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Abstract— Most autonomous cars rely on the availability of
high-definition (HD) maps. Current research aims to address
this constraint by directly predicting HD map elements from
onboard sensors and reasoning about the relationships between
the predicted map and traffic elements. Despite recent advance-
ments, the coherent online construction of HD maps remains a
challenging endeavor, as it necessitates modeling the high com-
plexity of road topologies in a unified and consistent manner.
To address this challenge, we propose a coherent approach to
predict lane segments and their corresponding topology, as well
as road boundaries, all by leveraging prior map information
represented by commonly available standard-definition (SD)
maps. We propose a network architecture, which leverages
hybrid lane segment encodings comprising prior information
and denoising techniques to enhance training stability and per-
formance. Furthermore, we facilitate past frames for temporal
consistency. Our experimental evaluation demonstrates that our
approach outperforms previous methods by a large margin,
highlighting the benefits of our modeling scheme.

I. INTRODUCTION

As a prevailing robotic application, the operation of au-
tonomous vehicles in urban environments is contingent upon
the availability of high-definition (HD) maps of the surround-
ing environment. These HD maps should contain precise
geometric information about the drivable lanes, including
their correspondences with one another, and their relationship
to other important traffic elements, such as traffic lights
and signs. The generation of such HD maps is a time-
consuming and resource-intensive semi-automated process
that involves manual steps. At the same time, these maps
are subject to changes over time [15]. For safe and robust
autonomous driving, the detection of traffic elements such as
traffic lights and traffic signs and their association with lanes
or lane segments is crucial. For example, traffic light states
or prohibitive traffic signs contain important information for
predicting the future trajectories of other traffic participants.

Recent approaches [34], [56] have demonstrated encourag-
ing results in the detection of HD map elements. However,
they do not achieve the objective of computing consistent
and accurate HD maps online while driving. The latest
approaches reformulate map element detection into a lane
segment formulation [22] to leverage the known geometric
properties of lane layouts and further predict the topological
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Fig. 1: Given multi-view images and a standard-definition (SD)
map, our method predicts lane segments and lane boundaries, as
well as traffic elements. It reasons about the topology among lane
segments and estimates the traffic element-to-lane association.

relationship of lane segments or centerlines [21]. Other
work [37] seeks to integrate prior knowledge about road
geometry into their architectural design by incorporating
standard-definition (SD) maps into the bird’s eye view (BEV)
transformation.

None of the prior approaches have adequately addressed
the challenge of jointly detecting lane segments, their topo-
logical relationships, while exploiting available a-priori in-
formation of SD maps. For this reason, the CVPR 2024
Grand Autonomous Challenge, with its Mapless Driving
track, proposed a problem formulation for solving these tasks
simultaneously.

To this end, we approach to solve the union of tasks
coherently, that is, to consider them as a whole with clear
interfaces. Thus, we systematically design a network ar-
chitecture to predict lane segments and their topological
relationships by leveraging latent embeddings (queries), as
depicted in Fig. 1. It encompasses the topology among lane
segments, as well as the topology between lane segments
and traffic elements (e.g., traffic lights or traffic signs).
Given an SD map, we ingest prior information as enhanced
hybrid queries with a positional sampling module. This
provides the network hypotheses of potential lane segments,
which can be iteratively validated and refined by interacting
with the BEV features. We introduce temporal fusion and
lane denoising for more consistent and robust predictions,
while we optimize the overall performance by implementing
further improvements to the architecture. The experimental
results demonstrate the efficacy of the proposed method,



which reaches state-of-the-art performance on the OpenLane-
V2 [44] dataset.

Additional qualitative results can be found at: https://
www.ipb.uni-bonn.de/html/projects/score.

II. RELATED WORK

To mitigate the reliance on expensive high-definition maps,
recent works have focused on deriving vectorized represen-
tation of HD map elements as polylines. This representation
is commonly predicted in bird’s eye view (BEV) space from
onboard sensors.

Bird’s Eye View Transformation. Using a categorical
depth distribution, Lift-Splat-Shoot (LSS) [40] and their
derivative works [13], [23], [36] project features onto a 3D
volume and then collapse the volume onto a 2D plane with
efficient pooling. Transformer-based approaches [5], [24],
[35], [47], [59] cross-attend BEV queries to images features
and thus extract a BEV representation.

