defined by the mission objectives. Examples of mission objectives
include identifying victims in a post-disaster scenario or locating re-
gions of high radiation levels in a nuclear facility monitoring task. This
concept of adaptivity in an optimal action sequence 𝜓∗ is reflected in
the specific definition of the information-theoretic criterion 𝐼 during
he optimization problem presented in Eq. (1).

Importantly, the point features 𝐹 (𝐱, 𝑡), such as temperature, may
hange over time. Given that the initial environment is unknown, the
obot’s understanding of 𝐹 (𝐱, 𝑡) may need to be updated during the mis-
ion. This could result in updating beliefs regarding interesting regions
ver time as new sensor measurements are received. Thus, to ensure
hat the robot’s behavior is adaptively informed, we may re-solve
he constrained optimization problem in Eq. (1) in a computationally
fficient manner during a mission.

. Background

The generic structure of a system for AIPP is shown in Fig. 2. In
n active sensing context, the framework processes raw data from a
obot sensor to obtain measurements used to build a map of the robot’s
nvironment. During a mission, the AIPP planning algorithm uses the
nvironment maps built online to optimize future action sequences

https://dmar-bonn.github.io/aipp-survey/
https://dmar-bonn.github.io/aipp-survey/
https://dmar-bonn.github.io/aipp-survey/
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Table 1
Notation associated with the adaptive informative path planning (AIPP) problem.

Symbol Meaning Examples

𝑎𝑖 ∈ A robot action next robot position or pose, sensing behavior
𝜓 ∈ 𝛹 sequence of consecutive actions –
𝐱 ∈ 𝜉 areas/locations in an environment surfaces, patches of terrain
𝐼 ∶ 𝛹 → R information-theoretic criterion map entropy, mutual information
𝐹 ∶ 𝜉 × R →  feature mapping function semantic class, spatial occupancy, temperature, radiation level
Fig. 2. System diagram showing the key elements of a general AIPP framework. During a mission, a map 𝐹 of the robot’s environment 𝜉 is built using measurements 𝑧 extracted
from a sensor data stream. An AIPP algorithm leverages the map data to find the next action sequences 𝜓 for the robot to maximize the information value 𝐼(𝜓), i.e. utility, of
future measurements. The next action sequence 𝜓 is executed by the robot, allowing for subsequent map updates in a closed-loop manner.
for maximum gain in an information metric as defined by the utility
function. This section describes methods for environment mapping,
evaluation metrics, and standard benchmarks commonly used in AIPP
frameworks.

3.1. Mapping

The AIPP problem assumes the environment 𝜉 to be a priori (par-
tially) unknown. Thus, the true feature mapping 𝐹 ∶ 𝜉 × R →  and
associated true regions of interest are a priori (partially) unknown as
well. This makes the original AIPP problem stated in Eq. (1) not only
computationally challenging but also impossible to solve directly as
exact knowledge about interesting regions requires ground truth access
to the feature mapping 𝐹 . Instead of solving Eq. (1) directly, we model
a stochastic process 𝐹 over all possible feature mapping functions.
At each mission time step 𝑡, the robot’s belief about the true feature
mapping 𝐹 , i.e., the probability measure associated with 𝐹 conditioned
on the action-observation history, is updated by:

𝑝(𝐹 ∣ 𝑧1,… , 𝑧𝑡, 𝑎1,… , 𝑎𝑡) , (2)

where {𝑧1,… , 𝑧𝑡} and {𝑎1,… , 𝑎𝑡} are all previously collected measure-
ments and executed actions, respectively. The belief about 𝐹 is used to
approximate the true information criterion 𝐼 in Eq. (1).

The robot’s belief about 𝐹 in Eq. (2) may be updated online during
a mission as new sensor data 𝑧𝑡 arrives at time step 𝑡 after executing
a sensing action 𝑎𝑡. Note that the information criterion 𝐼(⋅) reflects
the planning objective and is computed based on the map state. In
general, the computation of certain information criteria, e.g. entropy,
may change for different map representations, e.g. occupancy maps and
Gaussian processes, but the key underlying theoretical concepts remain
the same.

The measurements 𝑧𝑡 obtained at time step 𝑡 may be uncertain or
noisy. They are assumed to be sampled from 𝑝(𝑧 ∣ 𝐹 ) representing a
probabilistic sensor model. Furthermore, there may be uncertainty in
localization and actuation, leading to imperfect estimation of the robot
pose as measurements are taken. In Sections 4 and 5, we discuss in
detail how these different sources of uncertainty can be accounted for
in the context of learning-based methods.
3

To compute the belief 𝐹 following Eq. (2) based on the collection of
stochastic measurements {𝑧1,… , 𝑧𝑡}, various methods for environment
mapping are commonly used. Table 2 provides an overview of com-
monly used mapping methods and corresponding metrics derived from
them used to evaluate the performance of AIPP methods. We consider
four broad categories in our taxonomy: occupancy grid mapping [22],
Gaussian processes [23], graph-based methods, and implicit neural
representations [24]. In general, the chosen mapping method for a
given AIPP scenario depends on the environment, task, and available
computing resources. For instance, Gaussian processes are applicable
for problems where the to-be-mapped features 𝐹 (𝐱, 𝑡) support continu-
ous feature spaces  and the map supports continuous environment
representations 𝜉, whereas occupancy grid mapping is suitable for
discrete mapping tasks. In contrast, graph-based methods are typically
used for active SLAM problems [25] where both environment map-
ping and robot localization are concurrent. Recently, implicit neural
representations, such as NeRFs [24] and pixelNeRFs [26], are gaining
popularity for AIPP without relying on an explicit environment map.
Due to their lightweight nature, these methods enable conserving com-
putational and memory resources during planning in 3D reconstruction
tasks where a high level of detail is required.

3.2. Evaluation metrics

The goal of AIPP is to adaptively acquire information about initially
unknown environment features 𝐹 by collecting uncertain or noisy
measurements 𝑧𝑡 during a mission, usually captured as a posterior map
belief 𝐹 in Eq. (2). Because the robot mission goals are task- and
application-dependent, e.g., searching for targets [62,70,74] or regions
of high surface temperature [5,27,76], there is a lack of standard eval-
uation metrics used to quantify the performance of AIPP algorithms.
Most works choose evaluation metrics closely related to their specified
information criterion 𝐼 in Eq. (1) because they reflect or approximate
the mission goal. Table 2 lists commonly used evaluation metrics.
Although these metrics vary significantly in the AIPP community, most
works consider quantitative measures based on the map representation
to compute the belief 𝐹 , as reflected by our taxonomy.

Applications aiming to collect information about discrete features
𝐹 , such as spatial occupancy [28,29] or land cover classification [1,3,
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Table 2
Mapping methods and evaluation metrics used in AIPP.

Evaluation metrics References

O
cc

up
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cy
gr

id

Entropy [3,27–31]
Mutual information [32,33]
Root mean squared error [3]
Mean absolute error [34,35]
Mean intersection-over-union [36,37]
F1-score [27]
Accuracy [36–38]
Precision/recall [38]
Coverage [30,34,36–55]
Observed surfaces [56–58]
Landmark error [7]

Ga
us

sia
n

pr
oc

es
s

Entropy [59]
Expected improvement [59,60]
Probability of improvement [59]
Covariance matrix trace [2,3,5,61–64]
Mutual information [65,66]
Root mean squared error [1–3,5,6,61,64,67–69]
Mean log likelihood [3]
Distribution divergence [70]
Mean uncertainty [68,70]
Upper confidence bound [71]

Gr
ap

h-
ba

se
d

Landmark uncertainty [29,34]
Landmark error [29]
Localization uncertainty [29,61]
Localization error [61,72]
Target uncertainty [8,73,74]
Detection rate [75]
Path costs [76]

N
eu

ra
l

re
pr

es
en

ta
tio

n

Peak signal-to-noise ratio [77–82]
Structural similarity index measure [77–80,82]
Learned perceptual image patch similarity [78–80]
Accuracy [79,80,83]
Completion [79,80,83]
Completion ratio [79,83]
F1-score [80,84]
Chamfer distance [80]
Precision [84]
Recall [84]
Surface coverage [83,84]

67], commonly use the entropy of the belief 𝐹 as a measure for the
remaining uncertainty of the environment features [3,27–31]. Lower
entropy of 𝐹 indicates better AIPP performance. Following popular
computer vision benchmarks [85,86], some works evaluate the clas-
sification quality of 𝐹 by computing the mean Intersection-over-Union
mIoU) [36,37], accuracy [36–38], or F1-score [27] of the maximum a
osteriori estimate of the map belief 𝐹 given the ground truth features
𝐹 .

Methods gathering information about continuous features 𝐹 in an
environment, e.g., bacteria level in a lake [65] or magnetic field
strength [6], often use Gaussian process models [2,6,62,65] or some
variant of Bayesian filtering [3–5,7] as the map representations. Al-
though Gaussian processes allow for computing the differential entropy
of 𝐹 in closed-form [87], it is common to use the covariance matrix
trace to approximate the remaining uncertainty about the environment
features and hence the information criterion 𝐼 due to its computational
efficiency. Despite relaxed computational requirements, most works
evaluate AIPP performance based on the covariance matrix trace during
offline evaluation as well [2,3,5,61–64]. To evaluate the reconstruc-
tion quality of 𝐹 , the root mean squared error (RMSE) between the
maximum a posteriori estimate of 𝐹 and the ground truth 𝐹 is usually
reported [1–3,5,6,61,64,67–69].

