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Daniel Perea Ströma, Igor Bogoslavskyib, Cyrill Stachnissb,∗

aUniversidad de La Laguna, Departamento de Ingenierı́a Informática, Av. Francisco Sánchez, 38206 Tenerife, Spain.
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Abstract

The ability to explore an unknown environment is an important prerequisite for building truly autonomous robots. Two central
capabilities for autonomous exploration are the selection of the next view point(s) for gathering new observations and robust
navigation. In this paper, we propose a novel exploration strategy that exploits background knowledge by considering previously
seen environments to make better exploration decisions. We furthermore combine this approach with robust homing so that the
robot can navigate back to its starting location even if the mapping system fails and does not produce a consistent map. We
implemented the proposed approach in ROS and thoroughly evaluated it. The experiments indicate that our method improves the
ability of a robot to explore challenging environments as well as the quality of the resulting maps. Furthermore, the robot is able to
navigate back home, even if it cannot rely on its map.
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1. Introduction

Exploration is the task of selecting view points so that a
robot can cover the environment with its sensors to build a map.
The ability to robustly operate without user intervention is an
important capability for exploration robots, especially if there is
no means for communication between the robot and an opera-
tor. Most exploration robots always start assuming zero knowl-
edge and do not exploit any background knowledge about the
environment or typical environments. They build a map of the
environment online and make all navigation decisions based on
this map. As long as this map is consistent, the robot can per-
form autonomous navigation by planning the shortest path—for
example using A*—from its current location to its next van-
tage point using the map. Although recent SLAM systems are
fairly robust, there is a chance that they fail, for example, due
to wrong data associations generated by the front-end. Even
current state-of-the-art SLAM approaches cannot guarantee the
consistency of the resulting map. Computing a path based on
an inconsistent map, however, is likely to lead to a failure and
possibly to loosing the robot if operating in a hazardous envi-
ronment. Thus, exploring robots should always decide where to
go next and at the same time verify if their map is still consistent
(see sketch in Fig. 1). Considering existing approaches, how-
ever, it is fair to say that most exploration systems follow the
paradigm that they (a) make their navigation and exploration
decisions using the current map only and (b) assume that the
map is consistent and thus can be used as the basis for path
planning and navigation.
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Figure 1: Mobile robot exploration has to answer the question: “Where to
go next?”. Our approach exploits previously mapped environments to predict
potential future loop closures and thus to select better target locations. When
the statistical map consistency tester provides the robot with the information
that the map is not consistent anymore the robot starts rewinding the trajectory
using our robust homing method.
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In this paper, we aim at relaxing these assumptions. The key
idea is to consider the knowledge gained from previously con-
ducted exploration missions to support the navigation system
of the robot. This is motivated by the fact that selecting appro-
priate target locations during exploration supports the mapping
process, and can increase the probability of building a consis-
tent map. Furthermore, we want to be able to safely navigate
our robot back to its starting location, even if the mapping pro-
cess failed.

The first contribution of this paper is a novel approach to
exploiting background knowledge while generating exploration
behaviors to support mapping. The key idea is to use previously
experienced environments to reason about what to find in the
unknown parts of the world. To achieve this, we equip our robot
with a database to store all acquired (local) maps and exploit
this knowledge when selecting target locations. Our research
is motivated by an exploration project for autonomously digi-
tizing the Roman catacombs, which are complex underground
environments with repetitive structures. To predict possible ge-
ometries of the environment the robot may experience during
exploration, we exploit previously visited areas and consider
the similarities with the area around the currently planned next
view point. This allows the robot to actively seek for loop-
closures and in this way actively reduce its pose uncertainty.
Our experiments indicate that this approach is beneficiary for
robots when comparing it to a standard frontier-based explo-
ration method.

The second contribution is a robot homing approach with
the goal of retrieving our robot even if the SLAM system failed
to build a consistent map. To avoid that our robot gets lost,
we propose a robust homing system consisting of two distinct
parts. Part A performs a statistical analysis of the map and thus
provides the information about its consistency. We build upon
our previous work [1] for performing a cascade of pair-wise
consistency checks using the observations perceiving the same
areas. To avoid performing such checks on the overall map,
we reduce the area to analyze by planning the shortest homing
route for the robot assuming a consistent map. We then analyze
the map consistency only along that path and can estimate on
the fly if the map around this path is consistent or not with a
given confidence level. If it is consistent, we navigate back on
the verified homing path. Part B of our approach is responsible
for driving the robot back to its starting location without a map.
We achieve this by rewinding the trajectory that the robot took
to reach its current pose. If the motions of the robot were per-
fect, i.e. would lead to the desired robot pose in the world frame,
we would be able to simply invert the motion commands per-
formed by the robot and could safely reach the starting location.
Motion execution and odometry, however, are often noisy. As
a result, simply following inverse motion commands will not
bring the robot to the starting location in the real world in most
cases. Therefore, we take into account the sensor information
to guide the robot back by matching the observations with the
past.

