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Abstract— The ability to explore an unknown environment
is an important prerequisite for building truly autonomous
robots. The central decision that a robot needs to make when
exploring an unknown environment is to select the next view
point(s) for gathering observations. In this paper, we consider
the problem of how to select view points that support the
underlying mapping process. We propose a novel approach that
makes predictions about the structure of the environments in
the unexplored areas by relying on maps acquired previously.
Our approach seeks to find similarities between the current
surroundings of the robot and previously acquired maps stored
in a database in order to predict how the environment may
expand in the unknown areas. This allows us to predict potential
future loop closures early. This knowledge is used in the view
point selection to actively close loops and in this way reduce the
uncertainty in the robot’s belief. We implemented and tested
the proposed approach. The experiments indicate that our
method improves the ability of a robot to explore challenging
environments and improves the quality of the resulting maps.

I. INTRODUCTION

Exploration is the task of selecting view points so that a
robot can cover the environment with its sensors to build a
map. Most exploring robots always start from scratch and do
not use any background knowledge about the environment or
typical environments. This may be seen as suboptimal as we
humans also reason about typical structures even exploring
an unknown environment.

While exploring the environment, a robot has to make
decisions about where to go and which area to inspect in
order to build a model of the environment, see Figure 1 for
a small example. The decision of which place to visit can
impact the underlying mapping system and can thus be crit-
ical for the quality of the resulting map. A typical approach
to exploration is the frontier-based approach proposed by
Yamauchi [28]. It identifies the frontiers between the free
space and unknown areas and guides the robot to the closest
one. This strategy typically yields short exploration paths
but is generally unaware about the uncertainty in the robot
belief, for example, about its current position in the world.
Information-theoretic approaches such as [13], [2], [23], [22]
consider the expected information gain to evaluate possible
target locations. A key challenge, for example in [23], is
to reason about the possible environment that the robot may
experience when navigating through unknown environments.
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Fig. 1. Mobile robot exploration has to answer the question: “Where to go
next?”. Our approach exploits previously mapped environments to predict
potential future loop closures and thus to select better target locations.

In this paper, we take first steps towards exploiting
background knowledge during autonomous exploration. The
key idea is to use previously experienced environments to
reason about what to find in the unknown parts of the
world. Thus, we equip the robot with a database to store
all acquired local maps and exploit this knowledge when
selecting target locations. Our research is motivated by an
autonomous exploration project for autonomously digitizing
the Roman catacombs, which are complex underground
environments with repetitive structures. To predict possible
structures the robot may experience during exploration, we
exploit previously visited areas and consider the similarities
with the area around the current frontiers. This allows the
robot to actively seek for loop-closures and in this way
actively reduce its pose uncertainty. Our experiments indicate
that this approach is beneficiary for robots when comparing
it to a standard frontier-based method.

II. RELATED WORK

The majority of techniques for mobile robot exploration
focus on generating motion commands that minimize the
time needed to cover the whole terrain. Several techniques
also assume that an accurate position estimate is available
during exploration [10], [28]. Whaite and Ferrie [26] present
an approach that uses the entropy to measure the uncertainty
in the geometry of objects that are scanned with a laser
range sensor. Similar techniques have been applied to mobile
robots [21], [16], but such approaches still assume to know
the correct pose of the vehicle. None of the approaches
mentioned above takes the pose uncertainty into account
when selecting the next vantage point. There are, however,



exploration approaches that have been shown to be robust
against uncertainties in the pose estimates [5], [9].

Besides the idea of navigating to the next frontier [28],
techniques based on stochastic differential equations for
goal-directed exploration have been proposed by Shen et
al. [19]. Similar to that, constrained partial differential equa-
tions that provide a scalar field into unknown areas have
been presented by Shade et al. [18]. An information-theoretic
formulation that seeks to minimize the uncertainty in the
belief about the map and the trajectory of the robot has been
proposed by Stachniss et al. [23]. This approach builds upon
the works of Makarenko et al. [13] and Bourgault et al. [2].
Both extract landmarks out of laser range scans and use
an Extended Kalman Filter to solve the underlying SLAM
problem. They furthermore introduce an utility function
which trades-off the cost of exploring new terrain with the
potential reduction of uncertainty by measuring at selected
positions. A similar technique has been presented by Sim et
al. [20], who consider actions to guide the robot back to a
known place in order to reduce the pose uncertainty of the
vehicle.