HD Map Generation. Leveraging semantic segmentation,
HDMapNet [20] utilizes a post-processing step to output
a polyline representation of map elements. In a two-stage
approach, VectorMapNet [34] first identifies map elements
and then outputs polylines using a detection transformer [3].
MapTR [26] proposes to directly predict polylines in a
single-stage approach by employing hierarchical queries,
while the same authors introduce one-to-many assignment,
decoupled attention, and auxiliary losses in their follow-
up work [27]. Further improvements to MapTR include
predicting pivotal points [8], modeling the output as Bézier
curves [41], and incorporating geometric properties into the
learning process [55], [58]. Another line of work puts empha-
sis on the query generation, e.g., by leveraging instance [33]
or semantic [6] segmentation masks or by introducing hybrid
queries [52], [60].

Topology Estimation. Understanding road topology is
crucial for scene comprehension in autonomous driving,
which includes predicting lane centerlines and their topology,
i.e., constructing a lane graph with successor-predecessor
relationship. Can et al. [2] perform the graph estimation
for single monocular images by associating and merging
piecewise centerline estimates based on a predictions of a
transformer-based model. Building on this, TopoRoad [51]
introduces minimal cycle queries to maintain the correct or-
der of intersections. LaneGAP [25] uses a heuristic algorithm
to reconstruct the graph from a set of lanes. TopoNet [21]
transforms 2D detections for traffic elements into a unified
feature space to model the relationship with a scene graph
neural network, while in TopoMLP [48], the authors empha-
size the importance of a strong 2D detection performance.
Other works combine trajectory knowledge and visual SLAM
to estimate the lane information [39] or extend the topology
estimation idea by leveraging geometric properties [9] or
queries initialized by 2D priors [19]. Li et al. [22] propose to
predict lane segments, each consisting of semantic meaning-
ful lane entities defined by a lane centerline, lane boundaries,
as well as successor relationship and class information.

SD Map-aided Map Generation. To improve upon the
lane-lane relationship estimation, SMERF [37] integrates
prior information in form of standard-definition maps into
the network architecture by encoding the SD map elements
with a transformer encoder and by ingesting the feature
representation into the BEV transformation process. Other
approaches propose to fuse the SD map information in a
rasterized fashion [38] or to ingest the knowledge at different
stages of the network [53], [57].

Temporal Fusion. To achieve temporal consistency, pre-
vious works [10], [12], [24] have shown various methods on
fusing past knowledge with the current observations. One
line of work cross-attends to image features of previous
timesteps by back-projecting reference points and aggregat-
ing features for semantic segmentation or 3D object detec-
tion [24], [31], while other methods [12] stack the current
BEV features with motion-compensated BEV features from
the previous timestep. Further work recurrently fuses BEV
features [10] or propagates high confidence queries to the
next timestep [32]. StreamMapNet [56] introduces the idea
of streaming temporal fusion to HD map element detection
by recurrently fusing BEV features and propagating past
queries. Wang et al. [45] also apply denoising to enhance
lane queries for temporal fusion.

Mapless Driving. The CVPR 2024 Grand Autonomous
Challenge introduced the joint tasks of lane segment detec-
tion, road boundary estimation, and traffic element associa-
tion with SD map information. Participating works [49], [54]
address this joint formulation by integrating the prior SD
map information similar to [37], and use large backbones
and ensembles to improve performance.

III. SD MAP ENHANCED COHERENT ROAD TOPOLOGY
ESTIMATION AND REASONING

We aim to predict HD map elements and their corre-
sponding relationships based on onboard multi-view images.
To this end, we propose SD map enhanced coherent road
topology estimation and reasoning, called Score, which
jointly predicts lane segments, road boundaries, and traffic
elements such as traffic lights or traffic signs. Further, our
method derives an association between the traffic elements
and the lane segments, as well as the topology among the
lane segments.

Given multi-view images, the image backbone outputs
multi-scale image feature maps FPV = {F i

PV} for the i-th
camera, while top-view features F BEV are obtained by a BEV
transformation [24]. To leverage the geometric constraints of
road lanes, we utilize the lane segment formulation [44]. A
lane segment (ls) is defined as a set of polylines, representing
the centerline and lane boundaries, along with a classification
label indicating the type of lane segment and lane boundary
types (e.g., solid, dashed, or invisible). Further, we consider
pedestrian crossing as lane segments.