2. Related Work

The majority of techniques for mobile robot exploration fo-
cus on generating motion commands that minimize the time
needed to cover the whole terrain. Several techniques also as-
sume that an accurate position estimate is available during ex-
ploration [2, 3]. Whaite and Ferrie [4] present an approach that
uses the entropy to measure the uncertainty in the geometry of
objects that are scanned with a laser range sensor. Similar tech-
niques have been applied to mobile robots [5, 6], but such ap-
proaches still assume to know the correct pose of the vehicle.
Such approaches take the map but not the pose uncertainty into
account when selecting the next vantage point. There are, how-
ever, exploration approaches that have been shown to be robust
against uncertainties in the pose estimates [7, 8].

Besides the idea of navigating to the next frontier [3], tech-
niques based on stochastic differential equations for goal-direc-
ted exploration have been proposed by Shen et al. [9]. Similar
to that, constrained partial differential equations that provide a
scalar field into unknown areas have been presented by Shade
et al. [10]. An information-theoretic formulation that seeks to
minimize the uncertainty in the belief about the map and the tra-
jectory of the robot has been proposed by Stachniss et al. [11].
This approach builds upon the works of Makarenko et al. [12]
and Bourgault et al. [13]. Both extract landmarks out of laser
range scans and use an Extended Kalman Filter to solve the
underlying SLAM problem. They furthermore introduce a util-
ity function which trades-off the cost of exploring new terrain
with the potential reduction of uncertainty by measuring at se-
lected positions. A similar technique has been presented by
Sim et al. [14], who consider actions to guide the robot back to
a known place in order to reduce the pose uncertainty of the ve-
hicle. Such information-driven techniques have also been used
for perception selection to limit the complexity of the underly-
ing optimization problems in SLAM [15].

In general, the computation of the expected entropy reduc-
tions is a complex problem, see Krause and Guestrin [16], and
in all real world systems, approximations are needed. Suitable
approximations often depend on the environment model, the
sensor data, and the application. In some cases, efficient ap-
proximations can be found, for example in the context of mon-
itoring lakes using autonomous boats [17].

Other approaches, especially in the context of autonomous
micro aerial vehicles (MAVs), seek to estimate the expected
feature density in the environment in order to plan a path through
areas that support the helicopter localization [18]. This can be
seen as related to information-theoretic approaches, although
Sadat et al. [18] do not formulate their approach in this frame-
work. A related approach to MAV exploration seeks to select
new vantage points during exploration, so that the expected
number of visible features is maximized, see Mostegel et al. [19].

An interesting approach by Fox et al. [20] aims at incorpo-
rating knowledge about other environments into a cooperative
mapping and exploration system for multiple robots. This al-
lows for predicting simplified laser scans of an unknown envi-
ronment. This idea was an inspiration for our paper for pre-
dicting possible loop closures given the environment structure
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explored so far. We use this approach for exploring ancient cat-
acombs, which are repetitive underground environments, with
a mobile platform, see Fig. 1. Chang et al. [21] propose an
approach for predicting the environment using repetitive struc-
tures for SLAM. Other background knowledge about the en-
vironment, for example semantic information [22], can support
the exploration process as shown by Wurm et al. [23], Stachniss
et al. [24] as well as Holz et al. [25].

A central problem in robust exploration, however, is that in
case of a SLAM failure, the map becomes inconsistent. This
can prevent the robot from continuing its exploration mission
and—even worse—from being able to navigate back. It is there-
fore important to be able to perform reliable navigation without
relying on a map.

Sprunk et al. [26] present a lidar-based teach-and-repeat
method to follow a route given by the user. The approach relies
on precise localization of the robot based on the lidar measure-
ments with respect to a taught-in trajectory. Similarly, Furgale
et al. [27] perform the ICP-based teach-and-repeat approach
on an autonomous robot equipped with a high precision 3D
spinning lidar. They extend the standard teach-and-repeat ap-
proach by adding a local motion planner to account for dynamic
changes in the environment. Our method to rewind the trajec-
tory is similar to the teach-and-repeat setup in this formulation.
However, in contrast to the mentioned methods, we use a sub-
stantially less accurate robot and thus have to cope with some-
what larger deviation from the reference trajectory.

