
Efficient Failure Detection for Mobile Robots
Using Mixed-Abstraction Particle Filters

Christian Plagemann, Cyrill Stachniss, and Wolfram Burgard

University of Freiburg
Georges-Koehler-Allee
79110 Freiburg, Germany
{plagem,stachnis,burgard}@informatik.uni-freiburg.de

Summary. In this paper, we consider the problem of online failure detection and isolation
for mobile robots. The goal is to enable a mobile robot to determine whether the system is
running free of faults or to identify the cause for faulty behavior. In general, failures cannot
be detected by solely monitoring the process model for the error free mode because if certain
model assumptions are violated the observation likelihoodmight not indicate a defect. Existing
approaches therefore use comparably complex system modelsto cover all possible system
behaviors. In this paper, we propose the mixed-abstractionparticle filter as an efficient way
of dealing with potential failures of mobile robots. It usesa hierarchy of process models to
actively validate the model assumptions and distribute thecomputational resources between
the models adaptively. We present an implementation of our algorithm and discuss results
obtained from simulated and real-robot experiments.

1 Introduction

Whenever mobile robots act in the real world, they are affected by faults and ab-
normal conditions. Detecting such situations and allowingthe robot to react appro-
priately is a major precondition for truly autonomous vehicles. While the applied
techniques need to be able to reliably detect rare faults, the overall estimation pro-
cess under error-free conditions should not be substantially more complex compared
to systems that are optimized for the normal operational mode. Separate monitor-
ing processes that use more complex models to cover all possible system behav-
iors introduce an unnecessary high computational load. In this paper, we introduce
mixed-abstraction particle filters as an effective means for adaptively distributing the
computational resources between different system models based on the estimated
validity of their specific model assumptions.

The term ”fault detection” is commonly referred to as the detection of an abnor-
mal condition that may prevent a functional unit from performing a required func-
tion [11]. Most works in the fault detection and isolation literature deal with internal
faults such as defects in hardware or software. For the mobile robot domain, we ap-
ply the same nomenclature to external influences like collisions or wheel slip since

2 Christian Plagemann, Cyrill Stachniss, and Wolfram Burgard

Fig. 1.The left image depicts a simulated robot before colliding with an obstacle which is not
detected by its sensors. The right photograph shows a real mobile robot that collides with an
undetected glass door while moving on its planned trajectory to the neighboring room.

their effects are similar to those of internal defects and the resulting models have the
same structure.

As an illustrating scenario, consider a mobile robot equipped with wheel en-
coders, a laser range finder, and a sufficiently accurate map of the environment. In
the fault-free case, the position of the robot can be trackedusing a standard tracking
algorithm such as a Kalman filter or a particle filter with a simplistic odometry-based
motion model, which is formally given in Section 3.3. In odometry-based models, the
next system statext is directly predicted from the odometry, which is the measure-
mentot obtained from the wheel encoders.

Although such models allow us to evaluate different state hypotheses by weight-
ing them using exteroceptive measurements, e.g., using a laser range measurement
lt, they do not directly allow us to detect collisions with obstacles that cannot be
perceived by the sensors of the robot. This is due to the fact that when the robot stops
moving, its wheel encoders do not record any motion, which isperfectly consistent
with the recorded laser measurements. Therefore, no filter degradation occurs and
there is no possibility to detect such faults inside the filter. One typical solution to
overcome such problems is to compare the estimated trajectory with the planned one
on a higher system level. As major drawbacks of such an approach, one cannot infer
the actual cause for the deviation from the planned trajectory and the system archi-
tecture is complicated by the stronger connection between the planning and tracking
module.

An alternative solution is to consider the actual motion commands that have been
sent to the motors instead of just using the wheel encoder readings. However, this
makes the system model substantially more complex and the predictions, which are
now based on motor currents and accelerations, less accurate. In our experiments, we
observed that such a model is around 32 times slower to compute than the odometry-
based model. It is important to note that the odometry-basedmodel makes the im-
plicit assumption, that the wheel encoder measurements reflect the intended motion.
If this assumption is violated, the standard estimation technique cannot be used to

Efficient Failure Detection for Mobile Robots 3

estimate the joint probabilityp(x, f) anymore, wherex stands for the pose of the
robot andf indicates the failure state.