As a separate task, we infer road boundaries (rb) as
polylines with nrb points, while the traffic elements (te) are
predicted in 2D with bounding box annotation. We denote
the topology among lane segments as lane graph (V ls,Alsls)
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Fig. 2: Overall architecture of our approach. First, multi-view image features are transformed into a BEV representation. Utilizing SD map
prior information, we enhance learnable queries by a positional sampling and add lane denoising queries. In the Lane Segment Transformer,
lane segment queries (blue) are refined with BEV features, while two further transformer decoder output refined road boundary queries
(yellow) and 2D traffic element queries (cyan). In the Topology Estimation module, these queries interact to derive the lane-to-lane and
traffic element-to-lane association. Simple MLPs are employed to decode the queries q̂ into the corresponding output format.

with V ls as the set of lane segments and the edge set Alsls
as an adjacency matrix [21], [22]. Similarly, we denote the
correspondence between lane segment and traffic elements as
a bipartite graph (V ls ∪ V te,Alste). The SD map is provided
as a set of polylines with class labels (e.g., road, sidewalk).

An overview of our proposed architecture Score is il-
lustrated in Fig. 2. The network is composed of multiple
components, which utilize queries as interfaces. The lane
segment transformer (Sec. III-A) and road boundary trans-
former (Sec. III-B) use the BEV features to output instance-
level map element embeddings. The 2D traffic element
detector outputs traffic sign and traffic light detections based
on 2D image features (Sec. III-C). In the topology estimation
(Sec. III-D), the network derives adjacencies for the lane-lane
and lane-traffic element topology.

A. Lane Segment Transformer

To infer lane segments, our model utilizes a similar
architecture to LaneSegNet [22], incorporating a transformer-
based decoder. In the transformer decoder, the hybrid
queries qls cross-attend to the enriched BEV features F BEV,
which are then refined iteratively using self-attention [42]
and deformable attention [50]. To address the limitations of
deformable attention in capturing long-range dependencies,
particularly for elongated lane shapes, we integrate lane
attention, a lane segment-aware deformable attention [22].
This module distributes multiple reference points along the
estimated lane boundaries of the previous transformer de-
coder layer. We enhance the lane decoding by leveraging
hybrid queries and condition the decoding on the prior

knowledge in form of reference points. Then, the refined
queries q̂ls are calculated as:

q̂ls = LaneDecoder (F BEV, qls | pls) ∈ RNls×C , (1)

with qls = concat(qsd, qb, q̂dn) comprise of SD map en-
hanced queries qsd, denoising queries q̂dn, both of which
will be explained in the following sections, and the base
queries qb. pls = concat(p̂sd,pb, p̂dn) denote their respective
reference points and C is the channel dimension.

1) SD Map Enhanced Queries: Originally [22], for each
query qb, a randomly initialized reference point is generated,
which has no prior driving scene information. To improve
the initial placement, we propose incorporating geometric
data from the SD map, thus, leveraging prior information as
potential lane segment hypotheses.

For that, we define the set of nsd queries qsd ∈ Rnsd×C and
generate reference points for these queries by sampling one
point from the middle of each edge and continue by sampling
more points proportionally based on edge length until we
reach nsd points. This ensures evenly-spaced sampling and
prevents duplicative information propagation. For the i-th SD
map query qsd,i, the initial reference point placement p̂sd,i is
computed as follows:

p̂sd,i = MLP(qpos,i) + psd,i, (2)

where qpos,i denotes the positional encoding of the i-th query
and psd,i refers to the sampled reference points, which are
normalized to [0, 1]. This formulation allows for both, a
learnable and an a-priori term, providing the network further
flexibility. Lastly, a self-attention mask between SD map



enhanced queries qsd and other queries prevents the leakage
of deficient information, as an SD map can have annotation
errors such as missing or wrong map elements.