Vision methods are also popular for teach-and-repeat ap-
proaches. Furgale et al. [28] present a vision-based approach
to teach-and-repeat for long range rover autonomy. During a
learning phase, their system builds a manifold map of overlap-
ping submaps as the rover is piloted along a route. The map
is then used for localization as the rover repeats the route au-
tonomously. They present an autonomous planetary rover that
is able to navigate even non-planar terrain without relying on
an accurate global reconstruction. Nitsche et al. [29] extend a
standard teach-and-repeat approach by adding Monte Carlo lo-
calization to localize the robot with respect to the learned path.
They present vision-based tests carried out both on a ground
robot and an aerial drone. Battesti et al. [30] present an on-
line localization approach. They use visual loop-closure tech-
niques to create consistent topo-metric maps in real-time while
the robot is teleoperated and localizes itself in such maps. This
allows the robot to follow the predicted path successfully com-
pensating the odometry drift. These visual methods, however,
need substantial adaptation in order to be used in a setup simi-
lar to ours: using monocular cameras to localize through feature
detection relies on having enough visual information, which is
not the case in the typically dark catacombs. The work pre-
sented here is based on a conference publication [31], which
described the idea of predictive exploration.

3. Robot and Sensor Setup

Our robot is a customized Mesa Element platform, see Fig. 1.
It is equipped with a laser range finder scanning in a horizontal

2D plane around 60cm above the ground. The robot is addition-
ally equipped with two ASUS Xtion depth cameras that observe
the local area in front of the robot in 3D. Both cameras look
forward, one slightly rotated to the left and the other one to the
right with a minimal overlap in the middle. Our system relies
on the 2D information for solving the exploration task in or-
der to decide which parts of the scene have been explored, and
where to move next. For the robust homing presented in Sec. 5,
we take into account the 3D depth images from the Xtions as
this allows for a more accurate alignment of the scans. Further-
more, a local traversability analysis is done in 3D based on the
Xtions [32].

4. Environment Predictive Exploration

The central question in exploration is “Where to go?”. Sev-
eral different cost functions for making the decision of where to
go next can be defined. The most popular one goes back to Ya-
mauchi [3], who guides the robot to the closest reachable unex-
plored location. Yamauchi introduces the concept of frontiers,
which are the cells of an occupancy grid map at the boundary
between the free and the unexplored space. In the standard set-
ting, this approach seeks to minimize the time that is needed
to cover the environment with the robot’s sensors and is a pop-
ular choice in mobile robotics. On the other hand, exploring
hazardous environments requires trading time for a more robust
navigation that supports the mapping system and avoids pose
uncertainty.

4.1. Information-Driven Exploration

Given the fact that most real robots maintain a probabilistic
belief about their pose and the map of the environment, an alter-
native approach is to select the target location that is expected to
minimize the uncertainty in the belief of the robot. In this set-
ting, the exploration problem can be formulated as follows. At
each time step t, the robot has to decide which action a to exe-
cute (where to move next). During the execution of a, the robot
obtains a sequence of observations z (for better readability, we
neglect all time indices).Thus, we can define the expected in-
formation gain, also called mutual information, of selecting the
action a as the expected change in entropy in the belief about
the robot’s poses X and the map M :

I(X,M ;Za) = H(M,X)−H(M,X | Za). (1)

The second term in Eq. (1) is the conditional entropy and is
defined as

H(M,X | Za) =
∫
p(z | a)H(M,X | Za = z) dz. (2)

Unfortunately, reasoning about all potential observation se-
quences z in Eq. (2) is intractable in nearly all real world appli-
cations since the number of potential measurements grows ex-
ponentially with the dimension of the measurement space and
with time. It is therefore crucial to approximate the integral
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Figure 2: Example of the submap retrieval using FabMAP2. The left image shows the query map, the other ones the best four matches from the database.

of Eq. (2) so that it can be computed efficiently with sufficient
accuracy.

A suitable approximation, however, depends on the envi-
ronment model, the sensor data, and the application so that
no general one-fits-all solution is available. In our previous
work [11], we considered different types of actions: First, ex-
ploration actions that guide the robot to the closest frontier and
reduce the map uncertainty. As we have no further informa-
tion about the unseen area, it is difficult to distinguish two fron-
tiers with respect to the expected uncertainty reduction. Sec-
ond, loop-closing and re-localization actions, which are key to
the uncertainty reduction about the robot’s pose.

In this work, we aim at combining these types of actions
into a single one. We seek to predict what the so far unseen
environment beyond a frontier may look like based on back-
ground knowledge of previously seen environments and select
the frontier that potentially leads to a loop-closure. In this way,
we maximize the expected uncertainty reduction in the belief of
the robot about the world.

4.2. Utility Function for Exploration

Most exploration systems define a utility function to relate
the expected gain in information with the cost of obtaining the
information. As long as no constraints such as available en-
ergy or similar are considered, the distance that the robot has
to travel to obtain its measurements is a standard choice. This
yields a utility function of the form

U(a) = I(M,Z;Za)− cost(a), (3)

so that the task of selecting the best action can be formulated as

a∗ = argmax
a

I(M,Z;Za)− cost(a). (4)

Throughout this work, we define the cost function cost(a) as
the path length corresponding to action a, i.e. the length of the
trajectory from the current location of the robot to the desig-
nated target location.