In this paper, we propose to make the model assumptions explicit and to build
a model abstraction hierarchy. We present the mixed-abstraction particle filter algo-
rithm that uses such a hierarchy to direct computational resources to the most effi-
cient model whose assumptions are met. In this way, it minimizes the computational
load while maximizing the robustness of the system.

x
t-1

x
t

o
t

l
t

U
t-1

x
t-1

x
t

o
t

l
t

Fig. 2.Arbitrary model hierarchy (left) with an unrestricted model M0, several restricted mod-
els M1, M2, M3 as well as the specific assumptionsAi→j that restrict the state spaces re-
spectively. Two models for the same physical process: the standard odometry-based model
(e.g.M1) that uses the odometry measurementsot as controls (middle) and the laser mea-
surementslt as sensor inputs. A less restricted model (e.g.M0, on the right) that includes the
actual motion commandsut as controls.

The paper is organized as follows. After the discussion of related work, we
present our mixed-abstraction particle filter algorithm and its application to moni-
toring mobile robots in Section 3. Finally, Section 4 presents experimental results.

2 Related Work

Model-based diagnosis has been approached from within the AI community using
symbolic reasoning with a focus on large systems with many interacting components
and from the control theory community concentrating on fewer components with
complex dynamics and higher noise levels [8]. With symbolicapproaches, the system
is typically assumed to move between discrete steady states[17]. Here, diagnosis is
often based on system snapshots without a history. Krysander [8] proposed a hybrid
model consisting of discrete fault modes that switch between differential equations
to describe the system behavior. The diagnosis system is designed for large systems
with low noise levels, where instantaneous statistical tests are sufficient to identify a
faulty component.

As Dearden and Clancy [3] pointed out, the close coupling between a mobile sys-
tem with its environment makes it hard to apply discrete diagnosis models directly,
because extremely complex monitoring components would have to be used. A more
robust and efficient way is to reason directly on the continuous sensor readings. As

4 Christian Plagemann, Cyrill Stachniss, and Wolfram Burgard

a result, probabilistic state tracking techniques have been applied to this problem.
Adopted paradigms range from Kalman filters [16] to particlefilters in various mod-
elings [1, 3, 12]. Particle filters represent the belief about the state of the system by a
set of state samples, which are moved when actions are performed and re-weighted
when sensor measurements are integrated (see Dellaertet al. [4]). In particle filter
based approaches to failure diagnosis, the system is typically modeled by a dynamic
mixture of linear processes [2] or a non-linear Markov jump process [5]. Benanzera
et al. [1] combine consistency-based approaches, i.e. the Livingstone system, with
particle filter based state estimation techniques.

Vermaet al. [15] introduce the variable resolution particle filter for failure de-
tection. Their approach is similar to ours in that they buildan abstraction hierarchy
of system models. The models of consideration build a partition of the complete
state space and the hierarchy is defined in terms of behavioral similarity. Our focus
in contrast lies on switching between overlapping system models for certain parts
on the state space. Our model hierarchy is therefore based onefficiency differences
and explicit model assumptions about the system state. The two approaches should
therefore be seen as complementary rather than alternatives.

Other approaches that deal with the time efficiency of particle filters include Kwok
et al. [10] in which real-time constraints are considered for single system models or
techniques in which a Rao-Blackwellized particle filter is used to coordinate multiple
models for tracking moving objects [9].