In general, the computation of the expected entropy reduc-
tions is a complex problem, see Krause and Guestrin [11],
and in all real world systems, approximations are needed.
Suitable approximations often depend on the environment
model, the sensor data, and the application. In some cases,
efficient approximations can be found, for example in the
context of monitoring lakes using autonomous boats [7].

Other approaches, especially in the context of autonomous
micro aerial vehicles (MAVs), seek to estimate the expected
feature density in the environment in order to plan a path
through areas that support the helicopter localization [17].
This can be seen as related to information-theoretic ap-
proaches, although Sadat et al. [17] do not formulate their
approach in this framework. A related approach to MAV
exploration seeks to select new vantage points during ex-
ploration, so that the expected number of visible features is
maximized, see Mostegel et al. [14].

An interesting approach by Fox et al. [6] aims at in-
corporating knowledge about other environments into a
cooperative mapping and exploration system for multiple
robots. This allows for predicting simplified laser scans of
an unknown environment. This idea was an inspiration for
our paper for predicting possible loop closures given the
environment structure explored so far. We use this approach
for exploring ancient catacombs, which are repetitive under-
ground environments, with a mobile platform, see Figure 2.
Chang et al. [3] propose an approach for predicting the
environment using repetitive structures for SLAM. Other
background knowledge about the environment, for example
semantic information, can support the exploration process as
shown by Wurm et al. [27], Stachniss et al. [24] as well as
Holz et al. [8].

III. ENVIRONMENT PREDICTIVE EXPLORATION

The central question in exploration is “Where to go?”.
Several different cost functions for making the decision of

Fig. 2. A robot for exploring and digitizing Roman catacombs was the
motivation for our research.

where to go next can be defined. The most popular one
goes back to Yamauchi [28], who guides the robot to the
closest unexplored location. Yamauchi introduces the concept
of frontiers, which are the cells of an occupancy grid map
at the boundary between the free and the unexplored space.
In the standard setting, this approach seeks to minimize the
time that is needed to cover the environment with the robot’s
sensors and is a popular choice in mobile robotics.

A. Information-Driven Exploration

Given the fact that most real robots maintain a probabilis-
tic belief about their pose and the map of the environment,
an alternative approach is to select the target location that
is expected to minimize the uncertainty in the belief of
the robot. In this setting, the exploration problem can be
formulated as follows. At each time step ¢, the robot has
to decide which action a to execute, i.e., where to move
next. During the execution of a, it is assumed that the robot
obtains a sequence of observations z (for better readability,
we neglect all time indices).

Thus, we can define the expected information gain, also
called mutual information, of selecting the action a as the
expected change in entropy in the belief about the robot’s
poses X and the map M:

I(X,M:Z%) = H(M,X)— HM,X | 2. (1)

The second term in Eq. (1) is the conditional entropy and
is defined as

H(M, X |Z%) :/p(z |la) HM,X | Z° = 2)dz. (2)

Unfortunately, reasoning about all potential observation
sequences z in Eq. (2) is intractable in nearly all real world
applications since the number of potential measurements
grows exponentially with the dimension of the measurement
space and with time. It is therefore crucial to approximate
the integral of Eq. (2) so that it can be computed efficiently
with sufficient accuracy.

A suitable approximation, however, depends on the en-
vironment model, the sensor data, and the application so
that no general one-fits-all solution is available. Given our
previous work [23], we considered different types of actions:
First, exploration actions that guide the robot to the closest
frontier and this reduces the map uncertainty. As we have
no further information about the unseen area, it is difficult
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to distinguish two frontiers with respect to the expected un-
certainty reduction. Second, loop-closing and re-localization
actions, which are key to the uncertainty reduction about the
robot’s pose.