As mentioned in the previous section, estimating the ex-
pected information gain is challenging and computationally de-
manding and thus we use the following approximation. We as-
sume that actions can reduce the robot’s uncertainty about the
map by exploring unseen areas and/or can reduce its uncertainty
about the trajectory by closing a loop:

a∗ = argmax
a

Imap(a) + Itraj (a)− cost(a). (5)

As we do not know how large the unknown area and thus the
number of unknown grid cells behind a frontier is, we may ar-
gue that all frontiers yield the same expected information gain
with respect to the map uncertainty. Thus, we can simplify Eq. (5)
as long as we consider only exploration actions to frontiers:

a∗ = argmax
a

Itraj (a)− cost(a). (6)

The expected information gain about the trajectory Itraj (a) is
mainly influenced by loop closures. The more likely a loop
closure can be obtained when executing an exploration action a,
the higher its expected gain. Thus, the remainder of this section
addresses the problem of predicting possible loop closures.

4.3. Predictive Exploration
The key contribution here is to model the predictive belief

describing what the environment may look like in the unex-
plored areas. To compute this belief, the robot exploits envi-
ronment structures it has seen in the past—either in the envi-
ronment explored so far or even from previous missions. Our
exploration system uses this predictive belief to evaluate the
frontiers as possible target locations for the exploration. This
allows us to select the frontiers that are likely to lead to a loop-
closure and thus to an active reduction of the uncertainty in the
robot’s belief. As we show during the experimental evaluation,
this approach outperforms the traditional frontier-based explo-
ration system.

4.4. Querying for Similar Environment Structures
The key idea of this approach is to look for similarities be-

tween the known areas around a frontier and portions of previ-
ously mapped environments. Under the assumption that envi-
ronments are not random but expose certain structures and that
these structures tend to appear more than once, we can use the
already mapped areas in order to predict what the environment
beyond the frontier may look like.

The first step is to look for portions of the already mapped
environments that are similar to the area around the frontier
for which the prediction should be performed. To do this, we
incrementally build a database storing all local grid maps that
the robot experienced. To perform a similarity query, we com-
pare our local maps with the maps stored in the database. To
avoid a large number of expensive map-to-map comparisons to
search for similar submaps, we rely on a bag-of-words inspired
approach, a technique that is frequently used in computer vi-
sion to search for image similarities. More concretely, we ap-
ply FabMAP2 by Cummins and Newman [33], an appearance-
based approach we can use to efficiently query our database.
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Figure 3: Illustration of the loop closures prediction. Left: So far explored map with the frontier under consideration (blue circle). Middle: One map from the
predictive belief (in red) superimposed on the map explored so far. Right: Voronoi diagram used for the path search.

Figure 4: Illustration of the active loop closing. Left: prediction of the possible path with the loop closure shown in blue. Middle: the robot explores the path
along the predicted loop closure and perceives the actual structure of the scene. The graph in the already explored environment shows the pose graph of the SLAM
system. Right: successful loop closure Please note that the predicted environment is actually not identical with the real environment but reveals a similar structure.
This similarity resulted in the shown loop closure.

Although FabMAP2 was originally designed to match cam-
era images, it turns out that we can also use it to effectively
search for local grid maps in a large database of maps. As
FabMAP2 also provides a likelihood l(m) for each match m,
we can obtain a belief about possible environment structures.
Fig. 2 shows an illustration of this procedure. The image on the
left is a query image and the other images are the top 4 matches
reported by FabMAP2.

4.5. Loop Closures Prediction

As we are mainly interested in the possible paths through
the unknown environment in order to find loop closures and not
necessarily the exact geometry, we reduce the maps reported by
FabMAP2 to extended Voronoi graphs [34] and do all further
computations on these graphs.

FabMAP2 provides us with candidates of matching maps
but no geometric alignment between the query map and the re-
ported ones. Thus, we align each map reported by FabMAP2
with our query map. This can be done in a robust manner
through a RANSAC-based alignment of the Voronoi graphs us-
ing its junction points. Fig. 3 shows an example of a Voronoi
graph aligned with the map explored so far.

The next step, is to search for possible loop closures, for
which we use the extended Voronoi graph. Starting from the
frontier point, we traverse the Voronoi graph in a breadth-first
manner. During the traversal, we check if the Voronoi graph

leads to a position that is close to any other frontier in the map
built so far. If this is the case, we regard that as a possible loop
closure. Such a situation is illustrated in the left image of Fig. 4.
This process is executed for each frontier.

4.6. Estimating the Probability of Closing a Loop

Each map reported by FabMAP2 comes with a likelihood.
Thus, we can approximate the probability of closing a loop
when executing an exploration action as

Sf =
∑

m∈M(f)

l(m)
∑

c∈C(f ,m)

l(c | m) (7)

Here,M(f) is the set of matches returned by FabMAP2 when
querying with the frontier f , and l(m) the likelihood of a match
m. The term C(f,m) refers to the set of possible loop closures
computed according to the breadth-first traversal explained above
and l(c | m) is the likelihood that the loop closures can be
reached. We assume that l(c | m) is proportional to the inverse
length of the path of the predicted loop closure. This means that
short loop closures are more likely than long ones.

