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Fig. 1: We present PINGS, a novel LiDAR-visual SLAM system unifying distance field and radiance field mapping using an elastic point-
based implicit neural representation. On the left, we show a globally consistent neural point map overlaid on a satellite image. The map was
built using PINGS from around 10,000 LiDAR scans and 40,000 images collected by a robot car driving in an urban environment for around
5 km. The estimated trajectory is overlaid on the map and colorized according to the timestep. On the right, we show a zoomed-in view
of a roundabout mapped by PINGS. It illustrates from left to right the rendered image from the Gaussian splatting radiance field, neural
points colorized by the principal components of their geometric features, and the reconstructed mesh from the distance field (colorized by
the radiance field). The red line indicates the local trajectory of the robot car (shown as the CAD model).

Abstract—Robots benefit from high-fidelity reconstructions of
their environment, which should be geometrically accurate and
photorealistic to support downstream tasks. While this can be
achieved by building distance fields from range sensors and
radiance fields from cameras, realising scalable incremental
mapping of both fields consistently and at the same time with
high quality is challenging. In this paper, we propose a novel
map representation that unifies a continuous signed distance
field and a Gaussian splatting radiance field within an elastic
and compact point-based implicit neural map. By enforcing
geometric consistency between these fields, we achieve mutual
improvements by exploiting both modalities. We present a novel
LiDAR-visual SLAM system called PINGS using the proposed
map representation and evaluate it on several challenging large-
scale datasets. Experimental results demonstrate that PINGS can
incrementally build globally consistent distance and radiance
fields encoded with a compact set of neural points. Compared to
state-of-the-art methods, PINGS achieves superior photometric
and geometric rendering at novel views by constraining the radi-
ance field with the distance field. Furthermore, by utilizing dense
photometric cues and multi-view consistency from the radiance
field, PINGS produces more accurate distance fields, leading to
improved odometry estimation and mesh reconstruction. We also
provide an open-source implementation of PINGS.

I. INTRODUCTION

The ability to perceive and understand the surroundings
is fundamental for autonomous robots. At the core of this
capability lies the ability to build a map — a digital twin of the
robot’s workspace that is ideally both geometrically accurate
and photorealistic, enabling effective spatial awareness and
operation of the robot [24, 41].

Previous works in robotics mainly focus on the incremental
mapping of an occupancy grid or a distance field using range
sensors, such as LiDAR or depth cameras, which enable
localization [16], collision avoidance [14], or exploration [59].
Recently, PIN-SLAM [51] demonstrated that a compact point-
based implicit neural representation can effectively model a
continuous signed distance field (SDF) for LiDAR simultane-
ous localization and mapping (SLAM), enabling both accurate
localization and globally consistent mapping.

However, occupancy voxel grids [16], occupancy fields [91],
or distance fields [49, 51] fall short of providing photorealistic
novel view rendering of the scene, which is crucial for applica-
tions requiring dense photometric information. This capability



can be achieved by building an additional radiance field with
visual data using representations such as neural radiance field
(NeRF) [45] or a 3D Gaussian splatting (3DGS) model [30].
Recent works demonstrated the potential of radiance fields,
especially 3DGS, for various robotic applications including
human-robot interaction [43], scene understanding [92, 97],
simulation or world models for robotics learning [2, 12, 81],
visual localization [4, 42], and active reconstruction [26, 27].
Nevertheless, these approaches often assume well-captured
image collections in bounded scenes with offline processing,
limiting their applicability for mobile robotic applications.
Besides, radiance fields are not necessarily geometrically
accurate, which can lead to issues in localization or planning.

In this paper, we investigate how to simultaneously build
consistent, geometrically accurate, and photorealistic radiance
fields as well as accurate distance fields for large-scale en-
vironments using LiDAR and camera data. Building upon
PIN-SLAM’s [51] point-based neural map for distance fields
and inspired by Scaffold-GS [38], we propose a novel point-
based model that additionally represents a Gaussian splatting
radiance field. By enforcing mutual supervision between these
fields during incremental mapping, we achieve both improved
rendering quality from the radiance field and more accurate
distance field for better localization and surface reconstruction.

The main contribution of this paper is a novel LiDAR-visual
SLAM system, called PINGS, that incrementally builds contin-
uous SDF and Gaussian splatting radiance fields by exploiting
their mutual consistency within a point-based neural map. The
distance field and radiance field infered from the elastic neural
points enable robust pose estimation while maintaining global
consistency through loop closure correction. The compact
neural point map can be efficiently stored and loaded from
disk, allowing accurate surface mesh reconstruction from the
distance field and high-fidelity real-time novel view rendering
from the radiance field, as shown in Fig. 1.

In sum, we make four key claims: (i) PINGS achieves better
RGB and geometric rendering at novel views by constraining
the Gaussian splatting radiance field using the signed distance
field; (ii) PINGS builds a more accurate signed distance field
for more accurate localization and surface reconstruction by
leveraging dense photometric cues from the radiance field; (iii)
PINGS enables large-scale globally consistent mapping with
loop closures; (iv) PINGS builds a more compact map than
previous methods for both radiance and distance fields.