3 Particle Filters for Sequential State Estimation

A mobile robot can be modeled as a dynamic system under the influence of issued
control commandsut and received sensor measurementszt. The temporal evolution
of the system statext can be described recursively using the formalism of the so
called Bayes filter

p(xt | z0:t, u0:t−1)

=

∫

p(xt | zt, ut−1, xt−1) p(xt−1 | z0:t−1, u0:t−2) dxt−1 (1)

= ηt p(zt | xt)
︸ ︷︷ ︸

observation model

∫

p(xt | ut−1, xt−1)
︸ ︷︷ ︸

motion model

p(xt−1 | z0:t−1, u1:t−2)
︸ ︷︷ ︸

recursive term

dxt−1. (2)

The termηt is a normalizing constant ensuring that the left-hand side sums up to one
over all xt. With Equation 1, we assume Markovian dependencies, namelythatxt

only depends on the most recent measurementzt and control commandut−1 given
knowledge about the preceding state of the systemxt−1. Particle filters are an im-
plementation of the Bayes filter and can be used to efficientlyestimate the posterior
p(xt) in a sequential manner. Here, the posterior is represented by a discrete set of

weighted samplesX = {〈x
[m]
t , w

[m]
t 〉}. With the sampled representation, the integral

in Equation 2 simplifies to a finite sum over the samples resulting from the previous

Efficient Failure Detection for Mobile Robots 5

Algorithm 1 Particlefilter(Xt−1, ut−1, zt)

1: X t = Xt = ∅
2: for m = 1 to M do
3: samplex[m]

t ∼ p(xt | ut−1, x
[m]
t−1)

4: w
[m]
t = p(zt | x

[m]
t)

5: X t = X t + 〈x[m]
t , w

[m]
t 〉

6: end for
7: for m = 1 to M do
8: draw particlei with probability∝ w

[i]
t

9: addx
[i]
t toXt

10: end for
11: returnXt

iteration. The motion model and the observation model can beapplied directly to
move and weight the individual samples respectively. Algorithm 1 formulates the
standard particle filtering approach [14].

In Algorithm 1, the state of the system at timet is represented by a setXt of
state samplesx[m]

t . In Line 3, we perform a state prediction step using the external

motion commandut−1 and the motion modelp(xt | ut−1, x
[m]
t−1). Line 4 incorpo-

rates the current sensor measurementzt by re-weighting the state samples according
to the measurement modelp(zt | x

[m]
t). From Line 7 to 10, a resampling step is

performed to concentrate the samples on high-probability regions of the state space.
We refer to Thrunet al. [14] for details about the resampling step and its efficient
implementation.

For the odometry-based model that treats the odometry measurements as con-
trols, we haveut−1 = ot andzt = lt, whereot is the odometry measurement and
lt is a perception of the environment. For the dynamic model depicted in the right
diagram of Figure 2,ut−1 is the actual control command andzt = 〈ot, lt〉. Both
models are described in more detail in Section 3.3.

3.1 Process Model Hierarchy

A fundamental problem in science and engineering is choosing the right level of
abstraction for a modeled system. While complex and high-dimensional models
promise high estimation accuracy, models of less complexity are often significantly
more efficient and easier to construct. In the area of mobile robotics, the accuracy-
efficiency trade-off is an important issue, since on the one hand, computational re-
sources are strictly limited in online problems and on the other hand, estimation
errors have to be avoided to prevent serious malfunctioning. We therefore propose
an online model selection algorithm with adaptive resourceallocation based on the
Bayesian framework.

An abstraction hierarchy for process models is given by the specific assumptions
that the different models make about the world (compare Figure 2). We define the
model abstraction hierarchyas an acyclic directed graph with the different system

6 Christian Plagemann, Cyrill Stachniss, and Wolfram Burgard

modelsMi as nodes and their model assumptionsAi→j as edges, leading from the
more general modeli to a more restricted onej. A model assumptionAi→j is defined
as a binary function on the state space of the unrestricted modelMi.

As an example, consider the process model for a mobile robot that should be able
to continuously localize itself in a given map. A general model M0 would include
the the pose of the robotx and additionally take physical factors like ground friction,
tire pressure, load balance, motor characteristics, etc. into account and treat those
as additional state variables in a state vectorf . In most situations, however, it is
quite common and reasonable to assume a simpler modelM1, where these additional
variables are constant and do not need to be estimated duringoperation. Formally,
the state space ofM1 is therefore{x, f | f = const}, which is a projection of the
more general space{x, f} of modelM0. The assumptionA0→1 would in this case
be defined as

A0→1(x, f) :=

{
true : f = const

false : f 6= const .