Evaluation methods for implicit neural representations differ in that
they only rely on a trained neural network to represent the entire
environment. The metrics can be grouped based on two aspects: the
quality of the rendered images and the quality of the geometry of the
4

reconstructed surface. Image quality metrics, e.g., peak signal-to-noise
ratio (PSNR), structural similarity index measure (SSIM), and learned
perceptual image patch similarity (LPIPS), are computed based on a set
of evenly distributed test images in the environment [77–82]. To eval-
uate the reconstruction quality, the learned geometric representation is
usually first post-processed, e.g., by using the marching cubes algorithm
to extract a mesh. Then, a set of points is sampled on the mesh to
compute various metrics, e.g., mesh accuracy or completion [79,80,84].

Some methods do not assume the robot to have perfect ground
truth localization information during missions but additionally account
for localization uncertainty while building the map belief 𝐹 . These
works propagate localization uncertainty into the map belief update
in Eq. (2) using graph-based SLAM systems [29,34,61,74] and Gaus-
sian process variants supporting input uncertainty [61]. In addition to
assessing the quality of the map, the quality of robot localization is also
evaluated to determine whether the AIPP method can gather not only
informative measurements to improve the environment map, but also
measurements that improve localization to guarantee the construction
of an accurate map. Some works compute the trajectory errors between
the estimated and ground truth executed trajectory [34]. Other works
track the localization uncertainty of the robot pose belief [29,61],
the localization error between the estimated and ground truth robot
pose [61,72], or the landmark errors between estimated and ground
truth landmark poses [29].

An alternative problem formulation considers using AIPP to actively
improve the sensor model reasoning about measurements 𝑧𝑡. In Eq. (1),
this is done by linking the information criterion 𝐼 to the value of
new training data acquired during a mission. Such formulations gen-
erally do not aim to improve the belief of the map 𝐹 representing
a physically quantifiable environmental phenomenon. Instead, works
in this category target improving a neural network for semantic seg-
mentation using RGB images [88–91] or object detection [92]. AIPP
performance is evaluated using a held-out test set to quantify the neu-
ral network prediction performance [85,86]. Commonly used metrics
include mIoU [88–90], F1-score [90,91], or average precision [92],
depending on the prediction task.

Due to the sequential nature of the AIPP problem, most works
consider a well-performing AIPP approach not only to show strong
evaluation metrics after a mission is over but also to ensure fast
improvement during a mission as the remaining mission budget 𝐵
decreases. Trends in performance over mission time allow us to judge
the efficiency of budget allocation, which is critical in AIPP as reflected
by the constraints in Eq. (1). Common evaluation strategies include
analyzing how the performance-based evaluation metrics evolve with
the remaining mission budget, e.g., trajectory steps [2,4,6,27,62] or
energy-based budgets [3,5,7,68].

3.3. Benchmarks

Despite research efforts towards more generally applicable learning-
based AIPP, most current methods are evaluated in application-
dependent simulators and compared to task-dependent baseline algo-
rithms. This results in a lack of standardized benchmark scenarios
within the AIPP community. Benchmark scenarios are typically defined
by two factors: (i) the choice of simulation environments and (ii)
the choice of AIPP baseline algorithms against which the proposed
methods are compared. Simulators fulfill a role analogous to datasets
in the computer vision community as they define the problem setup
in terms of the mission objective, evaluation environment, and robot
configuration. AIPP baseline algorithms can be seen as paralleling
widely established computer vision models, which are typically used

to benchmark new models according to evaluation metrics.
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3.3.1. Simulations
Simulators for AIPP evaluation make various interdependent de-

sign choices leading to highly specific simulation environments. First,
AIPP methods are typically evaluated on a single fixed task, e.g., the
RockSample task [7,62], monitoring missions [2,3,5,27,68,69], or re-
construction [12,43,48,57,79,80,83,93]. Second, simulators differ in
the robot configuration defined by the robot type, e.g., autonomous un-
derwater vehicle (AUV) [73], unmanned aerial vehicle (UAV) [3], un-
manned ground vehicle (UGV) [66], or a robot arm [43], as well as the
sensors, e.g., depth sensors [40,41,46,56], thermal camera [5], point-
based sensors [2,63,65,71], or abstractions of sensor models interpret-
ing raw sensor data [3,4,59,92,94]. Third, works vary in their assump-
tions about the structure of environments, e.g., 2D terrains [2,3,5,7,62,
65] or 3D volumes [1,41,43], and robot workspaces, e.g., obstacle-free
2D [2,95], obstacle-free 3D [1,3,5,27,59], or obstacle-aware 3D [41,
43,56] workspaces. Last, simulators vary according to the datasets
they use, e.g., synthetic environments or randomly generated distribu-
tions [2,3,5,27,28,39,65,96], more realistic simulators [43,45,90,97],
or real-world remote sensing datasets [1,3,27,49,65,68,90]. Sections 4
and 5 provide a comprehensive overview of these aspects for each
paper studied in our survey. In general, diverse non-unified simulator
choices result in task- and application-dependent evaluation protocols.
As a result, it is difficult to compare the performance of different
AIPP algorithms in a generalizable and fair fashion under consistent
conditions.

3.3.2. Common and classical baselines
Despite the lack of standardized AIPP algorithms used for bench-

marking new methods, some simple baseline algorithms have been
established and used across different tasks and applications. These
algorithms aim to foster exploration of the environment and use in-
tuitive hand-crafted heuristics to optimize the evaluation metrics. We
categorize approaches for exploration into two groups:

1. Geometric approaches, which pre-compute paths to maximize
coverage of the initially unknown environment for uniform data
collection. Examples include lawnmower-like grid patterns [9,
27,88] or spiral- or circle-like patterns [3,43,97].

2. Random walk-like methods, which sample paths at random of-
ten combined with heuristics to efficiently manage the mission
budget [30,46,55,89,98].

In addition to these simple non-adaptive benchmarks, many works
onsider variants of well-established planning algorithms in the AIPP
ontext. Classical planners used for evaluation include branch-and-
ound techniques [99] and sampling-based methods, e.g., Monte Carlo
ree Search (MCTS) [7], rapidly exploring information gathering (RIG)
rees [68], or rapidly exploring random trees (RRTs) [100]. Other
enchmarks include geometric strategies, e.g., greedy frontier-based
xploration [101], or optimization-based routines, e.g., Bayesian op-
imization [102] or the covariance matrix adaptation evolution strat-
gy (CMA-ES) [103]. To enable adaptive replanning during a mission
s new sensor measurements arrive, these algorithms are commonly
mplemented in a fixed- or receding-horizon fashion.

. Learning approaches

This section surveys the AIPP literature from a learning-based per-
pective. We provide a taxonomy classifying relevant works based on
he underlying learning algorithm they use, discuss pertinent aspects
n each category, and integrate them in our mathematical problem
efinition for AIPP.
5

4.1. Supervised learning

Traditionally, the components of the general AIPP framework in
Fig. 2 are realized using hand-crafted models or heuristics, e.g., forward
sensor models [3,5,100,104] or hand-crafted information criteria [68,
75,99,105]. This makes it difficult to incorporate prior knowledge and
the expected distributions of geometry and information in complex
scenarios, as well as to achieve adaptability in new environments.
To address these drawbacks, various methods have been proposed to
learn different elements of mapping and planning through supervised
training from labeled data.

Given a dataset of 𝑁 training examples of the form {(𝑥1, 𝑦1),… ,
𝑥𝑁 , 𝑦𝑁 )}, a supervised learning algorithm seeks to learn a ground truth
unction 𝑔 ∶ 𝑋 → 𝑌 , where 𝑋 and 𝑌 are the input and output spaces,
espectively, and (𝑥𝑖, 𝑦𝑖) ∈ 𝑋 × 𝑌 are dataset pairs. Table 3 provides a
axonomy of supervised learning applications in AIPP. These methods
ind diverse usage in both mapping and planning.

Supervised learning has been used for modeling environmental vari-
bles through Gaussian processes [1–3,5,6,59,60,63–71]. As described
n Section 3.1, Gaussian processes are often used in Eq. (2) due to
heir probabilistic and non-parametric nature, making them suitable for
ncertainty-based information gathering with spatially complex under-
ying feature mappings 𝐹 . In this context, supervised learning is used
o compute the ground truth function 𝑔 = 𝐹 from a training dataset
𝑥𝑖, 𝑧𝑖) ∈ 𝜉 ×  , with 𝑋 = 𝜉 and 𝑌 =  , obtained by taking stochastic
easurements 𝑧𝑖 in the environment. Note that we use 𝑥𝑖 to denote

eneral training inputs and 𝐱𝑖 to denote the robot pose. In Gaussian
rocess mapping, each 𝑥𝑖 corresponds to the pose 𝐱𝑖 ∈ 𝜉 introduced
n Section 2. Example applications include mapping distributions of
emperature [5,27,61], light [2,4], water properties [64,65], and veg-
tation [3,67]. The learning process in implicit neural representations
an be interpreted similarly. These methods learn a function that maps
D coordinates 𝑋 = 𝜉 to radiance values 𝑌 =  , which represent
olor and light intensity, from a dataset of posed RGB [77,78,80–82]
r RGB-D [79,83,84,97] images.