2) Lane Denoising: To improve convergence of detection
transformer (DETR)-style networks, Li et al. [18] propose
the concept of query denoising. The key idea is to include
ground truth queries augmented with noise in the training
process, which effectively addresses the inherent instabilities
associated with bipartite matching [18]. Inspired by this
approach, we introduce lane denoising. For i ∈ {1, ..., NGT},
random noise ∆pdn,i = (∆x,∆y,∆z)

i.i.d.∼ U(−1, 1) is
added to the NGT ground truth annotations, comprising three
polylines with npts points each, representing the centerline
and the left and right boundaries. Along with the their
reference points p̂dn = λdn (pdn +∆pdn), the final denoising
queries are obtained as:

q̂dn = qdn + MLP(p̂dn), (3)

with λdn ∈ (0, 1) being a hyperparameter for rescaling.
Similar to DN-DETR [18], we introduce lane denoising
groups, each consisting of a noisy version of all ground
truth lane segments. The number of denoising groups is
computed as ⌊ ndn

NGT
⌋. For each group, we derive a different

set of initial reference points from the noisy ground truth
to prevent propagating similar information. Finally, to avoid
ground truth information leakage [18], masked attention is
used to prevent the denoising groups from interacting with
other queries.

B. Road Boundary Transformer

In contrast to the lane segment prediction, the detection
of road boundaries necessitates the inference of irregularly
shaped polylines that differentiate between drivable and non-
drivable area. Thus, we reformulate our lane segment head to
accommodate this task to model the road boundary instances
as queries and finally output polylines. As opposed to prior
work, e.g., MapTR [26], we do not employ hierarchical
queries, but leverage one query per instance reducing the
computational requirements. Inspired by multi-point atten-
tion [56], we predict nrb points for the road boundary for
each intermediate transformer decoder layer, which are used
in the consecutive decoder layer to sample nref equidistant
reference points.

C. 2D Traffic Element Detection

To associate traffic elements with lane segments, we first
detect traffic lights and traffic signs as 2D bounding boxes
using the image features of the front camera.

Given our query-based approach, we utilize DN-
DETR [18], a denoising Deformable DETR for 2D bounding
box detection. Traffic element queries qte interact with the
image features F 0

PV of the front camera and the traffic
decoder outputs the most confident predictions as queries.
Similar to TopoMLP [48], we use proposals generated by
YOLOv9 [43] and incorporate them as additional queries.
For simplicity, we denote all traffic element queries as

qte ∈ RNte×C . Thus, the refined queries q̂te for traffic ele-
ments are computed as

q̂te = TrafficDecoder(F 0
PV, qte). (4)

Further, we employ YOLOv9 [43] and propose to encode
the bounding box parameters (e.g., center, height, etc.) into
the embedding space with a simple MLP to obtain q̂te.

D. Topology Estimation

The topology estimation is designed to facilitate reason-
ing about the pairwise relationships between lane instances
within the same embedding space [2], [21], as well as to
associate traffic elements with lane segments. Given the
lane segments queries q̂ls and traffic elements queries q̂te,
our topology head encodes the queries and repeats the lane
segment queries Nte times and the traffic element queries Nls

times. The resulting matrices are stacked such that we obtain
Qlste ∈ RNls×Nte×2C . Similar to [22], [48], we compute the
similarity score AS

lste ∈ [0, 1]Nls×Nte between the instance
pair (i, j) as an adjacency matrix:

AS
lste(i, j) = σ (MLP(Qlste(i, j))) , (5)

with σ(·) being the sigmoid function. The same operation
can be applied straight-forward to estimate the topology AS

lsls
among all qls instances, i.e., lane segments.

Inspired by Topologic [9], we design a post-processing
function that maps the absolute distance between the start and
end points of all possible lane instance pairs to a distance-
based topology matrix AD

lsls ∈ [0, 1]Nls×Nls :

AD
lsls(i, j) =

2

1 + exp
(

di,j

α

) , (6)

with di,j being the distance between the start/end point of
lane segment i and j and α ∈ R denoting a hyperparameter
for the distance matching. The final relationship scores Alsls

are calculated as follows:

Alsls(i, j) = min
(
AS

lsls(i, j) + βAD
lsls(i, j), 1

)
, (7)

where β denotes a weight factor to account for the distance-
based similarity. We determined empirically that α = 2.5
and β = 0.8 lead to the best performance.

E. Holistic Improvements

We introduce further improvements to the query-based
lane segment transformer and road boundary transformer
with the aim of enhancing the detection performance.

1) SMERF: We employ the idea of SMERF [37] and
cross-attend the encoded SD map with the BEV features.