It is important to note that the validity of an assumption canonly be tested in a
less restricted state space, where this assumption is not made. In practice, this means
that we have to test for every edge in the model abstraction graph the associated
assumption using the more general model. As a measure for thevalidity of an as-
sumptionÃ at timet, we use the ratio

vt(Ã) :=

∑

A p(zt | x[m]) 1
|A|

∑
p(zt | x[m]) 1

|X |

, (3)

whereA is defined as the subset{x[m] | Ã(x[m])} of all particlesX for which Ã is
valid. More informally, we compute the amount of evidence infavor of a restricted
state space relative to the unrestricted case. The quantityvt(Ã) is based on the current
approximation of the posterior distribution by the particle filter.

3.2 Adaptive Model Selection

To adaptively switch between alternative system models, the validity of the model
assumptions have to be estimated online and computational resources have to be
distributed among the appropriate models. The distribution of resources is done by
increasing or decreasing the number of particles for the different models. To achieve
this, we apply the following algorithm that takes as input the model abstraction hi-
erarchygraph defined in the previous section. When a new measurementzt is ob-
tained, the mixed abstraction particle filter algorithm draws samples from the particle
set representing the current posteriorX i

t−1 for all system modelsi, incorporates the
measurement, and builds new posterior distributionsX i

t . The key question in this
update step is which model posteriorX i

t should receive how many samples. We base
this decision on the estimated validity of the model assumptionsAi→j . If the esti-
mated quantityvt(Ai→j) drops below a predefined thresholdΘ, we sample into the
more complex modelMi and otherwise prefer the more efficient oneMj. This de-
cision is made repeatedly on a per particle basis until a model has received enough

Efficient Failure Detection for Mobile Robots 7

Algorithm 2 Mixed-AbstractionParticlefilter
1: Calculate samples for the unrestricted modelMi until the assumptionAi→j(x̃t) is valid

for a minimal number of samples̃xt

2: Build a first estimate ofvt(Ai→j) according to Equation 3
3: repeat
4: if vt(Ai→j) >= Θ then
5: Calculate samples forMj

6: else
7: Calculate samples forMi

8: end if
9: until eitherMi received enough samples or (vt(Ai→j) >= Θ andMj received enough

samples)

samples and all its assumptions are validated. In each iteration, we start with the
most unrestricted modelMi and perform the following steps for each of its outgoing
edgesAi→j .In the update steps mentioned above, the samples are taken from the previous
posterior distributionsX j

t−1, if assumptionAi→j was valid in the previous step and
from X i

t−1 otherwise. When all outgoing edgesAi→j of modelMi have been pro-
cessed in the described manner, the same update is applied tomodelsMj further
down in the hierarchy until either the leaf nodes have been processed or one of the
assumptions did not receive enough evidence to justify further model simplifications.

Several quantities like the numbers of samples necessary for each model (Line 9)
or the validity thresholdΘ (Line 4) have to be determined in an offline learning step.
For the experimental results reported below, we optimized these values on a set of
representative trajectories, recorded from real and simulated robots.

To recapitulate, the mixed abstraction particle filter estimates the system state
by running several particle filters in parallel, each using adifferent system model.
Samples are assigned applying the following rule. For each two alternative system
models, the simpler one is prefered as long as there is positive evidence for the va-
lidity of the corresponding model assumption.

3.3 Motion Models for Mobile Robots

Thestandard odometry-based motion modelfor a wheeled robot estimates the pos-
teriorp(xt | xt−1, ot) about the current posext based on the previous posext−1 and
the wheel encoder measurementot. A popular approach [6] to represent the relative
movement is to use three parameters, an initial rotationα, a translationd, and a sec-
ond rotationβ as illustrated in Figure 3. Typically, one uses a Gaussian distribution
for each of these parameters to model the noise.