In this work, we aim at combining these types of actions
into a single one. We seek to predict what the so far unseen
environment beyond a frontier may look like, based on
background knowledge of previously seen environments, and
select the frontier that potentially leads to a loop-closure. In
this way, we maximize the expected uncertainty reduction in
the belief of the robot about the state of the world.

B. Utility Function for Exploration

Most exploration systems define a utility function to relate
the expected gain in information with the cost of obtaining
the information. As long as no constraints such as available
energy or similar are considered, the distance that the robot
has to travel to obtain its measurements is a standard choice.
This yields a utility function of the form

U(a) =I1(M,Z; Z*) — cost(a) 3)

so that the task of selecting the best action can be formulated
as

a* = argmax [(M, Z; Z*) — cost(a). 4)

a

Throughout this work, we define the cost function cost(a)
as the path length corresponding to action a, i.e. the length
of the trajectory from the current location of the robot to the
designated target location.

As mentioned in the previous section, estimating the ex-
pected information gain is challenging and computationally
demanding and thus we use the following approximation.
We assume that actions can reduce the robot’s uncertainty
about the map by exploring unseen areas and/or can reduce
its uncertainty about the trajectory by closing a loop.

(&)

a”* = argmax Ip,qp(a) + Iiei(a) — cost(a).

As we do not know how large the unknown area and thus the
number of unknown grid cells behind a frontier is, we may
argue that all frontiers yield the same expected information
gain with respect to the map uncertainty. Thus, we can
simplify Eq. (5) as long as we consider only exploration
actions to frontiers:

(6)

a* = argmax I;q;(a) — cost(a).
a

The expected information gain about the trajectory Ity (a)
is mainly influenced by loop closures. The more likely a

Example of the submap retrieval using FabMAP2. The left image shows the query map, the other ones the best four matches from the database.

loop closure can be obtained when executing an exploration
action a, the higher its expected gain. Thus, the remainder
of this section addresses the problem of predicting possible
loop closures.

C. Predictive Exploration

The key contribution of this work is to model the predic-
tive belief describing what the environment may look like
in the unexplored areas. To compute this belief, the robot
exploits environment structures it has seen in the past—either
in the environment explored so far or even from previous
mapping runs. Our exploration system uses this predictive
belief to evaluate the frontiers as possible target locations
for the exploration. This allows us to select the frontiers that
are likely to lead to a loop-closure and thus to an active
reduction of the uncertainty in the robot’s belief. As we will
show later during the experimental evaluation, our approach
outperforms the traditional frontier-based exploration system.

D. Querying for Similar Environment Structures

The key idea of this belief is to look for similarities
between the known areas around a frontier and portions of
previously mapped environments. Under the assumption that
environments are not random but expose certain structures
and that these structures tend to appear more than once, we
can use the already mapped areas in order to predict what
the environment beyond the frontier may look like.

The first step is to look for portions of the already mapped
environment(s) that are similar to the area around the frontier
for which the prediction should be performed. To do this, we
incrementally build a database storing all local grid maps. To
perform a similarity query, we compare our local maps with
the maps stored in the database. To avoid a large number
of expensive map-to-map comparisons to search for similar
submaps, we rely on a bag-of-words inspired approach, a
technique that is frequently used in computer vision to search
for image similarities. More concretely, we apply FabMAP2
by Cummins and Newman [4], an appearance based approach
to efficiently query the database. Although FabMAP2 was
originally designed to match camera images, it turns out that
we can also use it to effectively search for local grid maps
in a large database of maps. As FabMAP2 also provides a
likelihood I(m) for each match m, we can obtain a belief
about possible environment structures. Figure 3 shows an
illustration of this procedure. The image on the left is a query
image and the other images are the top 4 matches reported
by FabMAP2.



Fig. 4.

Illustration of the loop closures prediction. Left: So far explored map with the frontier under consideration (blue circle). Middle: One map from

the predictive belief (in red) superimposed on the map explored so far. Right: Voronoi diagram used for the path search.