2) One-to-Many (o2m): To further accelerate convergence
and improve detection accuracy, we integrate one-to-many
matching [14] for lane segment and road boundary detection.
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Fig. 3: Qualitative results. Our method demonstrates the capacity to incorporate a SD map prior and past information in an effective manner,
facilitating the prediction of partly-occluded roads and providing more consistent predictions than those produced by LaneSegNet [22].

3) Dataset Resampling: An analysis of the distribution of
categories within the dataset reveals a significant imbalance
that can have implications for the model’s performance.
Specifically, statistical analysis shows that nearly 96% of the
training samples involve the vehicle moving straight, while
only 4% contain to turning maneuvers. To address this issue,
we increase the number of samples in scenarios where the
wheel angle is higher than 7°.

4) Temporal Fusion: To leverage also past observa-
tions, we employ temporal fusion analogous to StreamMap-
Net [56]. In a streaming fashion, the BEV features F BEV

are recurrently fused with the previous BEV features uti-
lizing a ConvGRU [7] to integrate temporal information.
Subsequently, the fused BEV features undergo ego-motion
compensation and are being propagated to the next timestep.
We initially conduct a warm-up phase [4], [56], i.e., an
initial training that does not involve past frames, and then
subsequently employ temporal fusion.

F. Loss Functions

Our model employs the Hungarian algorithm [17] to match
predictions to ground truth during training. The final loss
function for the lane head is defined as:

Lls = λvec,lsLvec + λseg,lsLseg + λcls,lsLcls + λtypeLtype

+ λtopLtop + λo2mLo2m + λdnLdn,
(8)

where
Lseg = λceLce + λdiceLdice. (9)

For the road boundary head, the loss function is:

Lrb = λvec,rbLvec + λseg,rbLseg + λcls,rbLcls + λo2mLo2m. (10)

The vectorized geometric loss Lvec supervises the pre-
dicted geometry by calculating the summed Manhattan dis-
tance of the centerlines and left and right boundaries between
matched lane segment pairs. A combined cross entropy Lce

and dice loss Ldice is used to supervise predicted masks
loss Lseg. A cross entropy loss Lcls is employed for lane-
type and boundary predictions. The topological loss Ltop

leverages focal loss [30] to supervise the relationships among
lane segments based on the topology information [21]. The
terms Lo2m and Ldn serve as auxiliary losses for one-to-many
matching [27] and denoising [18], respectively.

IV. EXPERIMENTAL EVALUATION

A. Datasets and Metrics
The experiments are conducted using the OpenLane-V2

dataset [44], a comprehensive dataset designed for large-
scale perception and reasoning in autonomous driving sce-
narios. OpenLane-V2 consists of two subsets (subset A and
subset B) derived from Argoverse 2 [46] and nuScenes [1],
respectively. Each subset includes 1,000 annotated scenes at a
frequency of 2 Hz. As subset B does not contain lane segment
annotations, our work focuses on subset A. The training set
comprises roughly 27,000 frames, while the validation set
includes about 4,800 frames. All lane segments within the
spatial range of [-50 m, 50 m] along the x-axis and [-25 m,
25 m] along the y-axis are annotated in 3D space. We use
the OpenLane-V2 UniScore (OLUS) as main metric:

OLUS =
1

5
[DETls+DETa+DETt+f(TOPll)+f(TOPlt)],

(11)
where DETls, DETa, and DETt denote the mean average
precision (mAP) for lane segment, area (road boundary and
pedestrian crossing), and traffic element detection, respec-
tively, while TOP refers to mAP over all vertices matched
between ground truth graph and predicted graph. For fair
comparison with other methods, we explicitly report the
mAP for pedestrian crossings DETped. The mAP for area
detection is then DETa = 1

2 [DETped + DETb] with DETb

being the mAP for boundary detection. The OpenLane-V2
Score (OLS) is used as metric for centerline prediction and
topology estimation and is reported for methods employing
a centerline representation.

OpenLane-V2 [44] provides SD map annotations. How-
ever, Luo et al. [37] show that leveraging Open-
StreetMap (OSM) data yields better performance due to
improved quality of the SD map annotations. Thus, we also
leverage OSM SD maps and highlight the benefit in our
ablation study.