Under the influence of events like the collision with an obstacle or wheel slip-
page, the odometry-based model is not applicable anymore since the wheel encoder
measurements do not provide useful information about the actual motion. To handle
such situations, we construct an alternative model, termeddynamic motion model,
that depends on the actual motion commands that were sent to the motors of the

8 Christian Plagemann, Cyrill Stachniss, and Wolfram Burgard

α’

β’

d’

final pose

α

d

measured pose
β

initial pose

path

Fig. 3. Parameters of the standard odometry-based motion model.

robot. This model includes the geometry of the robot and its physical attributes like
mass and moment of inertia. For each wheel, we compute the influence of the veloc-
ity command on the translational and rotational energy of the robot. In this represen-
tation, we can directly incorporate the effects of collisions, slippage, and deflating
tires. We then convert the energy state of the system to its speed and obtain a state
prediction for the next time step.

It is important to note that the dynamic motion model is not designed for the
failure states only. Rather it is able to deal with normal conditions as well. It is there-
fore considered as more general as the standard odometry-based model in our model
abstraction hierarchy. The assumption placed on the systemstate by the odometry-
based model is, that there are no external influences like collisions, slippage, etc.

4 Experiments

4.1 Quantitative Evaluation Using a Simulator

To quantitatively evaluate our system, we performed several simulation experiments
and compared the results to the known ground truth. We used the high-fidelity sim-
ulator Gazebo [7], in which physics and motion dynamics are simulated accurately
using the Open Dynamics Engine [13]. In several practical experiments carried out
with real robots, we experienced the Gazebo simulator as well suited for studying the
motion dynamics of robots even under highly dynamic events like collisions. For ex-
ample, we did not have to change any system parameters when weported our system
from the simulator to the real robot.

To demonstrate how the proposed algorithm coordinates multiple particle filters
that have been designed independently, we confronted the system with two different
faults within one scenario. A simulated ActivMedia Pioneer2DX robot (see the left
image of Figure 1) was placed in the corridor of a 3D office environment. We manu-
ally steered the robot through this environment. On its path, it encountered a collision
with an undetectable object. After that, its left tire started to deflate. Four filters were
used independently to track the state of the system. The firstfilter was based on the
standard odometry-based motion model described in Section3.3. The second filter

Efficient Failure Detection for Mobile Robots 9

used the dynamic motion model described in the previous section and also included
a model for collision faults. The third model was also based on the dynamic motion
model but was capable of dealing with deflating tires. Finally, the forth filter was the
proposed mixed-abstraction filter that combined all of the filters described above.

Figure 4 depicts the true trajectory as well as the tracking results obtained with
the individual filters overlayed on a map built from laser measurements in a real
building. The three arrows in the diagram mark the followingthree events: a collision
with an undetected glass door (1), a point where the robot stopped backing off and
turned around (2), and a point where the left tire of the robotstarted losing air (3).

As can be seen from the figure, the filter that is able to deal with deflating tires
diverges immediately after the collision at point 1. Since the filter able to deal with
collisions cannot deal with deflating tires, it diverges at point 3. The odometry-based
model keeps track of the robot despite the collision at point1, however it is not
aware of any fault at this point. The combined filter in contrast succeeds in tracking
the robot despite of both incidents.

The middle and lower image of Figure 4 plot the internal states of the special-
ized detectors within the mixted-abstraction filter. Thesevalues reflect the belief of
the system about the presence of certain faults. The middle image plots the relative
number of particles in the fault mode of the collision detector over time. As can be
seen, this number raises significantly shortly after the collision as well as after the
full stop at point 2. After the robot had been intenionally stopped there, the system
cannot know whether an obstacle is in its way or not. The lowerimage of Figure 4
shows the evolution of the relative number of particles in the fault mode of the defla-
tion detector. Since the collision at point 1 has been handled by the collision detection
within the mixed-abstraction filter, this filter does not switch to a failure mode until
point 3. At that point, the filter switches into its failure mode and in this way enables
the mixed-abstraction filter to keep track of the pose of the robot.