E. Loop Closures Prediction

As we are mainly interested in the possible paths through
the unknown environment in order to find loop closures
and not necessarily the exact geometry, we reduce the maps
reported by FabMAP2 to extended Voronoi graphs [1] and
do all further computations on these graphs.

FabMAP2 provides us with candidates for matching maps
but no geometric alignment between the query map and
the reported ones. Thus, we align each map reported by
FabMAP2 with our query map. This can be done in a robust
manner through a RANSAC-based alignment of the Voronoi
graphs using its junction points. Figure 4 shows an example
of a Voronoi graph aligned with the map explored so far.

The next step, is to search for possible loop closures, for
which we use the generalized Voronoi graph. Starting from
the frontier point, we traverse the Voronoi graph in a breadth-
first manner. During the traversal, we check if the Voronoi
graph leads to a position that is close to any other frontier
in the map built so far. If this is the case, we regard that
as a possible loop closure. Such a situation is illustrated in
the left image of Figure 5. This process is executed for each
frontier.

FE. Estimating the Probability of Closing a Loop

Each map reported by FabMAP2 comes with a likelihood.
Thus, we can approximate the probability of closing a loop
when executing an exploration action as

Yo Um) Y Ule|m) (7)

meM(f) ceC(f,m)

Here, M(f) is the set of matches returned by FabMAP2
when querying with the frontier f, and [(m) the likelihood
of a match m. The term C(f, m) refers to the set of pos-
sible loop closures computed according to the breadth-first
traversal explained above and I(c | m) is the likelihood that
the loop closures can be reached. We assume that (¢ | m) is
proportional to the inverse length of the path of the predicted
loop closure. This means that short loop closures are more
likely than long ones.

Assuming that every executed loop closure through un-
known areas of the map yields the same expected uncertainty
reduction, we can approximate the expected information gain

Ss =

Iiyqj of Eq. (6) with the score Sy according to Eq. (7). This
is clearly a strong assumption but we argue that a high score
indicates a high expected gain from exploring the frontier.

IV. EXPERIMENTS

The experiments are designed to illustrate the advantages
of our predictive exploration approach. We show that our
approach selects frontiers that lead to loop closures which
in turn result in improved maps of the environment. As
a baseline, we use a standard frontier-based exploration
approach.

The underlying mapping framework that is used for all
experiments is a state-of-the-art graph-based SLAM system
that relies on laser range data. The backend is g20 [12] and
the frontend uses FLIRT features to search for possible data
associations [25], uses correlative scan matching to align
scans, and applies single cluster graph partitioning to resolve
ambiguities as proposed by Olson [15]. The exploration
system is integrated into the mapping framework and has
been implemented using ROS.

A. Map Consistency

First, we compare the quality of the maps obtained with
frontier-based exploration vs. our predictive exploration.
The environments considered here are parts of the Roman
catacomb St. Priscilla, a difficult to traverse and large-scale
underground environment in Rome. As the robot is equipped
with tracks, see Figure 2, its odometry is in general worse
than the one of a wheeled robot and it often reveals a bias to
one side. This experiment has been conducted in simulation
but the environment actually represents the catacomb, with
each experiment covering an exploration area of 2,500 m?2.
Odometry noise is simulated following a probabilistic motion
model, sampling over normal distributions for each motion
parameter, with bias for the rotation distribution.

Figure 6 illustrates the obtained results for two environ-
ments using exactly the same mapping system and identical
parameters for the comparison. The images on the left are the
ground truth 2D map used for the simulation. The images in
the second column correspond to the results of the frontier-
based exploration, while the images on the right show our
approach. As can be seen already visually, our approach
yielded a consistent model of the environment, while the



Fig. 5.