Prior research [28], [56] has demonstrated that datasets
utilized for HD map element detection are susceptible to
data leakage, as training and validation locations exhibit
substantial overlap. To assess the efficacy and resilience of
our proposed approach, we conduct a comparative analysis
on a geographically disjoint dataset split [56].



TABLE I: Comparison on the OpenLane-V2 validation split (subset A). Results for existing methods are sourced from TopoNet, with the
best performance in each category highlighted in bold. ∗: baseline results taken from project page [22], †: employs smaller backbone, ‡:
results of the test split, CL/LS: centerline and lane segment detection, respectively.

Method Task SD
map

Temp.
Fusion

DETl/ls DETped DETb DETa DETte TOPll TOPlt OLS/
OLUS

MapTRv2 [27] CL ✗ ✗ 17.7 - - - 43.5 5.9 15.2 31.0
TopoNet [21] CL ✗ ✗ 28.6 - - - 48.6 10.9 23.8 39.8
TopoMLP [48] CL ✗ ✗ 29.5 - - - 49.5 21.7 26.9 44.1
SMERF [37] CL ✓ ✗ 33.4 - - - 48.6 15.4 23.8 42.9
Topologic [9] CL ✓ ✗ 34.4 - - - 48.3 28.9 28.7 47.5

LaneSegNet [22] LS ✗ ✗ 32.3 32.9 - - - 25.4 - -
LaneSegNet∗ [22] LS ✗ ✗ 27.8 - - 23.8 36.9 24.1 21.3 36.7
TopoSD [53]† LS ✓ ✗ 37.0 - - 21.6 40.4 33.6 24.0 41.2
Score (Ours) LS ✓ ✓ 44.0 47.3 39.6 43.4 61.4 40.0 39.1 54.9

LaneSegNet‡ [22] LS ✗ ✗ 27.3 29.2 - - - 22.6 - -
Score (Ours)‡ LS ✓ ✓ 39.1 40.2 39.8 40.0 76.2 34.5 42.2 55.8

B. Experimental Setup and Parameters

As BEV transformation, we employ BEVFormer [24]
with a ResNet-50 [11] backbone and a feature pyramid
network (FPN) [29]. Similar to previous research [21], [22],
we reduce the original image size by 50% and leverage
AdamW [16] with a cosine annealing learning rate schedule
for training. If not otherwise mentioned, our architecture is
trained for 30 epochs with single-frame mode, followed by
an additional 30 epochs dedicated to temporal fusion. For
2D detection, we train YOLOv9 [43] for 200 epochs. The
training process uses 8 NVIDIA Tesla V100 GPUs, with a
total batch size of 8.

Following [22], we select npts = 10 for the each polyline
of the lane segment and nrb = 20 for the road boundary.
All points are predicted in 3D. The model uses 200 base
queries, supplemented by an additional ndn = 60 queries for
denoising and nsd = 50 SD enhanced queries.

To solve the bipartite matching for DETR-style architec-
tures, we use the Hungarian algorithm and follow LaneSeg-
Net [22] with their proposed matching costs for the lane
segments. The same costs are applied for the road boundary
matching. We employ the same weighting parameter λ for
both matching and loss. The hyperparameters for the lane
head are configured as follows: λvec,ls = 0.025, λseg,ls = 3.0,
λce = 1.0, λdice = 1.0, λcls,ls = 1.5, λtype = 0.01, λtop = 5.0,
λo2m = 1.0, and λdn = 1.0. The boundary head has dif-
ferent values for the following parameters: λvec,rb = 0.0125,
λseg,rb = 1.5, and λcls,rb = 0.5.

C. Overall Results

We benchmark our proposed method, Score, against vari-
ous state-of-the-art algorithms on the OpenLane-V2 valida-
tion subset A, as shown in Tab. I.

Our approach demonstrates substantial improvements over
all prior methods, attaining the best results for each task.
Notably, Score shows an increase of 36% on the validation
split and 43% on the test split in lane segment detection
DETls compared to LaneSegNet, which highlights the ef-
fectiveness of leveraging SD maps. Our method capitalizes
on the structured prior knowledge provided by the SD

TABLE II: Ablation study of individual components. Starting from
a single-frame baseline, each modification is incrementally added,
demonstrating its contribution to the overall performance.