For robotic exploration, several works focus on learning map com-
letion from a partially observed map state, represented by its geome-
ry [36,44,51,52,54,57], topology [96], or semantics [38]. At mission
ime step 𝑡, these methods predict the evolution of a probabilistic
ap representation 𝑘 steps into the future 𝐹𝑡+𝑘. The dataset pairs
𝑥𝑖, 𝑦𝑖) used for learning map completion are application-dependent; for
xample, learning inputs can range from local observations [38] to the
urrent global map state [111]. The key advantage of such approaches
s their ability to extrapolate incomplete maps by minimizing a spe-
ific loss during training. This extrapolation enables better reasoning
ith limited information and occlusions compared to classical heuristic

trategies that plan solely based on the map state at a given time step.
Several works have also investigate the benefits of using supervised

earning in the planning algorithm. One straightforward approach is to
earn the information criterion 𝐼(⋅) in Eq. (1) from a dataset of actions
nd their associated information gains observed in previous data gath-
ring missions (𝑥𝑖, 𝑦𝑖) = (𝑎𝑖, 𝐼(𝑎𝑖)), where 𝑋 =  and 𝑌 = R [28,56,106].
o solve the AIPP problem in Eq. (1) directly, the learning process can
epend on pairs that connect map states to corresponding actions. Each
ction 𝑎𝑖 is created using a planning algorithm with full access to the
round truth data represented by 𝑔. Schmid et al. [39] and Zacchini
t al. [45] propose learning a probabilistic model of informative views
n the context of sampling-based planning. Alternatively, the next best
iewpoint can be learned by reasoning about the shape of an object
o be reconstructed [47,48] or localization performance in the context
f active SLAM [110]. When the dataset pairs (𝑥𝑖, 𝑦𝑖) are generated
hrough expert demonstrations, supervised learning can be thought of
s a simple form of imitation learning (IL) as described in Section 4.3.
y learning the information criterion 𝐼(⋅) from data, these approaches
ll bypass formulating it explicitly for online replanning.
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Table 3
Supervised learning methods for AIPP.

Algorithm keyword References

Ar
ch

ite
ct

ur
e/

m
et

ho
d

Conditional variational autoencoder [39]
Convolutional neural network [28,36,37,39,47–49,52,52,54,56,58,82,96,106,107]
Gaussian process [1–3,5,6,59,60,63–71,108,109]
Implicit neural representation [77–84,97]
Kernel density estimation [45]
Occupancy prediction network [51]
Scene completion network [38]
Transformer [57,110]
Variational autoencoder [44]

Tr
ai

ni
ng

ob
je

ct
iv

e

3D semantic scene completion [38]
2D occupancy map completion [36,37,44,54]
3D occupancy map completion [51]
Environment topology [96]
Environmental variable [1–3,5,6,59–61,63–71,107–109]
Grasp affordance [97]
Informative view distribution [39,45]
Localization score [110]
Minimum view subset for coverage [58]
Next-best view [47,48]
Point cloud shape completion [57]
Radiance field [77–81,83,84,97]
Required number of views [82]
Target point of interest [49]
Unexplored navigable area beyond map frontiers [52]
Utility/reward [28,39,56,106]

M
iss

io
n

ob
je

ct
iv

e

Coverage [38,39,47,48,51,52,54,96,106]
Estimate quantile values [1]
Find maximum field value [59,60]
Maximize grasp quality [97]
Maximize localization accuracy [110]
Maximize probability of improvement/expected improvement [59,108,109]
Maximize observed surfaces [57,58]
Minimize explored area to target point of interest [49]
Minimize map error [6,37,69,107]
Minimize map uncertainty [28,36,44,45,56,59,64,66,68,108,109]
Minimize map uncertainty and robot localization uncertainty [61]
Minimize map uncertainty in high-interest areas [2,3,5,63,65,68,71]
Minimize map uncertainty in unclassified areas [67]
Minimize model uncertainty [77–81,83,84]
Minimize target localization uncertainty [70]
Object reconstruction based on PSNR [82]
Point-goal navigation [36,37]

Tr
ai

ni
ng

da
ta

3D Street View dataset [56]
Custom CAD models [47,48,58,79,83]
Custom synthetic dataset [2,3,5,6,28,39,54,60,61,63,65,71,96]
DTU dataset [77]
Heuristic parameter setting [64,70]
Gibson dataset [37]
INRIA Aerial Image Labeling dataset [106]
KTH dataset [44,49]
LLFF dataset [78,81]
Matterport3D dataset [36,51,52,110]
NeRF/Synthetic-NeRF dataset [78–81,84]
NYU dataset [38]
Real-world environmental data [1,49,59,65–68]
Realistic simulator [45,97]
Regional Ocean Modeling System (ROMS) dataset [107]
ShapeNet dataset [57,77,82]
Tanks&Temples dataset [80]
A key requirement for all methods in Table 3 is the availabil-
ty of reliable training data for model supervision. Some supervised
earning methods in AIPP rely on open-source datasets, such as the
ndoor Matterport3D dataset [36,51,52] or outdoor 3D Street View
ataset [56]. Works in environmental monitoring may use data from
reviously executed missions [1,49,65,68], while others create custom
ynthetic environments approximating real-world scenarios [2,3,5,6,
8,39,54,60,61,63,65,71,96]. However, the lack of realistic labeled
raining data for AIPP problems remains an open issue restricting the
eneralizability of existing methods to new environments and domains.
urthermore, since supervised learning models are trained only on
tatic data, their applicability is limited in dynamic environments with
6

changing obstacles or terrains or the target information distribution
varies over time. Finally, as most deep learning models do not consider
uncertainty in the learning predictions, they lack natural mechanisms
to handle sensor noise or other sources of uncertainty. In Section 4.4,
we discuss how active learning (AL) techniques can mitigate some of
these issues.

4.2. Reinforcement learning

Reinforcement learning (RL) is a branch of machine learning that
equips an agent to learn from an environment by interacting with it
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and receiving feedback in terms of rewards or penalties. In AIPP, rein-
forcement learning (RL) has emerged as an effective learning method-
ology, enabling a system to adapt its behavior based on an evolving
understanding of its environment.

The problem of AIPP can be framed as a partially observable Markov
decision process (POMDP) [112]. Formally, a POMDP is defined by the
tuple ⟨ ,,, 𝑇 , 𝑍,𝑅⟩, where:

•  is the state space;
•  is the action space;
•  is the observation space;
• 𝑇 (𝑠′ ∣ 𝑠, 𝑎) is the state transition function;
• 𝑍(𝑜 ∣ 𝑠′, 𝑎) is the observation function;
• 𝑅 is the immediate reward function.

In the context of AIPP, the true state of the environment is the
ctual physical attributes of the environment captured by 𝐹 (𝐱) in
ection 2, e.g., the locations of obstacles and areas of interest, while
he observation 𝑧 is the robot’s current measurement of these attributes
ased on sensor readings.

The state space  is defined as the set of all possible feature
appings 𝐹 in the environment and agent-specific information, e.g., its
osition or battery level. The action space  consists of all possible
ctions 𝑎𝑖 ∈  that the robot could take, e.g., moving to a given
ocation, using a specific sensor, or returning to a charging station.
he observation space  corresponds to the set of all possible sensor
eadings and derived interpretations the robot could have about the
nvironment, e.g., semantic segmentation of RGB images.

The state transition function 𝑇 (𝑠′ ∣ 𝑠, 𝑎) describes the probabilistic
ynamics of the robot’s state in the context of the AIPP problem. When
he robot executes an action 𝑎 ∈  in its current state 𝑠 ∈ , it moves
o a new state 𝑠′ ∈ . The inherent uncertainty of action outcomes and
heir impact on the environment is captured by the transition function.
his function is used in the belief update, which refines the robot’s
nderstanding of the environment feature mapping 𝐹 . Additionally, the
bservation function 𝑍(𝑜 ∣ 𝑠′, 𝑎) provides the likelihood of perceiving
n observation 𝑜 ∈  subsequent to action 𝑎 and arriving at state 𝑠′.
his observation model, which is probabilistically linked to the feature
apping 𝐹 through 𝑧𝑡 ∼ 𝑝(𝑧 ∣ 𝐹 ), is used to update the robot’s belief

tate using Eq. (2).
The reward function 𝑅(𝑠, 𝑎) captures the trade-off between maximiz-

ng information gain, as described by the criterion 𝐼(⋅), and adhering
o a budget constraint 𝐶(𝜓) ≤ 𝐵. While the objective function 𝐼(⋅)
valuates a sequence of actions, the reward function 𝑅(𝑠, 𝑎) evalu-
tes individual actions. That is, the information criterion 𝐼(⋅) in AIPP
ccumulates the rewards 𝑅(𝑠, 𝑎) over a sequence of actions, and can ad-
itionally incorporate a discount factor 𝛾 to reflect that future rewards
re less valuable than immediate rewards:

(𝜓) =
𝑁
∑

𝑡=1
𝛾 𝑡−1𝑅(𝑠𝑡, 𝑎𝑡) . (3)

n AIPP, the discount factor is typically set to 𝛾 = 1 for finite horizons
ith budget constraints.