4.2 Analyzing the Gain in Efficiency

In this experiment, we quantatively evaluate the gain in efficiency that we achieve
by dynamically distributing samples between the individual filters. In the modeled
scenario, a simulated robot follows a trajectory and collides twice with an obsta-
cle, which is too small to be detected by its laser range finder. After the collisions,
the robot backs off and continues its task. The top diagram ofFigure 5 shows the
trajectory of the vehicle and the locations where the algorithm correctly detected a
collision. The other two diagrams illustrate the failure detection process of the same
simulation run. The bar at the bottom indicates the true timestamps of the faults.
Whereas the plot in the second row depicts the relative likelihood for a collision as
defined in Equation 3, the curve plotted in the third row givesthe times needed for
the individual iterations of the particle filter.

Table 1 gives the results of a comparison of our adaptive model-switching ap-
proach to three other implementations, where only single models were used for state
estimation and fault detection. The results are averaged over the full trajectories of
100 runs per implementation. The implementations considered here are realized on

10 Christian Plagemann, Cyrill Stachniss, and Wolfram Burgard

 0
 0.5

 1

 22 24 26 28 30 32 34 36 38 40

Simulation time [sec]

1 2 3

Collision Detector

 0
 0.5

 1

 22 24 26 28 30 32 34 36 38 40

Simulation time [sec]

1 2 3

Deflation Detector

Fig. 4. Results of an experiment with two fault-events (top). The collision of the robot with a
glass door is marked with the arrow “1”, the point where it stopped backing of and turned is
marked with “2”, and at point “3” the left tire of the robot started losing air. The diagram in
the middle plots the relative number of the particles in the fault mode of the collision detector.
The lower diagram shows the corresponding number for the deflation detector.

the basis of two models. Whereas modelM0 is the complex model that considers
the actual motion commands and therefore is able to track theposition as well as the
failure state, modelM1 is the standard odometry-based system model, which is able
to track the position of the robot reliably with low time requirements, but cannot de-
tect the collisions. The first implementation is based on model M1 with 20 particles,
the second is modelM1 with 200 particles. While the third implementation is based
on modelM0 with 300 particles, the forth one is the mixed-abstraction particle filter
combining implementation one and three. The common task of all implementations

Efficient Failure Detection for Mobile Robots 11

 13.5

 14

 14.5

 15

 15.5

 16

 16.5

 17

 7 8 9 10 11 12 13 14

E
st

im
at

ed
 y

-p
os

iti
on

Estimated x-position

t=0.0 sec

t=8.2 sec

t=28.9 sec

t=50.0 sec

Collision detected
Estimated trajectory

 0
 1
 2
 3
 4
 5
 6
 7
 8

 0 10 20 30 40 50

R
el

. l
ik

el
ih

oo
d

Simulation time [sec]

Relative likelihood: collision

 0
 5

 10
 15
 20
 25
 30
 35

 0 10 20 30 40 50T
im

e
pe

r
ite

ra
tio

n
[m

s]

Simulation time [sec]

Time per iteration

Fig. 5. A trajectory followed by a simulated robot (first row) with marks at positions where
the evidence for a collision was high. The plot in the second row depicts the relative likelihood
for collisions. The plot also shows the ground truth (the barat the bottom). The last plot shows
the time needed for each iteration (third row).

was to track the position of the robot along a trajectory on which the robot encoun-
tered two undetected collisions after8.2 and28.9 seconds. A typical estimate of the
trajectory generated by the mixed-abstraction filter including markings for detected
collisions is depicted in the left diagram of Figure 5. The lower right image of Fig-
ure 5 plots the value ofvt(A) over time. As can be seen from the figure, the evidence
for a fault substantially increases at the time of the incidences. The upper right im-
age in the same figure plots the CPU time used by the mixed-abstraction filter. It
nicely shows that the computation time is only high when the evidence of a failure
has increased.