Our open-source implementation of PINGS is publicly
available at: https://github.com/PRBonn/PINGS.

II. RELATED WORK

A. Point-based Implicit Neural Representation

Robotics has long relied on explicit map representations
with discrete primitives like point clouds [87], surfels [3, 73],
meshes [66], or voxel grids [22, 46] for core tasks like
localization [65] and planning [59].

Recently, implicit neural representations have been proposed
to model radiance fields [45] and geometric (occupancy or dis-
tance) fields [44, 49, 52] using multi-layer perceptrons (MLP).

These continuous representations offer advantages like com-
pact storage, and better handling of regions with sparse obser-
vations or occlusions, while supporting conversion to explicit
representations for downstream tasks.

Instead of using a single MLP for the entire scene, recent
methods use hybrid representations that combine local feature
vectors with a shared shallow MLP. Point-based implicit neural
representations [51, 79] store optimizable features in a neural
point cloud, which has advantages over grid-based alternatives
through its flexible spatial layout and inherent elasticity under
transformations for example caused by loop closures.

Point-based implicit neural representations have been used
for modeling either radiance fields or distance fields for vari-
ous applications including differentiable rendering [8, 79], dy-
namic scene modeling [1], surface reconstruction [34], visual
odometry [56, 86], and globally consistent mapping [51]. For
example, PIN-SLAM [51] effectively represents local distance
fields with neural points for odometry estimation and uses the
elasticity of these neural points during loop closure correction.

In this paper, we propose a novel LiDAR-visual SLAM
system that is built on top of PIN-SLAM [51] and encodes
a Gaussian splatting radiance field within neural points while
jointly optimizing it alongside the distance field. Compared to
NeRF-based approaches [8, 79], this offers faster novel view
rendering suitable for robotics applications.

B. Gaussian Splatting Radiance Field

NeRF [45] pioneered the use of MLPs to map 3D positions
and view directions to color and volume density, encoding
radiance fields through volume rendering-based training with
posed RGB images. More recently, 3DGS [30] introduced
explicit 3D Gaussian primitives to represent the radiance
fields, achieving high-quality novel view synthesis. Compared
to NeRF-based methods, 3DGS is more efficient by using
primitive-based differentiable rasterization [82] instead of ray-
wise volume rendering. The explicit primitives also enables
editing and manipulation of the radiance field. These proper-
ties make 3DGS promising for robotics applications [2, 26,
35, 42, 43]. However, two main challenges limit its usage:
geometric accuracy and scalability for incremental mapping.
We discuss the related works addressing geometric accuracy
in the following and addressing scalable mapping in Sec. II-C.

While 3DGS achieves high-fidelity photorealistic rendering,
it often lacks the geometric accuracy. To tackle this limitation,
SuGaR [18] uses a hybrid representation to extract meshes
from 3DGS and align the Gaussian primitives with the surface
meshes. To address the ambiguity in surface description,
another solution is to flatten the 3D Gaussian ellipsoids to
2D disks [11, 23, 25, 85]. The 2D disks gradually align with
surfaces during training, enabling more accurate depth and
normal rendering. However, extracting surface meshes from
these discrete primitives still requires either TSDF fusion [46]
with rendered depth or Poisson surface reconstruction [28].

Another line of works [58, 84] model discrete Gaussian
opacity as a continuous field, similar to NeRF-based surface
reconstruction [70]. Several works [6, 39, 83] jointly train a
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distance field with 3DGS and align the Gaussian primitives
with the zero-level set of the distance field to achieve accurate
surface reconstruction. However, these methods rely solely on
image rendering supervision for both 3DGS and neural SDF
training without direct 3D geometric constraints, leading to
ambiguities in textureless or specular regions. The volume
rendering-based SDF training also impacts efficiency.

While 3DGS originally uses structure-from-motion point
clouds, robotic platforms with LiDAR can initialize primitives
directly from LiDAR measurements [10, 21, 78]. Direct depth
measurements can further supervise depth rendering to im-
prove geometric accuracy and convergence speed [25, 42].

Our approach uniquely combines geometrically consistent
2D Gaussian disks with a neural distance field supervised
by direct LiDAR measurements, enforcing mutual geometric
consistency between the representations. This differs from GS-
Fusion [72], which maintains decoupled distance and radiance
fields without mutual supervision.

C. Large-Scale 3D Reconstruction
This paper focuses on online large-scale 3D reconstruction.

There have been numerous works for the scalable occupancy
or distance field mapping in the past decade, using efficient
data structures such as an Octree [22, 93], voxel hashing [33,
48, 94], an VDB [67, 77], or wavelets [53].

Scalable radiance field mapping has also made significant
progress recently. For large scale scenes captured by aerial
images, recent works [36, 38, 55] demonstrate promising
results using level-of-detail rendering and neural Gaussian
compression. For driving scenes with short sequences contain-
ing hundreds of images, both NeRF-based [54, 81] and 3DGS-
based [9, 13, 19, 80, 90, 95] approaches have demonstrated
high-fidelity offline radiance field reconstruction, enabling
closed-loop autonomous driving simulation [9, 81].