Assuming that every executed loop closure through unknown
areas of the map yields the same expected uncertainty reduc-
tion, we can approximate the expected information gain Itraj
of Eq. (6) with the score Sf according to Eq. (7). This is clearly
a strong assumption but we argue that a high score indicates a
high expected gain from exploring the frontier.
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5. Robust Homing Using Map Consistency Checks

Under the assumption that we can ensure the consistency of
the current map, homing is a comparably easy task. It basically
consists of computing a collision-free path from the current lo-
cation to the starting location and following the planned path
with a standard navigation pipeline. Such a navigation system
would, for example, localize the robot in the map built so far
and plan the shortest path towards home using A* or a similar
approach. If the map, however, is not consistent because the
underlying SLAM system has failed, this approach is likely to
lead to a deadlock situations from which the robot cannot es-
cape easily.

To ensure a robust exploration of the environment, we ad-
dress the problem of robust homing in a two-stage approach.
First, while mapping the environment, a path is computed from
the current location towards home assuming the map is consis-
tent. Then, we perform the recently proposed map consistency
estimation approach by Mazuran et al. [1] to evaluate if the map
is consistent with a given confidence level. If the path towards
home is consistent, and we finished exploring the environment,
we simply execute this plan. If the path towards home is not
consistent, we aim at reversing the trajectory of the robot taken
so far by aligning the current observation with the observations
obtained on the way from the starting location to the current
one. This yields a robust strategy to bring a robot home to its
starting location.

5.1. Map Consistency Test

Our map consistency estimation approach proposed previ-
ously in [1] builds upon a pose-graph representation, i.e., the
location of the robot from which individual observations have
been taken. We start with evaluating the consistency of pairs of
range readings. The approach of Mazuran et al. describes the
discrepancy between two range scans by computing how much
the two scans occlude each others free space.

To estimate the occlusion of the free space, we compute for
each scan the polygon of the robot’s pose and all end points of
the range scan. Such polygons define the free space covered by
the scan taken from the robot’s pose. The intuition is that both
scans are consistent with each other if none of the end points
of the first scan lies inside the polygon of the second one and
vice versa. In [1], we define an inconsistency distance d(p)
for a point p, which lies inside the polygon of another scan, as
the Euclidean distance of a point p to the closest point on the
polygon boundary of the other scan. Intuitively speaking, for
a consistent map, we assume that the inconsistency distances
d(p) are in line with the sensor noise of the proximity sensor.
Substantially larger values for d(p) may indicate that the scans
are not properly aligned and the map may be inconsistent in
local neighborhood of the scans.

More concretely, we can expect that, under the assumption
of a correct alignment of two scans, on average 50% of the
end points from the first scan have an inconsistency distance
d(p) > 0 in the second scan and vice versa. This is due to
the sensor noise in the range measurements. According to [1],
we can formulate a statistical test for the sum of inconsistency

A
B

C D

A

B

C
D

Figure 5: The top image shows the map built so far with the detected inconsis-
tencies (inconsistent scans are shown in red). The middle one shows a submap
that is built using only the scans recorded around the A* path from A to B com-
puted in the full map. In this example, no inconsistencies are present and none
are detected. The bottom image is done in the same way as the middle one,
but the A* path is computed from C to D and here, the map inconsistencies are
correctly detected.

distances d(p). This test evaluates if pairs of scans are consis-
tent given the sensor noise or reveal a larger error and thus an
inconsistency.

To assess global map consistency, we could conduct this
test for all pairs of scans and consider a map to be consistent
if all tests are successful. The problem, however, is that a sin-
gle statistical test will produce the wrong result with probability
α. Thus, if we test a single scan, which overlaps with r other
scans, this yields a type I error probability of 1− (1− α)r and
thus renders the direct application of the pairwise approach un-
suitable. The key trick is to model the outcome of the pairwise
hypothesis test as a Bernoulli-distributed random variable with
parameter α. As a result of that, the number of failed tests fol-
lows a binomial distribution with parameters α and r. Given
that, we can compute the maximum number ξ̂ of tests that are

6



allowed to fail at a confidence level 1− α′ as

ξ̂ = min
0≤ξ≤r

ξ
∣∣∣∣∣∣

r∑
i=ξ+1

(
r

i

)
αi(1− α)r−i ≤ α′

 . (8)

This allows for computing a cascaded hypothesis test for all
overlapping scans: We perform all pairwise hypothesis tests. If
the number of failed tests is smaller than ξ̂, the overall consis-
tency test is positive otherwise negative. For more details, we
refer the reader to [1].