The policy is a function 𝜋 ∶  → . The concept of a policy
nd the general action sequence 𝜓 in Eq. (1) are linked by 𝜓 =
𝜋(𝑠1),… , 𝜋(𝑠𝑁 )), where the states evolve based on the previous state
nd action according to 𝑇 (𝑠′ ∣ 𝑠, 𝑎). The optimal policy can be queried to
elect an action sequence 𝜓∗ maximizing the total expected discounted
eturn, and hence the information gain, while being within the allowed
udget.

Any POMDP can be viewed as an MDP that uses beliefs as states,
lso called a belief-state MDP or belief MDP. The state space of a belief
DP is the set of all beliefs . The action space is equivalent to that of

he POMDP [112]. To connect this directly to Section 3, in AIPP, the
obot’s belief about the true state of the environment is denoted by 𝐹 in
ection 3.1. This belief evolves as the robot gathers information about
ts environment, which starts as partially unknown and is gradually
7

iscovered through sensing and exploration. o
.2.1. Network architectures and training algorithms
Various neural network architectures can be used in RL for AIPP,

uch as attention-based neural networks, convolutional neural networks
CNN), long short-term memory (LSTM) networks, and graph neural
etworks (GNN).

Attention-based neural networks, inspired by human visual atten-
ion, focus selectively on input data, which is useful for AIPP where the
obot focuses on high-interest regions. CNNs excel at capturing spatial
ierarchies in 2D occupancy grid maps. LSTMs, a type of recurrent
eural network, learn long-term dependencies, which is ideal for tem-
orally dependent problems in AIPP. GNNs operate on graph structures,
aking them most appropriate for graph-modeled environments.

Several RL algorithms can train these network architectures in-
luding proximal policy optimization (PPO), asynchronous actor–critic
A3C), soft actor–critic (SAC), advantage actor–critic (A2C), deep Q-
etwork (DQN), double deep Q-network (DDQN), as well as many other
ariations and combinations, e.g. AlphaZero. These algorithms vary in
xploration and exploitation, sample efficiency, computational needs,
nd stability.

Actor–critic methods use a value function estimate to guide opti-
ization. The actor is the policy, while the critic is the value function.
hey train in parallel, differing in value function, advantage func-
ion, or action-value function approximation. Most methods focus on
tochastic policies, but some support deterministic continuous actions.
or example, PPO, A3C, SAC, and A2C follow an actor–critic ap-
roach with separate policy and value networks. In contrast, DQN and
DQN are critic-only value-based methods, where the optimal policy is

nferred from the value function.
AlphaZero combines the actor–critic framework with Monte Carlo

ree search (MCTS), using the network’s policy to guide the search and
he value function to evaluate leaf nodes. MCTS simulations generate a
obust policy, considering a longer planning horizon [113,114].

Various open-source implementations and benchmarks of these net-
ork architectures and training algorithms are widely available [115–
19].

.2.2. Reinforcement learning approaches
A variety of RL-based approaches have been explored in the liter-

ture. In Table 4, we distinguish the methods primarily by how they
ormulate each component of the POMDP architecture as well as how
hey learn policies.

All of the methods surveyed include some aspect of the current robot
nformation in the state. The robot pose is often used [32,41,43,59,71],
hile other methods include additional robot information, e.g., energy

evel [7,62], viewing direction [50], and operational status [120]. In
ddition to current robot information, all methods store some form of
spatial map in the state. The most popular spatial maps are Gaus-

ian processes [2,5,6,59,62–64,66,69–71] and occupancy grids [27,
9,30,32–34,40,41,46,50,53,54,121], both of which are described in
ection 3.1. Another common component of the state is the previous
osition and sensor history. The history components can range from
he executed trajectory [2] to the previous graph history [70] as well
s the previous observations [4,6]. Some methods implicitly capture
he history of robot poses and measurements in the belief state action-
bservation history [7,62] or by capturing the previously explored
reas in the occupancy grid [27,34,53].

The action space determines the set of actions available to the robot
n the current state. At the highest level, actions are distinguished by
eing discrete (e.g., move left or move right) or continuous (e.g., set
elocity to 5m∕s). For example, Yang et al. [121] use a continuous
ction space consisting of longitudinal and lateral velocity commands
hile Lodel et al. [32] use a continuous 2D reference viewpoint for

heir local planner. Hüttenrauch et al. [72] use linear and angular
elocity or acceleration commands. Continuous action spaces are not
ust restricted to movement commands. Bartolomei et al. [122] focus

n semantic-aware active perception while reaching a goal target using
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Table 4
Reinforcement learning methods for AIPP.

Description References

St
at

e

Current robot information [2,4–8,27,29,30,32–35,40,41,43,46,50,53,54,59,62–64,66,69–73,75,93,98,120–128]
Observation history [4,6–8,27,32,46,70,93,126,129]
Robot history [2,4,29,34,53,70,93]
Spatial map [2,4–8,27,29,30,32–35,40,41,43,46,50,53,54,59,62–64,66,69–73,75,93,98,120–125,127,128]

M
ap

2D Gaussian process [2,5,6,59,62–64,66,69–71]
2D occupancy grid [27,29,32,33,40,46,50,53,54,121,127,128]
3D occupancy grid [30,34,41]
3D semantic occupancy map [43,122]
Bayesian network [125]
Factor graph [4]
Gaussian Markov random field [73]
Landmark locations and uncertainties [29,34,122,124]
Location graph [7,8,72,75,123,127,128]

Ac
tio

n Continuous action [30,32,59,72,121,122,124,126]
Discrete action [33,35,43,50,62,69,71,93,98,120,123,125,127,129]
Frontier [29,34,40,46]
Graph node [2,4–8,27,35,41,53,54,59,62–64,66,70,73,75,120,128]

Po
lic

y Expected discounted 𝑚-step reward [4,5,7,30,59,62,71,73,75,125–128]
Zero-shot inference [2,6,8,27,29,32–35,40,41,43,46,50,53,54,59,63,64,66,69,70,72,93,98,120–124,129]

Re
w

ar
d

Belief state mode [7]
Coverage [30,43,46,50,54,75,98,120,126–128]
Maximize inter-agent distance [72]
Maximize mutual information of observations and landmarks [32,33,66,121]
Minimize landmark localization uncertainty [29,34,93,122]
Minimize map uncertainty [2,6,40,41,62,64,69,70]
Minimize map uncertainty in high-interest areas [4,5,8,27,35,59,62,63,71,73,125]
Size of bounding box for target detection [129]
Travel distance [29,32,34,41,53,123]
Travel time [124]
an action space consisting of a set of weights to assign to each semantic
class.

Continuous action spaces often significantly increase the computa-
tional complexity of POMDPs. In many cases, discrete action spaces are
simpler to work with. When the spatial map is represented as an ab-
stract graph, a common choice is for movement commands to be repre-
sented as movement from one graph node to another via the connecting
edge [2,4–7,27,35,41,53,54,59,62–64,66,70,73,75,120]. Another com-
mon approach relies on frontiers, which represent the boundary be-
tween known and unknown space in the environment and can be
seen as a special case of a graph node action. The use of frontiers as
movement actions does not necessarily require the spatial map to be
represented as an abstract graph [29,34,40,46]. Other discrete actions
include selecting from a discrete set of sensors to employ [7,62] as
well as motion primitive commands [60,71] which can be seen as a
discretization of continuous actions where the agent is given a set of
potential trajectories to execute which correspond to actions.

The reward function is the most problem-dependent component of
the formulation. One of the core challenges that arise in the POMDP
framework and, consequently, in AIPP, is the exploration–exploitation
trade-off. The agent must select actions that balance between exploring
unknown areas of the environment to increase its knowledge (explo-
ration) and exploiting its current knowledge to find areas of interest
within the constraints of its available resources (exploitation). This
trade-off is intrinsically linked to the AIPP objective of maximizing the
information criterion while respecting the cost constraint. Hence, it is a
critical factor driving the learning process of the RL agent. Essentially,
all AIPP methods use some measure of informativeness as the objective
as discussed in Section 3.2. Map uncertainty reduction in high-interest
areas is a very common RL reward in the AIPP literature [4,5,27,
35,59,60,62,63,71,73]. Some approaches use only map uncertainty
reduction to spread measurements across the environment as uniformly
as possible and minimize the estimation error [2,6,40,41,62,64,69,70].
Coverage is a common surrogate metric for map uncertainty reduction
since it only relies on computing the area uncovered as the robot
travels through the environment, which is often faster than comput-
8

ing the Gaussian process variance online [30,43,46,50,54,75,98,120].
While coverage can perform well on the map uncertainty reduction
objective, it cannot explicitly reason about high-interest areas. The
mutual information between observations and landmarks is another
common way to measure map uncertainty reduction [32,33,66,121].
Some methods also explicitly incorporate distance-based metrics in the
reward function [29,32,34,41,53]. For example, Chen et al. [29,34]
and Cao et al. [41] assign greater rewards for actions that achieve the
same uncertainty reduction in less distance.