Ilustration of the active loop closing. Left: prediction of the possible path with the loop closure shown in blue. Middle: the robot explores the

path along the predicted loop closure and perceives the actual structure of the scene. The graph in the already explored environment shows the pose graph
of the SLAM system. Right: successful loop closure Please note that the predicted environment is actually not identical with the real environment but

reveals a similar structure. This similarity resulted in the shown loop closure.
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Fig. 6. Two performance comparisons in constant odometry bias scenario. On the left, the original map. In the middle, the closer frontier approach. On
the right, our prediction-based approach. Note that the nearest frontier approach produces a map that is non consistent with the original one, so that the
robot gets actually lost in it. The map produced by the prediction-based approach is instead consistent with the original one.

frontier-based approach failed. Using the frontier-based ap-
proach the robot was unable to continue its exploration task
due to an inconsistent map that prevented the computation
of further exploration actions. This was the case in all six
exploration experiments that we conducted in St. Priscilla
environment.

B. Path Length

The advantages of the prediction-based approach come at a
cost—the cost of traversing exploration paths that are longer

than the ones generated by the frontier-based approach.
This experiment is designed to evaluate the increase in path
length.

As we are not able to obtain consistent maps for the
frontier-based approach under a realistic noise model for the
task under consideration, we set the noise to zero in the sim-
ulator and repeated the previous experiments. Using a zero
noise odometry, also the frontier-based approach is able to
build consistent maps. In this settings there is no advantage in
using our predictive approach as the pose uncertainty is zero
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Fig. 7. Mean and standard deviation of the distances travelled in the
frontier-based approach and in the proposed approach.

and no uncertainty reduction is gained from closing loops.
We compared the distances travelled for the frontier-based
and our approach. The distances travelled are summarized
in Figure 7. In the worst case scenario, the path generated
by our approach was 1.85 times longer than the one of the
frontier-based approach. The minimum increase was a factor
of 1.5. Generating on average approximatively a 1.7 times
longer trajectory is clearly an overhead—for actively closing
loops and in this way reducing uncertainty, however, this
price must be paid.

V. CONCLUSIONS

In this paper, we proposed a novel approach for au-
tonomous exploration of unknown environments. The key
contribution of this work is a technique to predict possible
environment structures in the unseen parts of the robot’s
surroundings based on previously explored environments. In
our approach, we exploit this belief to predict possible loop
closures that the robot may experience when exploring an
unknown part of the scene. This allows the robot to actively
reduce the uncertainty in its belief through its exploration
actions. We implemented and tested our approach. Our ex-
periments illustrate that our technique allows for an effective
exploration of difficult to map environments. By actively
closing loops, we are able to obtain consistent maps of the
environment. In contrast to that, a traditional frontier-based
exploration approach is not able to successfully explore the
scene.

REFERENCES

[1] P. Beeson, N.K. Jong, and B. Kuipers. Towards autonomous topolog-
ical place detection using the extended voronoi graph. In Proc. of the
IEEE Int. Conf. on Robotics & Automation (ICRA), 2005.

[2] F. Bourgoult, A.A. Makarenko, S.B. Williams, B. Grocholsky, and
F. Durrant-Whyte. Information based adaptive robotic exploration. In
Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), Lausanne, Switzerland, 2002.

[3] HJ. Chang, C.S.G. Lee, Y. Lu, and Y.C. Hu. P-slam: Simultaneous
localization and mapping with environmental-structure prediction.
IEEE Transactions on Robotics, 23(2):281-293, 2007.

[4] M. Cummins and P. Newman. Highly scalable appearance-only slam
fab-map 2.0. In Proc. of Robotics: Science and Systems (RSS), 2009.

[5] T. Duckett, S. Marsland, and J. Shapiro. Fast, on-line learning of
globally consistent maps. Journal of Autonomous Robots, 12(3):287
- 300, 2002.

[6] D. Fox, J. Ko, K. Konolige, and B. Stewart. A hierarchical bayesian
approach to the revisiting problem in mobile robot map building. In
Proc. of the Int. Symposium of Robotics Research (ISRR), 2003.

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

G. Hitz, A. Gotovos, F. Pomerleau, M.-E. Garneau, C. Pradalier,
A. Krause, and R.Y. Siegwart. Fully autonomous focused explo-
ration for robotic environmental monitoring. In Proc. of the IEEE
Int. Conf. on Robotics & Automation (ICRA), 2014.