5.2. Map Consistency Estimate for Finding the Way Home

Given the consistency test presented above, we can perform
a mathematically sound statistical test to evaluate if a map is
consistent or not. However, what the robot really needs to know
is not the consistency of the full map. Instead, it is sufficient to
know if it can safely move along a specific path through the en-
vironment to the starting location. Thus, we plan a path with A*
assuming that the current map is consistent and extend our pre-
vious statistical consistency check to consider only the scans
along that path. To achieve this, we select all recording loca-
tions that were closer than twice the maximum sensor range
away from the trajectory planned with A*. Examples of such
partial maps are depicted in Fig. 5. The top image shows an
inconsistent 2D map of the Priscilla catacombs. Directly apply-
ing the approach described in [1] would label the whole map as
inconsistent. In contrast to that, if the robot only takes into ac-
count the shortest route from A to B, he can still safely perform
the navigation task, as shown in the middle image of the same
figure. This is not the case if the robots wants to go from C to D
as he will encounter an inconsistent part of the map on its way.

In terms of the persistent data structure that is used to store
all the information, we use a generalization of a pose graph.
Each node in the graph corresponds to a pose of the robot at
time t. In addition to that, each node stores the original odome-
try pose Xt and the corresponding 3D point cloud ct as well as
the 2D scan. To efficiently represent this, the pose graph with
the nodes Xt itself is kept in memory but the corresponding
point clouds ct are stored on disk and are loaded on demand.

5.3. Robust Homing by Rewinding the Trajectory

Once the consistency check has identified that the submap
including the path is inconsistent, we need to perform the tra-
jectory rewinding to bring the robot home safely. At this mo-
ment the robot does not have a consistent map, so it needs to
rewind the trajectory without relying on a map. We assume
that the environment remains static while the robot performs
homing which is typically the case for the underground envi-
ronments we explore. We can view the robot’s forward trajec-
tory as a series of 3D poses of the robot {X0, . . . , Xn}. The
task of rewinding the trajectory is to drive the robot from Xn

to X0 while correcting for the error in odometry. The correc-
tion of the odometry error is done by aligning the point clouds
obtained while performing trajectory rewinding with the ones
corresponding to poses from Xn to X0. Note that we subsam-
ple the trajectory in such way that each pose Xi is either 1m

Figure 6: Partial view of the 3D model of the environment of the Priscilla
catacombs built from two ASUS Xtion cameras.

away from the previous one or that there is a difference of at
least 10◦ in yaw between these two poses.

Without loss of generality, let us consider that the robot has
to carry out the action to move from Xi to Xj and to compen-
sate for the error in odometry. To do that, the robot exploits the
current point cloud ccurrent obtained after executing the move-
ment from Xi to Xj . In an ideal world, the command should
have brought the robot to the pose Xj . In reality, there is an er-
ror introduced by slippage, uneven ground etc. Thus, we align
ccurrent with cj . To achieve that, we use a recent robust vari-
ant of ICP called NICP [35] to find the discrepancy between
the point cloud that the robot expects to perceive and what it
actually perceives. The NICP method extends point-to-plane
error metric proposed in Generalized ICP [36] by accounting
not only for the metric distance between the points but also for
the curvature of the underlying surface. The transformation be-
tween the point clouds provided by the matching algorithm can
be viewed as the difference in the 3D poses at which the two
point clouds ccurrent and cj are obtained. The transformation
reported by the NICP algorithm corresponds to T∆ and thus
leads to the relative position of ccurrent expressed in the local
coordinate frame defined by Xj . Knowing the pose Xj and the
pose of ccurrent relative to it through T∆ enables us to compute
the current position of the robot in the global odometry frame:
Xcurrent = TjT∆, where Tj is a transformation matrix that cor-
responds to the pose Xj in the world coordinate frame.

We use this new 3D pose Xcurrent to generate a motion
command to reach the next pose chosen from the recorded tra-
jectory. As we have a wheeled platform that moves on the
ground, we have no control over the height and attitude. Thus,
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we generate 2D navigation commands for the robot. We con-
tinue the above-described process until the robot is within dmax

near its starting pose X0.
Note that our method relies on matching point clouds, typ-

ically seen from similar view points, i.e., no global search is
needed. The vanilla ICP algorithm may converge to a local min-
imum while performing the optimization of the objective func-
tion. This can happen in very cluttered environments. Here,
the objective function shows high variations with multiple local
minima. On the contrary, this can also happen in places that
are very feature-scarce as this may yield few distinct, narrow
local minima. We found that using the NICP variant of ICP
avoids such shortcomings in most practical situations, partic-
ularly when dealing with small view point changes, as is the
case for our homing strategy. Refer to the work of Serafin and
Grisetti [35] for a robustness analysis.

6. Experiments

The experiments are designed to illustrate (i) the advantages
of our predictive exploration approach, if it is safe, and (ii) that
the robot can rewind trajectories in case of failure of the map-
ping system.