Table 1 shows average values obtained from the 100 test runs for each imple-
mentation. Whereas modelM1 was never able to detect a failure,M0 as well as our

12 Christian Plagemann, Cyrill Stachniss, and Wolfram Burgard

adaptive switching algorithm detected all failures equally well. However, our adap-
tive model required substantially less computation time compared toM0 alone using
300 particles.

System model Failure DetectionAverage timeAverage estimation error
rate per iterationPosition Orientation

M1: standard odometry 0 % 0.67 ms 0.13 m 3.6◦

20 particles
M1: standard odometry 0 % 5.83 ms 0.13 m 3.4◦

200 particles
M0: dynamic 100 % 10.10 ms 0.11 m 5.8◦

300 particles
adaptive-switching: 100 % 3.42 ms 0.12 m 3.9◦

M1: 20 particles
M0: 300 particles

Table 1.Results of a series of simulation runs using different system models for state estima-
tion. The results are averaged over the complete trajectories of 100 runs per model.

4.3 Evaluation on a real robot

We also tested our system on a real ActivMedia Pioneer 2DX robot in an office envi-
ronment. The right image of Figure 1 depicts the experimental setup. Three positions
of the robot were manually cut from a recorded video and overlayed on one image to
illustrate the process. The robot planned a path to the neighboring room on the right-
hand side of the corridor. While executing the planned trajectory, the robot could not
detect the glass door that blocked its path and thus collidedwith the wooden part
of the door. In this situation, the standard odometry-basedsystem model used for
localization does not indicate a defect, because the wheel encoders report no motion,
which is perfectly consistent with the laser measurements.The left diagram of Fig-
ure 6 gives the evolution of the observation likelihoods forthe standard model, which
stays nearly constant. In contrast to this, the proposed mixed abstraction particle filter
detects that the model assumption of the standard model is not valid anymore after
the collision with the door and switches to the more complex system model. The
right diagram of Figure 6 visualizes this process. For the sake of clarity, we plotted
the estimated validity of the negated model assumption, which can be interpreted as
the evidence against the assumption that no collision has occurred. The upper curve
corresponds to the time needed per iteration. Note that the required computational
resources only slightly exceed those of the standard odometry-based model (see left
diagram for a comparison). Only in the failure case, the runtime increases seriously
since the more complex model requires substantially more particles. Please also note,
that the runtime goes back to the original value after the robot has backed off and the
model assumption of the simplified model is valid again.

Efficient Failure Detection for Mobile Robots 13

 0

 0.5

 1

 0 5 10 15 20 25 30T
im

e
pe

r
ite

ra
tio

n
[m

s]

Timestamp [sec]

Time per iteration [ms]

 0

 10

 20

 30

 40

 0 5 10 15 20 25 30T
im

e
pe

r
ite

ra
tio

n
[m

s]

Timestamp [sec]

Time per iteration [ms]

 0

 0.01

 0.02

 0.03

 0 5 10 15 20 25 30O
bs

er
va

tio
n

lik
el

ih
oo

d

Timestamp [sec]

Observation likelihood

 0
 2
 4
 6
 8

 10

 0 5 10 15 20 25 30

R
el

. l
ik

el
ih

oo
d

Timestamp [sec]

Relative likelihood (collision)

Fig. 6. In an experiment with a real robot, the observation likelihood of the standard system
model (lower left) does not indicate the collision with a glass door at timet = 22 seconds. The
mixed-abstraction particle filter (right) detects the fault without needing substantially more
computational resources in the fault-free case (upper diagrams).

5 Conclusion

This paper presents an efficient approach to estimate the state of a dynamic sys-
tem including its failures. Complex models with high computational requirements
are needed in order to detect and track unusual behaviors. Wetherefore proposed a
mixed-abstraction particle filter which distributes the computational resources in a
way that failure states can be detected and tracked but at thesame time allows us an
efficient estimation process in case the systems runs free offaults. To achieve this,
we apply a process model hierarchy which allows us to model assumptions that hold
for the fault-free case but not in general.