Method DETls DETped TOPll

Baseline 32.3 32.9 25.4
+ Boundary & 2D Det. Head 32.1 34.4 28.6
+ SMERF [37] 35.8 41.7 31.3
+ SD Map Enhanced Queries 37.3 41.2 31.8
+ OSM SD Map 38.2 42.0 32.4
+ One-to-Many Matching 39.8 43.5 34.8
+ Lane Denoising 39.8 44.1 34.6
+ Topology Post-Processing 39.8 44.1 36.2
+ Dataset Resampling 40.0 45.1 36.2
+ Temporal Fusion 44.0 47.3 40.0

TABLE III: Disjoint split results. ∗: Epochs for temporal training.

Method Epochs DETls DETped TOPll

LaneSegNet 12 17.2 21.1 16.2
LaneSegNet 24 19.3 21.6 16.9
Score (Ours) 15∗ 23.8 32.6 22.7
Score (Ours) 30∗ 21.3 32.7 22.2

map, allowing for superior predictions, even in challenging
scenarios where parts of the lane are occluded by vehicles,
as shown in Fig. 3. Further, Tab. III highlights that our
method also generalizes better compared to LaneSegNet due
to the performance increase for the geographically disjoint
dataset. As LGMap [49] and MapVision [54] employ large
backbones, test-time augmentation and/or ensembles, results
are not directly comparable. For a comparison and further
results, we would like to refer the reader to our project page.

D. Ablation Studies

We evaluate the effectiveness of each component of Score
in Tab. II. As these components primarily impact the per-
formance of the lane segmentation head, we present results
focused solely on that aspect. The incorporation of the
SD map into the BEV features [37] exhibits a substan-
tial improvement, while our map-enhanced queries further
demonstrate a significant gain in performance. The efficacy
of this effect is enhanced by the utilisation of SD map data



TABLE IV: 2D traffic ele-
ment detection results. Traffic
element heads were trained
on 2D detection task only.
†: using YOLO proposals

Method DETt

DN-DETR [18] 53.0
DN-DETR† 57.0
YOLOv9 [43] 61.4

TABLE V: Boundary detec-
tion results. Detection heads
were trained on the road
boundary task only.
†: with techniques (one-to-
many, temporal fusion, etc.)

Method DETb

MapTRv2 Head [27] 31.0
Lane Attention 38.4
Lane Attention† 42.5

TABLE VI: Results for different temporal fusion settings.

Epochs
(single
frame)

Epochs
(temporal

fusion)
DETls DETped DETb DETll

30 0 40 45.1 40.5 36.2
0 30 31.1 33.6 31.8 28.4
5 30 40.6 43.5 38.9 36.4
30 30 44.0 47.3 39.7 40.0

sourced from OpenStreetMap (OSM) instead of the original
annotations of OpenLane-V2. Further, temporal fusion yields
a substantial performance improvement.

In Tab. IV, we present ablation studies comparing the per-
formance of variants of DN-DETR [18] and YOLOv9 [43].
Following [48], we also evaluated DN-DETR using proposals
from YOLOv9. For our final architecture, we chose YOLOv9
due to its superior performance as 2D detection head.

To demonstrate the efficacy of our road boundary reformu-
lation using lane attention, we present the results in Tab. V.
Training on the road boundary estimation task only, our
method with its reformulation outperforms a MapTRv2 [27]
head for the same architectural design by a large margin.
Furthermore, with additional improvements such as one-to-
many and temporal fusion, we achieved a 37% increase
in performance. Lastly, we analyze the impact of different
warm-up durations compared to our fusion strategy on the
model’s performance, as shown in Tab.VI.
Note that the SD map can have ambiguities, e.g., bridge
overpass scenarios, but our approach shows robust behavior
and uses the image information to infer the correct lane
structure (c.f. qualitative results on our project page).

V. CONCLUSIONS

We propose a coherent approach for jointly predicting lane
segments, road boundaries, and 2D traffic elements using
onboard sensors. The network is capable of reasoning about
the lane topology and associating traffic elements with lanes.
It utilizes SD maps to ingest prior knowledge, which can be
particularly beneficial for occluded areas as shown in the
visual examples. The experimental results demonstrate the
efficacy of the network, as it outperforms all recent models
on lane segment and road boundary detection, as well as on
topology reasoning. Our approach reduces the dependence on
HD maps, thus, paving the way toward scalable and mapless
autonomous driving.
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