For evaluating the next view point selection approach, we
use a standard frontier-based exploration approach as a base-
line and show that our exploration approach selects frontiers
that lead to loop closures which in turn result in improved maps
of the environment. The underlying mapping framework for all
exploration experiments is a state-of-the-art graph-based SLAM
system, which uses g2o [37] and FLIRT features to speed up
the search for possible data associations [38], uses scan match-
ing for incremental alignments, and applies single cluster graph
partitioning to resolve ambiguities as proposed by Olson [39].
The exploration and homing systems have been implemented in
C++ as ROS modules.

6.1. Map Comparisons

First, we compare the quality of the maps obtained with
frontier-based exploration vs. our predictive exploration. The
environments considered here are parts of the Roman catacomb
Priscilla, a difficult to traverse and large-scale underground en-
vironment in Rome. The robot is equipped with tracks and thus
its odometry is in general worse than the one of a wheeled robot
and it sometimes reveals a (temporarily) bias to one side.

Fig. 7 illustrates the obtained results for two environments
using exactly the same mapping system and identical param-
eters for the comparison. The map database consists of maps
constructed from other catacomb sites representing a similar
type of environment but not the same one. The images on the
left are the “ground truth” maps obtained from manual surveys.
The images in the second column correspond to the results of
the frontier-based exploration, while the images on the right
show our approach. As can be seen already visually, our ap-
proach yielded a consistent model of the environment, while
the frontier-based approach failed. Using the frontier-based ap-
proach the robot was unable to continue its exploration task due

to an inconsistent map that prevented the computation of fur-
ther exploration actions. We performed similar experiments in
different nested tunnel environments and obtained comparable
results.

The exploration task strongly benefits from achieving loop
closures as early as possible, avoiding a high uncertainty in the
pose-graph. Our approach improves the amount of loop clo-
sures whenever the current environment resembles previously
seen maps, either in previous or current explorations runs. Thus,
a new environment with recurrent structures also benefits from
this approach. In case there is no similarity between the cur-
rent environment and the maps stored in the database, no map
should be retrieved and thus the system falls back to frontier-
based exploration.

The execution time of our approach depends on the number
of unexplored frontiers, as well as on the map size and reso-
lution. On a standard computer and a map size of 150 m by
100 m with a grid resolution of 5 cm, next view point selection
time ranged from 131 ms up to 4.8 s in the most complex sit-
uation. In practice, time consumed by the robot reaching the
next view point usually dominates the time consumed by the
selection task.

6.2. Exploration Path Length

The advantages of the prediction-based approach come at
a cost—the cost of traversing exploration paths that are longer
than the ones generated by the frontier-based approach. This
experiment is designed to evaluate the increase in path length.
As we are not able to obtain consistent maps for the frontier-
based approach under a realistic noise model for the task under
consideration, we executed this evaluation under zero noise in
the simulator. Using a zero noise odometry, also the frontier-
based system is able to build consistent maps. In this setting
there is no advantage in using our predictive approach as the
pose uncertainty is zero and no uncertainty reduction is gained
from closing loops. We compared the distances traveled for
the frontier-based and our approach. The distances traveled are
summarized in Fig. 8. In the worst case scenario, the path gen-
erated by our approach was 1.85 times longer than the one of
the frontier-based approach. The minimum increase was a fac-
tor of 1.5. Generating on average a 1.7 times longer trajectory
is clearly an overhead—for actively closing loops and in this
way reducing uncertainty, however, this price must be paid.

6.3. Statistical Map Consistency Check and Robust Homing

After the robot finishes exploring the environment, it needs
to find its way home. The evaluation of our framework is de-
signed to illustrate the performance of the statistical map con-
sistency check in conjunction with an approach to safely and
robustly rewind the trajectory to return the robot to the starting
position should the consistency check report the map as incon-
sistent.

First, Fig. 5 illustrates an example of the statistical map
consistency check performed on range data from the Priscilla
catacombs in Rome. The partial maps computed around the
shortest path are usually substantially smaller than the map of
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Figure 7: Two performance comparisons in constant odometry bias scenario. On the left, the original map. In the middle, the closer frontier approach. On the right,
our prediction-based approach. Note that the nearest frontier approach produces a map that is non consistent with the original one, so that the robot can not continue
the exploration task. The map produced by the prediction-based approach is instead consistent with the original one.
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Figure 8: Mean and standard deviation of the distances traveled in the frontier-
based approach and in the proposed approach.