In several experiments carried out in simulation and with real robots, we demon-
strated that our technique is well-suited to track dynamic systems affected by errors.
Our approach allows us to accurately track different failure states and at the same
time is only marginally slower in case the system is running free of faults. We be-
lieve that our approach is not limited to the failure detection problem and can also
be advantageous for various state estimation tasks in whichdifferent system mod-
els have to be used to correctly predict the behavior of the system under varying
conditions.

6 Acknowledgments

This work has partly been supported by the EC under contract number FP6-004250-
CoSy, by the German Science Foundation (DFG) under contractnumber SFB/TR-8
(A3) and the German Federal Ministry of Education and Research (BMBF) under
contract number 01IMEO1F.

14 Christian Plagemann, Cyrill Stachniss, and Wolfram Burgard

References

1. E. Benazera, R. Dearden, and S. Narasimhan. Combining particle filters and consistency-
based. In15th International Workshop on Principles of Diagnosis, Carcassonne, France,
2004.

2. N. de Freitas, R. Dearden, F. Hutter, R. Morales-Menendez, J. Mutch, and D. Poole. Di-
agnosis by a waiter and a mars explorer. InInvited paper for Proceedings of the IEEE,
special issue on sequential state estimation, 2003.

3. R. Dearden and D. Clancy. Particle filters for real-time fault detection in planetary rovers.
In Proceedings of the Thirteenth International Workshop on Principles of Diagnosis,
pages 1–6, 2002.

4. F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte carlo localization for mobile robots.
In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), Leuven, Belgium,
1998.

5. J.N. Driessen and Y. Boers. An efficient particle filter fornonlinear jump markov systems.
In IEEE Sem. Target Tracking: Algorithms and Applications, Sussex, UK, 2004.

6. J.-S. Gutmann, W. Burgard, D. Fox, and K. Konolige. An experimental comparison of
localization methods. InProc. of the IEEE/RSJ InternationalConference on Intelligent
Robots and Systems, 1998.

7. N. Koenig and A. Howard. Design and use paradigms for gazebo, an open-source multi-
robot simulator. technical report. Technical report, USC Center for Robotics and Embed-
ded Systems, CRES-04-002, 2004.

8. M. Krysander.Design and Analysis of Diagnostic Systems Utilizing Structural Methods.
PhD thesis, Linköping University, Sweden, 2003.

9. C. Kwok and D. Fox. Map-based multiple model tracking of a moving object. InRoboCup
2004: Robot Soccer World Cup VIII, pages 18–33, 2004.

10. C. Kwok, D. Fox, and M. Meila. Real-time particle filters.In Suzanna Becker, Sebas-
tian Thrun, and Klaus Obermayer, editors,Advances in Neural Information Processing
Systems 15 (NIPS), pages 1057–1064. MIT Press, 2002.

11. N. Leveson.Safeware : System Safety and Computers. Addison-Wesley Pub Co., Reading,
Mass., 1995.

12. B. Ng, A. Pfeffer, and R. Dearden. Continuous time particle filtering. InProceedings of
the 19th IJCAI, Edinburgh, 2005.

13. R. Smith. Open dynamics engine.http://www.q12.org/ode/ode.html, 2002.
14. S. Thrun, W. Burgard, and D. Fox.Probabilistic Robotics. MIT Press, 2005.
15. V. Verma, S. Thrun, and R. Simmons. Variable resolution particle filter. In Georg Gottlob

and Toby Walsh, editors,IJCAI-03, Proceedings of the Eighteenth International Joint
Conference on Artificial Intelligence, Acapulco, Mexico, August 9-15, 2003, pages 976–
984. Morgan Kaufmann, 2003.

16. R. Washington. On-board real-time state and fault identification for rovers. InProceed-
ings of the IEEE International Conference on Robotics and Automation (ICRA), pages
1175–1181, 2000.

17. B.C. Williams and P.P. Nayak. A model-based approach to reactive self-configuring sys-
tems. In Jack Minker, editor,Workshop on Logic-Based Artificial Intelligence, Washing-
ton, DC, College Park, Maryland, 1999. University of Maryland.