D. Holz, N. Basilico, F. Amigoni, and S. Behnke. A comparative
evaluation of exploration strategies and heuristics to improve them.
In Proc. of the European Conference on Mobile Robots (ECMR),
Oerebro, Sweden, 2011.

J. Ko, B. Stewart, D. Fox, K. Konolige, and B. Limketkai. A practical,
decision-theoretic approach to multi-robot mapping and exploration.
In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), pages 3232-3238, Las Vegas, NV, USA, 2003.

S. Koenig and C. Tovey. Improved analysis of greedy mapping. In
Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), Las Vegas, NV, USA, 2003.

A. Krause and C. Guestrin. Near-optimal nonmyopic value of
information in graphical models. In Proc. of Uncertainty in Artificial
Intelligence (UAI), 2005.

R. Kiimmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard.
g20: A general framework for graph optimization. In Proc. of the
IEEE Int. Conf. on Robotics & Automation (ICRA), pages 3607-3613,
2011.

A.A. Makarenko, S.B. Williams, F. Bourgoult, and F. Durrant-Whyte.
An experiment in integrated exploration. In Proc. of the IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS), 2002.

C. Mostegel, A. Wendel, and H. Bischof. Active monocular localiza-
tion: Towards autonomous monocular exploration for multirotor mavs.
In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA),
Hong Kong, China, 2014.

E. Olson. Recognizing places using spectrally clustered local matches.
Robotics and Autonomous Systems, 57(12):1157-1172, 2009.

R. Rocha, J. Dias, and A. Carvalho. Exploring information theory
for vision-based volumetric mapping. In Proc. of the IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS), pages 2409-2414,
Edmonton, Canada, 2005.

S.A. Sadat, K. Chutskoff, D. Jungic, J. Wawerla, and R. Vaughan.
Feature-rich path planning for robust navigation of mavs with mono-
slam. In Proc. of the IEEE Int. Conf. on Robotics & Automation
(ICRA), Hong Kong, China, 2014.

R. Shade and P. Newman. Choosing where to go: Complete 3d
exploration with stereo. In Proc. of the IEEE Int. Conf. on Robotics
& Automation (ICRA), 2011.

S. Shen, N. Michael, and V. Kumar. 3d indoor exploration with a
computationally constrained mav. In Proc. of the IEEE Int. Conf. on
Robotics & Automation (ICRA), 2012.

R. Sim, G. Dudek, and N. Roy. Online control policy optimization for
minimizing map uncertainty during exploration. In Proc. of the IEEE
Int. Conf. on Robotics & Automation (ICRA), 2004.

C. Stachniss and W. Burgard. Mapping and exploration with mobile
robots using coverage maps. In Proc. of the IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), pages 476—481, 2003.

C. Stachniss and W. Burgard. Particle filters for robot navigation.
3(4):211-282, 2012. Published 2014.

C. Stachniss, G. Grisetti, and W. Burgard. Information gain-based ex-
ploration using rao-blackwellized particle filters. In Proc. of Robotics:
Science and Systems (RSS), pages 65-72, Cambridge, MA, USA, 2005.
C. Stachniss, O. Martinez Mozos, and W. Burgard. Efficient explo-
ration of unknown indoor environments using a team of mobile robots.
Annals of Mathematics and Artificial Intelligence, 52:205ff, 2009.
G.D. Tipaldi and K.O. Arras. Flirt—interest regions for 2d range data.
In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA),
pages 3616-3622, 2010.

P. Whaite and F. P. Ferrie. Autonomous exploration: Driven by
uncertainty. [EEE Transactions on Pattern Analysis and Machine
Intelligence, 19(3):193-205, 1997.

K.M. Wurm, C. Stachniss, and W. Burgard. Coordinated multi-robot
exploration using a segmentation of the environment. In Proc. of the
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2008.
B. Yamauchi. Frontier-based exploration using multiple robots. In
Proc. of the Second International Conference on Autonomous Agents,

pages 47-53, Minneapolis, MN, USA, 1998.