Optimally solving POMDPs is computationally challenging [112,
130]. However, practical solutions can be obtained through various
RL algorithms. We categorize AIPP policies based on their deploy-
ment inference strategies, distinguishing between zero-shot inference
and expected discounted 𝑚-step search policies. Zero-shot inference
policies are trained offline, considering the sequence of actions. The
policy is trained to account for the cascading impact of each action
on subsequent decisions, taking into consideration the consequences
of actions and future dependencies during the offline training process.
Upon deployment, these policies take the current belief state – updated
to reflect the cumulative knowledge of the environment as per Eq. (2)
– and directly output the next best action without additional planning.
Conversely, policies using an expected discounted 𝑚-step search are
dynamic in the sense that they actively consider a sequence of potential
future actions during deployment. Instead of reacting to the current
belief state, this approach projects forward, evaluating a decision tree
of potential action sequences up to 𝑚 steps ahead and factoring in
the anticipated updates to the belief state for each action. The policy
then chooses an action based on the strategy that maximizes the total
expected reward over this lookahead horizon.

Yang et al. [121] use an attention-based multi-layer perceptron
(MLP) which is trained using proximal policy optimization (PPO) to
produce a zero-shot inference action of continuous longitudinal and
lateral velocity with the goal of maximizing the mutual information
between observations and landmark states. Cao et al. [2] take a slightly
different approach by using an attention-based graph neural network
and long short-term memory (LSTM) network with PPO to select

the next graph node. Rückin et al. [5] use AlphaZero by combining
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Monte Carlo tree search (MCTS) with a convolutional neural network
(CNN) to learn information-rich actions in adaptive data gathering
missions. Chen et al. [33] uses deep Q-network (DQN) with a CNN
to select the next location to visit from a set of randomly sampled
2D positions with the goal of maximizing the mutual information
between received observations and the occupancy grid map. Chen et al.
[34] uses the advantage actor–critic (A2C) algorithm with a graph
neural network to select the next best frontier to visit with the goal
of maximizing landmark uncertainty reduction and minimizing travel
distance. Cao et al. [41] uses the soft actor–critic (SAC) algorithm with
an attention-based graph neural network to output the next graph node
to visit with the goal of maximizing the number of observed frontiers
while minimizing travel distance. Other methods mainly differ in the
training algorithms and the network architectures used with the most
popular being PPO, A2C, SAC, and CNN, DQN, LSTM, respectively [2,
29,32–34,40,41,46,54,70,93,121].

In summary, RL offers a powerful framework for AIPP. By learn-
ing to optimize actions for maximum information gain, RL-based sys-
tems can adaptively and effectively explore unknown environments.
However, RL algorithms also face challenges such as data-intensive
training, sensitivity to reward design, and computational demands,
which can affect their efficiency and generalizability in real-world
robotics scenarios. Existing RL-based AIPP literature addresses these
issues through advanced neural network architectures, sophisticated
training algorithms, careful reward and policy design, and robust map
representations. Additionally, most of these approaches are tested on
environments very similar to those used for training. A promising
direction for future work is thus to develop methods that can generalize
to new environments.

4.3. Imitation learning

Reinforcement learning (RL) approaches typically assume that ei-
ther the reward function is known or that rewards are received while
nteracting with the environment. For some applications, it may be
asier for an expert to demonstrate the desired behavior rather than
pecify a reward function. imitation learning (IL) refers to the case
here the desired behavior is learned from expert demonstrations.

A simple form of IL can be thought of as a supervised learning prob-
em from Section 4.1 typically referred to as behavioral cloning [131].
he objective is to train a stochastic policy 𝜋 ∶  →  where the policy
𝜽 is parameterized by 𝜽. The training objective is to maximize the
ikelihood of actions from a dataset  of expert state–action pairs:

aximize
𝜃

∏

(𝑠,𝑎)∈𝐷
𝜋𝜃(𝑎 ∣ 𝑠). (4)

This approach, while straightforward, is limited by the quality and
uantity of the expert demonstrations available. Moreover, it often gen-
ralizes poorly to states not encountered in the training dataset, leading
o suboptimal or even erroneous behaviors under novel circumstances.
ore sophisticated IL strategies have been developed to address these

imitations. These include methods combining IL with RL to refine
olicies beyond the initial demonstrations, approaches that incorporate
ctive learning (AL) to query experts for demonstrations in states where
he learner is uncertain, and algorithms that utilize inverse RL to infer
he underlying reward function implied by the expert’s behavior.

It is important to note the similarities and differences between IL
nd RL. Both IL and RL seek to find an optimal policy for a given task.
owever, the key distinction lies in how they learn this policy. RL aims

o learn the policy by maximizing the expected discounted return, as
llustrated in Eq. (3). In contrast, IL, as depicted in Eq. (4), assumes
ccess to samples from an expert policy and focuses on mimicking this
ehavior. This approach treats the expert policy as a black box, learning
o replicate its decisions without necessarily understanding the under-
ying motivations. In IL, the reliance on expert demonstrations aligns
9

losely with the concept of an active learning (AL) oracle discussed in
ection 4.4, which provides guidance in the form of expert input, albeit
n a more passive manner.

IL has been effectively applied in robotic scenarios, including in-
oor autonomous exploration, path planning, and multi-robot coordina-
ion. Liu et al. [46] introduce the Learning to Explore (L2E) framework,
ombining IL with deep RL for UGVs in indoor environments. This
pproach pretrains exploration policies using IL and then refines them
ith RL, leading to improved sample efficiency and training speed and
utperforming heuristic methods in diverse environments.

Choudhury et al. [31] propose a data-driven IL framework to train
lanning policies by imitating a clairvoyant oracle with ground truth
nowledge of the world map. This approach efficiently trains policies
ased on partial information for tasks like AIPP and motion planning,
howing significant performance gains over state-of-the-art algorithms,
ven in real UAV applications. Reinhart et al. [42] develop a learning-
ased path planning approach for UAVs in unknown subterranean
nvironments. They use a graph-based path planner as a training expert
or IL, resulting in a policy that guides autonomous exploration with
educed computational costs and less reliance on consistent, online
econstructed maps.

Li et al. [111] address decentralized multi-robot path planning by
roposing a combined model that synthesizes local communication
nd decision-making policies. Their architecture, comprising a con-
olutional neural network and a graph neural network, was trained
o imitate an expert. This model demonstrates its effectiveness in
ecentralized planning with local communication and observations in
luttered workspaces. Tzes et al. [74] tackles multi-robot AIPP with
heir Information-aware Graph Block Network (I-GBNet). Trained via
L, this network aggregates information over a communication graph
nd offers sequential decision-making in a distributed manner. Its
calability and robustness were validated in large-scale experiments in-
olving dynamic target tracking and localization. Lastly, Dai et al. [55]
xplores indoor environments using an RGB-D camera and generative
dversarial imitation learning (GAIL). They modified the ORB-SLAM2
ethod for enhanced navigation and trained a camera view planning
olicy with GAIL, yielding efficient exploration and reducing tracking
ailure in indoor environments.

These studies show the versatility and effectiveness of IL in a wide
ange of robotic applications, demonstrating its potential to enhance
fficiency, decision-making, and adaptability in varied and challenging
nvironments. However, significant challenges and areas for future re-
earch remain. Key challenges include improving the generalizability of
earned behaviors to unseen environments, enhancing the robustness of
L algorithms against dynamic and unpredictable real-world conditions,
nd developing more efficient methods for collecting and using expert
emonstrations. Further work is also needed to integrate IL with other
earning paradigms, such as RL, to address complex multi-agent systems
nd high-dimensional state spaces.

.4. Active learning

The problem of AIPP can also be seen as an active learning (AL) pro-
ess, whereby the learner uses information measures to choose actions
or collecting useful or descriptive data [15]. Here, we mathematically
onnect the general concept of AL to robotic AIPP theory. We then
raw parallels between different components of AL and the learning-
ased AIPP methods presented in the previous subsections. Lastly, we
laborate on an emerging line of work in AIPP that uses AL objectives
o improve sensor models in new environments.