the whole environment, especially if the environment has mul-
tiple alternative branches and forms a complicated network of
corridors or rooms as we experience it often in catacombs or
underground mines. Testing smaller maps results in speed-up
of the statistical consistency evaluation procedure. The tim-
ings for the maps presented in Fig. 5 are as follows: full map
shown on top—2,930 ms; middle—140 ms; bottom—170 ms.
The computational time depends on the number of scans to an-
alyze and the gain in speed grows with the difference between
the sizes of the full and the reduced maps and the overlapping
scans. We performed the map consistency test on five different
datasets recorded in the Priscilla catacomb and the consistency
check always generated correct results. In sum, testing a map
along the planned path for consistency takes less than 200 ms
and thus can be executed on the fly on the robot. Additionally,
most of the computations could be cached when dealing with
huge maps (although this was not done here). In this case, the
test would only require a recomputation if the SLAM back-end
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Figure 9: Illustration of rewinding the trajectory through the office environ-
ment. The robot is steered from the bottom “tail” of the depicted trajectory
to the upper-right one. Black line denotes the odometry poses saved while
the robot is steered, gray denotes the odometry on the way back, red shows the
temporary destination poses picked from the odometry and blue shows the same
poses after the ICP correction. The pictures show several example locations vis-
ited by the robot. These feature tight doors to rooms as well as feature-scarce
corridors.

changes the configuration of the pose graph substantially.
Second, if the proposed statistical consistency check eval-

uates the map as inconsistent we need a robust way to return
the robot home to the starting location. We evaluate the ability
of our approach to rewind the trajectory by carrying out 20 ex-
periments in our lab environment. One of these experiments is
illustrated in Fig. 9. We steered the robot on a rather compli-
cated trajectory through an obstacle parcour containing narrow
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Figure 10: Three experiments performed in different settings. The meaning of
the lines is the same as in Fig. 9 with the difference that the top and the bottom
graphs do not show the pure odometry measurement on the return path. The
average deviation from the original trajectory is between 4 cm (top dataset) and
6 cm (bottom dataset).

passages as well as areas with lots of flat wall, which represents
a challenge for the matcher. The robot activated the “rewind
the trajectory” behavior after we (manually) broke the SLAM
system so that it followed the way in reverse order using the
NICP-based pose correction.

In Fig. 9, the original odometry measurements from the for-
ward path are drawn in black (hardly visible as the red tra-
jectory perfectly overlays it). The red line illustrates the sub-
sampled trajectory that the robot has selected as its sequence
{X0, . . . , Xn} for rewinding the trajectory. Both trajectories
overlay because the robot does not use any global map and re-
lies solely on the poses he recorded in the odometry frame (to
navigate back).

The gray line depicts the pure odometry measurements re-
corded while performing rewinding while the blue line shows
the poses of the robot after the alignment by NICP. As can be
seen, the robot accurately follows the previous trajectory with
our approach as the blue and the red trajectories are similar.
We compute the deviation from the original odometry path by
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searching the closest pose of the robot from the forward traver-
sal (black) for each pose from the backwards traversal (blue)
and averaging over all such distances. In this experiment, the
average deviation of the rewinding trajectory is approximately
5 cm. From the gray trajectory, we can furthermore see that
the odometry error must be taken into account—otherwise, the
robot would deviate substantially from the reference path (and
would collide with walls and obstacles).

We executed similar experiments in 20 different settings
with trajectory lengths ranging from 10 m to nearly 100 m and
the robot was always able to robustly drive back to the start
location. The trajectory in Fig. 9 is approximately 52 m long
while three smaller examples are illustrated in Fig. 10. Over-
all, this evaluation suggest that our robot is able to rewind dif-
ferent trajectories through the environment, robustly handling
corridor-like environments with multiple narrow passages such
as the doorways. Note that the robot cannot observe doorways
before it fully passed through them. Only by following the ref-
erence trajectory precisely, the robot can return.

7. Conclusion

The ability to robustly operate without user intervention is
an important capability for exploration robots in real-world set-
tings. In this paper, we proposed a novel approach for au-
tonomous exploration of unknown environments with robust
homing. The key contributions of this work are two-fold. First,
we presented a technique to predict possible environment struc-
tures in the unseen parts of the robot’s surroundings based on
previously explored environments. We exploit this belief to pre-
dict possible loop closures that the robot may experience when
exploring an unknown part of the scene. This allows the robot
to actively reduce the uncertainty in its belief through its explo-
ration actions. Secondly, we presented a homing system that
addresses the problem of returning a robot operating in an un-
known environment to its starting position even if the underly-
ing SLAM system fails. We combined a statistical map consis-
tency test with an NICP-based approach to precisely rewind a
previously taken trajectory.

We implemented our approach and executed it both, in sim-
ulation and on a real autonomous robot. Our experiments illus-
trate that our technique allows for an effective exploration of
difficult to map environments. By actively closing loops, we
are able to obtain consistent maps of the environment. In con-
trast to that, a traditional frontier-based exploration approach is
not able to successfully explore the scene if the SLAM system
fails. In the case of a mapping failure leading to an inconsis-
tent map, the proposed robust homing system can accurately
rewind trajectories guiding the robot through narrow passages
such as doorways, even when the robot could not see these nar-
row spaces while navigating through them.
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