AL addresses the task of finding the most informative data in a set
f unlabeled samples such that a model is maximally improved if that
ample is labeled and added to the existing training dataset [132]. We
efine the AL problem as follows:

•  is the space of queries 𝑞𝑖 ∈  and 𝑁𝑞 ∈ N is the number of

sampled queries;
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•  is the space of targets 𝑙𝑖 ∈  corresponding to query 𝑞𝑖;
• 𝜃 ∶  →  is the model predicting a target 𝜃(𝑞𝑖) = 𝑙𝑖 given a query
𝑞𝑖;

• 𝑃 ∶ 𝛩 → R is the performance function evaluating a model 𝜃 ∈ 𝛩;
• 𝑂 ∶  →  is an oracle that can be queried to generate a target
𝑂(𝑞𝑖) = 𝑙𝑖 for a specific query 𝑞𝑖;

• 𝑞 = (𝑞1,… , 𝑞𝑖) ∈ 𝑖, 𝑙 = (𝑂(𝑞1),… , 𝑂(𝑞𝑖)) ∈ 𝑖 are collected
queries and targets up to iteration 𝑖 ≤ 𝑁𝑞 ;

• 𝐴 ∶ 𝛩 ×  → R is the acquisition function estimating a query’s
𝑞𝑖 effect on the model performance 𝑃 (𝜃) after re-training on
collected training data pairs 𝑞 and 𝑙.

We aim to maximize the model’s performance with a low number
of sampled queries answered by the oracle. Formally, AL solves the
following optimization problem:

𝑞∗ = argmax
𝑞∈𝑁𝑞

𝑁𝑞
∑

𝑖=1
𝐴(𝜃, 𝑞𝑖) . (5)

The AIPP problem in Eq. (1) and AL in Eq. (5) are closely related. In
the AL setup, the costs 𝐶(𝑞) = |𝑞| of executing a sequence of queries 𝑞
is given by the number of queries |𝑞| in 𝑞. The optimization constraints
of Eq. (5) are implicitly determined by 𝐶(𝑞) ≤ 𝑁𝑞 . The AIPP information
criterion 𝐼 translates to 𝐼(𝑞) =

∑𝑁𝑞
𝑖=1 𝐴(𝜃, 𝑞𝑖) by substituting the AL

acquisition function as the mission objective.
In the classical environmental monitoring or exploration problem

setup, the environment 𝜉 is characterized by the set of available queries
, e.g., robot poses 𝑞𝑖 = 𝐱𝑖 ∈ 𝜉. The feature space  encompasses the set
of targets  establishing a correspondence between feature mappings
𝐹 ∶ 𝜉 × R →  and the model 𝜃. Further, we cannot directly quantify
the true effect of a sequence of queries 𝑞 on the model performance
𝑃 (𝜃) as this requires re-training on not-yet-acquired oracle-generated
targets. Instead, similar to the belief update of 𝐹 over the true feature
mapping 𝐹 in Eq. (2), at each iteration 𝑖, AL methods leverage already
collected queries {𝑞1,… , 𝑞𝑖} and targets {𝑂(𝑞1),… , 𝑂(𝑞𝑖)} to update the
model 𝜃 and ensure maximally informed sequential query selection.
We establish this theoretical connection between AIPP and the AL
problem to show that the AIPP methods introduced in Section 4.1 to
4.3 can be viewed as methods for AL in the context of embodied robotic
applications. In the following, we identify the models, queries, oracles,
and acquisition functions used in different learning-based approaches
from an AL perspective.

The model could have any parametric or non-parametric form. As
discussed in Section 4.1, common models for learning a spatio(temporal)
representation 𝐹 of a feature space  in an environment 𝜉 are non-
parametric Gaussian processes or implicit neural representations to
probabilistically model 𝑂 ∶ 𝜉 →  . In this case, a query 𝑞𝑖 is defined
by a specific location or area in the environment 𝑞𝑖 = 𝐱𝑖 ∈ 𝜉, and
the oracle’s answer 𝑂(𝐱𝑖) = 𝑧𝑖 is typically given by collecting a new
potentially noisy measurement 𝑧𝑖 ∈  at the location 𝐱𝑖 based on the
sensor readings. As summarized in Table 2, the performance metric 𝑃 ,
i.e., evaluation metric, and thus acquisition function 𝐴, i.e., information
criterion 𝐼 , varies with the task. Reductions in the covariance matrix
trace of a Gaussian process model or model uncertainty of an implicit
neural representation are popular acquisition functions used in ex-
ploration and monitoring tasks. Approaches leveraging a well-defined
probabilistic map belief as a model and maximizing an information-
theoretically motivated acquisition function are often closely related
to the theory of optimal experimental design [133]. Examples are
AIPP approaches that sequentially update Gaussian process map beliefs
aiming to maximize its covariance trace reduction [2,3,62,65,71] as
they are derived from A-optimal experiment design strategies. Other
supervised approaches learn the acquisition function 𝐴 with deep
neural networks [28,56,106] or directly predict the next best query
𝑞∗𝑖+1, e.g., a view pose to reconstruct a 3D object [47,48].

Similarly, RL-based AIPP approaches presented in Section 4.2 rely
on a reward function 𝑅 ∶  ×× → R based on the current and next
10
state and an action 𝑎𝑖 ∈  to learn a policy that predicts the action
𝑎∗𝑖+1 ∈  maximizing the return, i.e., the sum of rewards. According to
the definitions of the return in Eq. (3) and the AL problem in Eq. (5),
the reward function in RL acts as the acquisition function in AL. In a
POMDP describing the AIPP problem, the state 𝑠 can be seen as the
current model 𝜃 trained on the history of collected queries {𝑞1,… , 𝑞𝑖}
and targets {𝑂(𝑞1),… , 𝑂(𝑞𝑖)}. The queries 𝑞𝑖 = 𝑎𝑖 ∈  correspond to
the previously chosen actions 𝑎𝑖, e.g., the next measurement location,
and the oracle-generated targets 𝑂(𝑞𝑖) = 𝑧𝑖 ∈  correspond to the
observations, e.g., sensor readings at measurement locations.

The AIPP approaches described so far assume static sensor models
𝑝(𝑧 ∣ 𝐹 ) to learn spatial environment models 𝐹 in Eq. (2). However, as
environments 𝜉 are initially unknown, sensor models should be adapted
to the robot environment to improve robot perception and, thus, the
learned environment model 𝐹 . This is crucial for continuous robot
deployment in varying domains and for deep learning-based sensor
models as they are known to transfer poorly to unseen scenarios.

To address this problem, a line of recent research considers using
AIPP to actively gather data to improve a sensor model for robotic
perception [88–90,92,134]. In this problem setup, the information
criterion 𝐼 in Eq. (1) is defined in terms of how potential future raw
sensor readings, e.g., RGB images at certain environment locations, and
their associated oracle-generated targets, e.g., semantic segmentation
labels, impact the sensor performance. To solve this problem, the key
idea is to link the AIPP objective to ideas from AL.

To date, this problem has only been studied in the context of
pixel-wise semantic segmentation from RGB images [88–90,92,134].
These approaches can be divided into two categories depending on
how they implement the oracle for labeling new data: self-supervised
methods exploit pseudo labels rendered from an online-built semantic
map as an oracle, without considering a human annotator, while fully
supervised methods only exploit dense pixel-wise human annotations
as an oracle. In the first category, self-supervised methods can be
used to fuse 2D semantic predictions from different viewpoints into
a semantic 3D map [89,92]. After a mapping mission is completed,
the semantic 3D map is used to automatically render consistent 2D
pseudo labels for re-training. In this line of work, Zurbrügg et al. [89]
propose an AIPP approach to plan viewpoints with high training data
novelty for improved pseudo label quality. Similarly, Chaplot et al.
[92] train an RL agent to target low-confidence parts of a 3D map.
Although these approaches do not require a human oracle [89,92], they
still rely on large labeled pre-training datasets to generate high-quality
pseudo labels in new scenes. In contrast, fully supervised methods are
more applicable to varying domains and environments. Blum et al. [88]
locally plan paths of high training data novelty. Rückin et al. [134]
introduce a map-based planning framework supporting multiple ac-
quisition functions [90]. However, these methods [88,90,134] require
considerable human labeling effort to improve robotic vision.

These works highlight the versatility of applying AL methods to
robotic learning through AIPP. The combination of AL and AIPP meth-
ods demonstrates a principled approach to integrating learning-based
components and classically used uncertainty quantification techniques
for AL. This integration represents a promising pathway towards robot
deployment in more diverse environments with minimal human su-
pervision. However, to harness the potential of AL and AIPP, future
research must address multiple open problems. Existing uncertainty
quantification methods for deep learning models are known to be
overconfident [135] and not well-calibrated in out-of-distribution sce-
narios. Further, fully and self-supervised approaches for sensor model
improvement are limited in terms of human annotation effort and
applicability to out-of-distribution environments, respectively. One pos-
sible direction is to take the strengths of both approaches and develop
hybrid semi-supervised approaches [91]. We may be able to deploy
more versatile robots by combining AIPP methods for environment
monitoring and exploration (Section 4.1 to Section 4.3) with methods

for targeted training data collection [88–90,92,134].
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Fig. 3. Summary statistics for the papers reviewed in Section 5.
. Applications

In this section, we categorize the AIPP works surveyed in our paper
ccording to their target applications in robotics. Our goal is to assess
he practical applicability of existing learning-based methods while
inpointing emerging trends and recognizing potential limitations.

Table 5 overviews AIPP applications in robotics and describes their
elevant practical aspects. Our taxonomy considers four broad appli-
ation areas: (i) environmental monitoring; (ii) exploration and search;
iii) semantic scene understanding; and (iv) active SLAM. For reference,
n the last column, we also include the learning method: supervised
earning (‘SL’); reinforcement learning (‘RL’); imitation learning (‘IL’);
nd/or active learning (‘AL’). In addition, in Fig. 3, we provide visual
ummary statistics for our survey according to the application area,
earning method, and planning space considered by each paper.

In general, our survey illustrates that the works are broadly ap-
lied in terrestrial, aquatic, and aerial domains and on diverse robot
latforms. AIPP methods organically find usage in environmental mon-
toring scenarios to gather data about physical parameters, e.g., signal
trength [4,59,60,63,68,120], temperature [5,27,76], or elevation [6,
5]. In particular, AIPP enables efficient data collection in large envi-
onments using sensors with limited coverage area, such as point-based
ensors. For mapping, Gaussian processes are most commonly used
o capture spatial correlations found in natural phenomena that are
easured by a continuous variable. Several recent works use RL to

earn the best data-gathering actions [2,5,59], including achieving
oordinated monitoring with multi-robot teams [27,64,120,136].

AIPP strategies for exploration and search can be further broken
own in terms of two distinct tasks: exploration of bounded unknown
nvironments, i.e., outwards-facing scenarios, and active reconstruction
f unknown objects or scenes, i.e., inwards-facing scenarios. The former
ecessarily accounts for possible obstacles in unknown regions and
ypically relies on depth-based sensing to construct volumetric maps
s an environment is explored [31,32,41,54,74]. In contrast, most
pproaches for object reconstruction [47,48,77,81,84] assume obstacle-
ree environments with a constrained hemispherical action space for a
obot camera around the target object of interest. While NeRF-based
ethods are gaining popularity for this task [77,78,81–84,97], an open

esearch challenge is applying them for exploration in more complex
nvironments involving multiple objects and clutter.

Only a few works integrate semantic information or consider local-
zation uncertainty in planning objectives for learning-based AIPP. Sev-
ral approaches [88–91,94,134] leverage semantics to improve deep
11
learning-based sensor models via AL. Although semantic scene un-
derstanding provides valuable cues for learning complex AIPP behav-
ior [38], a key development barrier is the lack of high-quality semantic
datasets relevant to the domains of robotic AIPP applications. The
common assumption of perfect localization uncertainty represents a
significant limitation to the applicability of existing methods, partic-
ularly in outdoor environments which may rely on imprecise Global
Positioning System (GPS) signals [7,27,49,65,72]. Many approaches
also neglect sensor uncertainty and noise, especially in environmental
monitoring scenarios where models for specialized sensors are scarce.
This is a major drawback since imperfect sensing has been shown to
have significant effects on the quality of collected data and resulting
planning strategy [3,45,125].

Our taxonomy reveals a gap in methods accounting for robot motion
constraints while planning, with some methods assuming that the
robot sensor can teleport between locations [77,78,81] or perform only
incremental motions relative to its current position [27,35,120]. One
open issue is the lack of guarantees on dynamic feasibility, which is
essential for long-term path planning with agile, fast platforms such
as small UAVs. Although there has been research on multi-robot mis-
sions [27,53,63,72,136], there are several areas that have not been
widely studied, such as tasks involving multi-sensor fusion [62], tem-
poral changes in the environment [49,71], and combining multiple
problems simultaneously, e.g., semantic scene understanding and active
SLAM.

6. Challenges and future directions

This section outlines the open challenges related to deploying
learning-based AIPP in robotics settings and avenues for future work
to overcome them.

6.1. Generalizability

Most of the AIPP methods surveyed were tested in the same or
similar environments as those seen during training. The generalizability
of deep learning-based systems is especially important because the neu-
ral networks that are often used in AIPP frameworks [31,38,44,51,55,
111] are known to produce overconfident wrong predictions in out-of-
distribution scenarios [135]. Future work should address these inherent
generalization limitations to improve robustness. We identified one
possible way to deal with deep learning-based vision uncertainties in
Section 4.4 by combining uncertainty-aware deep learning and active
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Table 5
Taxonomy of AIPP applications in robotics.

Domain Robot platforms Sensors Obstacles? Planning
space

Sources of
uncertainty

Motion
constraints

Learning
method

En
vi

ro
nm

en
ta

l
m

on
ito

rin
g

[95] Air quality monitoring UAV Point-based gas sensor ✗ 2D Mapping – –
[69] Air quality monitoring UGV Point-based sensor ✗ 2D Mapping – SL, RL
[6] Elevation mapping UAV team Ultrasound height sensor ✓ 2D Mapping – SL, RL
[43] Fruit monitoring Robot arm RGB-D camera ✓ 3D Mapping ROS MoveIta RL
[137] Fruit monitoring Robot arm RGB-D camera ✓ 3D Mapping ROS MoveIta SL
[59] Intensity monitoring AUV/UGV/UAV Generic camera, point-based

sensor
✗ 2D/3D Mapping – SL, RL

[2] Intensity monitoring UGV Point-based sensor ✗ 2D Mapping – SL, RL
[63] Intensity monitoring UGV team Point-based sensor ✗ 2D Mapping – SL, RL
[60] Intensity monitoring UAV Point-based sensor ✗ 2D Mapping, sensing Nonholonomic

constraints
SL

[65] Lake bacteria monitoring AUV Point sensor for phycoerythrin
fluorescence

✗ 3D Mapping Spline path SL

[73] Ocean pollution monitoring AUV Pressure sensor, general water
characterization

✗ 2D Mapping Spline path RL

[3] Precision agriculture UAV Generic camera ✗ 3D Mapping, sensing,
semantics

Spline path SL

[5] Precision agriculture UAV Generic camera ✗ 3D Mapping, sensing – SL, RL
[27] Precision agriculture UAV team Generic camera ✗ 3D Mapping, sensing – RL
[125] Scientific data gathering UGV Generic camera, ultraviolet light

source, laser scanner
✗ 2D Mapping, sensing Omnidirectional

drive
RL

[68] Signal strength monitoring AUV Point-based sensor ✗ 2D Mapping – SL
[4] Signal strength monitoring AUV/UGV Generic camera, point-based

sensor
✓ 2D Mapping, path

executability
– RL

[66] Signal strength monitoring UGV Point-based sensor ✗ 2D Mapping – SL, RL
[49] Spatiotemporal field monitoring AUV/UGV Point-based sensor ✗ 2D Mapping – SL
[71] Spatiotemporal field monitoring UGV Point-based sensor ✗ 2D Mapping Spline path SL, RL
[74] Target tracking and localization UGV team RGB-D sensor ✗ 2D Mapping, sensing – IL
[76] Temperature monitoring Sensor network Generic ✗ 2D Mapping – SL
[67] Tree disease classification UAV RGB camera ✗ 2D Mapping, semantics – SL
[45] Underwater mapping AUV Sonar ✗ 3D Mapping, sensing Dubins vehicle

model
SL

[64] Water quality monitoring AUV team Water quality sensor ✗ 2D Mapping – SL, RL
[35] Wildfire monitoring UAV team Thermal camera ✗ 2D – – RL
[120] Wireless data harvesting UAV team Signal receptor ✓ 2D Signal emissions – RL

Ex
pl

or
at

io
n

an
d

se
ar

ch

[55] Camera view planning UGV RGB-D camera ✓ 3D – – IL
[121] Exploration and landmark localization UAV Depth sensor ✗ 2D/3D Mapping – RL
[136] Exploration and target search UGV team Depth sensor ✓ 2D – – RL
[31] Exploration, search-based planning UGV/UAV RGB-D camera ✓ 2D Mapping – IL
[32] Floor plan exploration UAV Laser ✓ 2D Mapping, sensing Unicycle model RL
[46] Indoor exploration UGV Depth sensor ✓ 2D – – RL, IL
[54] Indoor exploration UGV Depth sensor ✓ 2D Map prediction – SL, RL
[28] Indoor exploration UGV Depth sensor ✓ 2D Mapping, sensing – SL
[51] Indoor exploration UAV Depth sensor ✓ 3D Mapping, sensing Spline path SL
[41] Indoor exploration UGV Depth sensor ✓ 2D Mapping, sensing Local plannera

[138]
RL

(continued on next page)
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Table 5 (continued).
Domain Robot platforms Sensors Obstacles? Planning

space
Sources of
uncertainty

Motion
constraints

Learning
method

Ex
pl

or
at

io
n

an
d

se
ar

ch

[40] Indoor exploration UGV Depth sensor ✓ 2D Mapping, sensing ROS move_basea RL
[33] Indoor exploration UGV Depth sensor ✓ 2D/3D Mapping, sensing – RL
[44] Indoor exploration UGV Laser scanner ✓ 2D Mapping – SL
[52] Indoor exploration UGV RGB-D camera ✓ 2D – Local planner using

Fast Marching
Method

SL

[39] Indoor exploration UGV RGB-D camera ✓ 2D Mapping, sensing – SL
[38] Indoor exploration UAV RGB-D camera ✓ 3D Mapping, sensing,

scene completion
Velocity ramp
model

SL

[36] Indoor exploration,
point-goal navigation

UGV/UAV Depth sensor ✓ 2D Mapping, sensing – SL

[37] Indoor exploration UGV/UAV RGB-D camera ✓ 2D Mapping, sensing – SL
[93] Infrastructure inspection UAV RGB-D camera ✗ 3D – – RL
[98] Interactive exploration Robot arm RGB-D camera ✗ 3D – – RL
[50] Multi-object navigation UGV RGB-D camera ✓ 2D – Revolute joint

camera
RL

[139] Object finding Robot arm RGB-D camera ✓ 3D Mapping, sensing – RL
[75] Object recognition, team

orienteering
UGV team 2D Laser ✓ 2D Mapping, sensing – RL

[48] Object reconstruction Any platform Depth sensor ✗ 3D – – SL
[57] Object reconstruction Any platform Depth sensor ✓ 3D – – SL
[47] Object reconstruction Any platform Depth sensor ✗ 3D Mapping – SL
[82] Object reconstruction Any platform RGB camera ✗ 3D – – SL
[78] Object reconstruction Any platform RGB camera ✗ 3D Sensing – SL, AL
[80] Object reconstruction Any platform RGB camera ✗ 3D Sensing – SL, AL
[81] Object reconstruction Any platform RGB camera ✗ 3D Sensing – SL, AL
[77] Object reconstruction Any platform RGB camera ✗ 3D Sensing – SL, AL
[30] Object reconstruction Robot arm RGB-D camera ✓ 3D Mapping, sensing – RL
[84] Object reconstruction Any platform RGB-D camera ✗ 3D Sensing – SL, AL
[79] Object reconstruction Any platform RGB-D camera ✗ 3D Sensing – SL, AL
[83] Object reconstruction Any platform RGB-D camera ✓ 3D Sensing – SL, AL
[57] Object reconstruction UAV Depth sensor ✓ 3D – ROS MoveIta SL
[58] Object surface

reconstruction
Any platform RGB-D camera ✗ 3D Sensing ROS MoveIta SL

[70] Persistent target
monitoring

Robot team
(UAV/UGV)

Generic camera ✗ 2D Target position – SL, RL

[62] Rover exploration UGV Drill, mass spectrometer ✓ 2D Mapping, sensing – RL
[7] Search and rescue Any platform Categorical survivor detection ✓ 2D Mapping, sensing – RL
[8] Search and rescue Any platform Optical sensor ✗ 2D Sensing – RL
[104] Search tasks, e.g., grasping

pose or target search
Any platform Binary measurements ✗ 3D Sensing – –

[42] Subterranean exploration UAV Depth sensor ✓ 3D – – IL
[123] Target assignment UAV team Not specified ✗ 2D – – RL
[53] Target assignment UAV team Not specified ✗ 2D Mapping, sensing – RL
[72] Target tracking UAV team Laser ✗ 2D Mapping Unicycle model RL
[129] Targeted object search UGV RGB camera ✓ 2D Object recognition – RL
[96] Tunnel exploration UGV Depth sensor ✓ 2D – – SL
[106] Urban exploration,

surveillance
UGV/UAV Depth sensor ✓ 2D – – SL

[56] Urban exploration UAV Depth sensor ✓ 3D Mapping, sensing – SL
[97] View planning for grasping Any platform RGB-D camera ✗ 3D – – SL, AL

(continued on next page)
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Table 5 (continued).
Domain Robot platforms Sensors Obstacles? Planning

space
Sources of
uncertainty

Motion
constraints

Learning
method

Se
m

an
tic

s

[88] Land cover mapping UAV RGB camera ✗ 2D Sensing – AL
[94] Indoor goal navigation UGV RGB-D camera ✓ 2D Mapping, sensing – AL
[89] Indoor semantic mapping UGV Laser, RGB-D camera ✓ 3D Mapping, sensing,

localization
– AL

[90] Industrial and urban
mapping, land cover
analysis

UAV RGB camera ✗ 2D Mapping, sensing –

[134] Urban mapping UAV RGB camera ✗ 2D Mapping, sensing – AL
[91] Urban mapping UAV RGB camera ✗ 2D Mapping, sensing – AL

Ac
tiv

e
SL

AM

[110] Active visual localization UGV RGB-D camera ✓ 3D Localization – SL
[61] Indoor temperature

monitoring
UGV/UAV Laser, temperature sensor ✓ 2D/3D Mapping, sensing,

localization
– SL

[29] Exploration UGV Lidar ✗ 2D Mapping, sensing,
localization

– RL

[34] Exploration UGV Lidar ✓ 2D Mapping, sensing,
localization

– RL

[122] Goal-based navigation UAV RGB-D camera ✓ 3D Mapping, sensing,
localization

Spline path RL

a Motion constraints incorporated only during plan execution.
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learning approaches with AIPP [89,90,92]. Similarly, RL-based AIPP
systems are increasingly popular [2,34,41,63,66,69]. However, RL ap-
proaches degrade in performance when deployed in unseen simulated
environments or real-world scenarios [140–142]. Future work on RL-
based AIPP methods should focus on evaluating the learned policy in
more diverse environments and in the real world. Further, new methods
are needed to improve the generalization of RL for AIPP [143]. Other
subfields of RL, such as meta-reinforcement learning [144], could serve
as inspiration for enabling efficient online policy adaption to unseen
environments. Data augmentation and domain randomization during
training could improve test-time policy robustness [145].

6.2. Handling localization uncertainty

Effectively handling robot localization uncertainty is a key aspect
in advancing learning-based AIPP in robotics. Localization uncertain-
ties arise from various sources, including sensor noise, environmental
changes, and the inherent limitations of localization technologies. How-
ever, most existing approaches assume perfect knowledge of the robot
pose, both during planning and plan execution, which limits their
practical applicability. Some works in active SLAM account for local-
ization uncertainty via belief space planning [29,34] or modifying the
planning objective [61] using graph-based representations of the robot
state. Incorporating such probabilistic methods into learning-based
AIPP methods and exploring transfer learning techniques [34,146] can
enhance robustness.

6.3. Temporal changes and long-term planning

Addressing temporal changes and ensuring robust long-term plan-
ning in learning-based AIPP poses a critical challenge. Temporal changes
such as variations in environmental conditions, seasonal shifts, or the
presence of dynamic obstacles, require AIPP methods to not only adapt
to the immediate surroundings but also plan for sustained effectiveness
over long durations. This involves developing strategies that consider
the evolution of the environment and adjust the planned paths online.
Whereas several works study spatiotemporal monitoring [49,70,71]
and dynamic target tracking [72,74], there is a need for new ap-
proaches that can handle multiple moving objects in 3D environments.
We also highlight the importance of developing such methods for agile
platforms such as small UAV platforms while also accounting for their
physical motion constraints, given that they often operate in dynamic
and changing landscapes.

6.4. Heterogeneity

One challenge is the development of learning-based AIPP methods
that exploit the benefits of heterogeneous robot teams or heterogeneous
sensor modalities within a single robot. Leveraging heterogeneity in
robotic systems has a high potential to improve sensing and monitoring
performance. For instance, a tandem robotic system can combine the
agility of a small UAV and the high-payload, detailed inspection capa-
bilities of a UGV. A robot equipped with different sensors, e.g., a drill
and a mass spectrometer [62], can measure different physical parame-
ters during a single mission. To fully exploit these capabilities, we rec-
ommend investigating principled ways of incorporating heterogeneity,
also considering collaboration aspects for effective decision-making.

6.5. Standardized evaluation methods

Another key challenge is the lack of standardized simulation envi-
ronments, evaluation metrics, and benchmarks to assess new methods
in AIPP. As highlighted in Section 3, most existing works rely on
custom-made procedures and baselines for evaluation. While these
15

reveal relative trends in performance, they do not ensure reproducible
results across different approaches. Moreover, our survey catalog1 in-
icates that very few works have publicly available datasets, docu-
entation, and open-source code. In future work, it is essential to

stablish common evaluation pipelines to promote reproducibility and
omparability. We recommend constructing such a framework in a
odular fashion, allowing easy modification of various aspects, in-

luding the application scenario (robot platform, sensor setup, and
nvironment) and algorithmic components (mapping method, planning
bjective, and planning algorithm). We believe such a development
ould also help guide future work towards more general approaches,

ather than constrained application-specific methods, as well as foster
tronger collaboration within the AIPP community.

. Conclusion

In this survey paper, we analyzed the current research on AIPP in
obotic applications, focusing especially on methods that exploit recent
dvances in robot learning. We introduced a unified mathematical
roblem definition for addressing tasks in learning-based AIPP. Based
n this formulation, we provided two complementary taxonomies from
he perspectives of (i) learning algorithms and (ii) robotic applica-
ions. We provided a structured outline of the research landscape and
ighlighted synergies and trends. Finally, we discussed the remaining
hallenges for learning-based AIPP in robotics and outlined promising
esearch directions.
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