However, radiance field mapping for even larger scenes
at ground level with thousands of images remains chal-
lenging due to scene complexity and memory constraints.
BlockNeRF [61] addresses this by dividing scenes into over-
lapping blocks, training separate NeRFs per block, and consol-
idating them during rendering. Similarly, SiLVR [63] employs
a submap strategy for scalable NeRF mapping. For 3DGS,
hierarchical 3DGS [31] introduces a level-of-detail hierarchy
that enables real-time rendering of city-scale scenes. The
aforementioned methods require time-consuming structure-
from-motion preprocessing and offline divide-and-conquer
processing, limiting their applicability for online missions.

While there are several works on incremental mapping and
SLAM with NeRF [49, 56, 60] or 3DGS [29, 42, 72, 96], they
primarily focus on bounded indoor scenes and struggle with
our target scenarios. Our proposed system enables incremental
radiance and distance field mapping at the scale of previous
offline methods [31, 61], while achieving globally consistent
3D reconstruction through loop closure correction.

III. OUR APPROACH

Our approach, called PINGS, is a LiDAR-visual SLAM sys-
tem that jointly builds globally consistent Gaussian splatting

radiance fields and distance fields for large-scale scenes.
Notation. In the following, we denote the transformation

from coordinate frame A to frame B as TBA ∈ SE(3),
such that point pB = TBApA, with rotation RBA ∈ SO(3)
and translation tBA ∈ R3, where the rotation is also param-
eterized by a unit quaternion q. At timestep t, each sensor
frame St (LiDAR frame Lt or camera frame Ct) is related to
the world frame W by pose TWSt , with TWS0 fixed as identity.
We denote the rotation of a vector v ∈ R3 by a quaternion q
as qvq−1 and the multiplication of two quaternions as q1q2.

Overview. We assume the robot is equipped with a LiDAR
sensor and one or multiple cameras. At each timestep t, the
input to our system is a LiDAR point cloud P = {p ∈ R3}
and M camera images I = {Îi ∈ RH×W×3 | i = 1, . . . ,M}
collected by the robot. We assume the calibration of the
LiDAR and cameras to be known but allow for the imper-
fect synchronization among the sensors. Our system aims to
simultaneously estimate the LiDAR pose TWLt while updating
a point-based implicit neural map M, which models both a
SDF and a radiance field, as summarized in Fig. 2.

A. Point-based Implicit Neural Map Representation

We define our point-based implicit neural map M as a set
of neural points, given by:

M = {mi = (xi, qi,f
g
i ,f

a
i , τ

c
i , τ

u
i ) | i = 1, . . . , N}, (1)

where each neural point mi is defined in the world frame W
by a position xi ∈ R3 and a quaternion qi ∈ R4 representing
the orientation of its own coordinate frame. Each neural point
stores the optimizable geometric feature vector fgi ∈ RFg
and appearance feature vector fai ∈ RFa . In addition, we
keep track of each neural point’s creation timestep τ ci and
last update timestep τui to determine its active status and
associate the neural point with the LiDAR pose TWLτ at the
middle timestep τi = b(τ ci + τui )/2c between τ ci and τui , thus
allowing direct map manipulation through pose updates.

We maintain a voxel hashing [47] data structure V with a
voxel resolution vp for fast neural point indexing and neighbor
search, where each voxel stores at most one active neural point.

During incremental mapping, we dynamically update the
neural point map based on point cloud measurements. For
each newly measured point pW in the world frame, we check
its corresponding voxel in V . If no active neural point exists
in that voxel, we initialize a new neural point m with the
position x = pW , an identity quaternion q = (1, 0, 0, 0), and
the feature vectors fg = 0, fa = 0. Additionally, we define a
local map Ml centered at the current LiDAR position tWLt ,
which contains all active neural points within radius rl. To
avoid incorporating inconsistent historical observations caused
by odometry drift, both map optimization and odometry esti-
mation are operated only within this local map Ml. After the
map optimization at each timestep, we reassign the local map
Ml into the global map M.

Next, we describe how the neural points map M models
both the SDF (Sec. III-B) and the radiance field (Sec. III-C).
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Fig. 2: Overview of PINGS: We take a stream of LiDAR point clouds P and camera images I as input. We initialize a neural point map
M from P and maintain a training pool of SDF-labeled points Qp and recent images Qi. The map uses a voxel hashing structure V where
each neural point stores geometric features fg and appearance features fa. These features are used to predict SDF values S(p) at an
arbitrary position p and spawn Gaussian primitives G through MLP decoders. We compute three kind of losses: (1) Gaussian splatting loss
Lgs comparing rendered images through differentiable rasterization and reference images in the training pool, (2) SDF loss Lsdf comparing
predicted SDF and labels of the sampled points in the training pool, and (3) consistency loss Lcons to align the geometry of both representations.
The losses are backpropagated to optimize the neural point features fg and fa. Meanwhile, we estimate LiDAR odometry by aligning the
point cloud to current SDF and backpropagate Lgs to refine the camera poses. The final outputs are LiDAR poses TWLt , camera poses TWCt ,
and a compact neural point map M representing both SDF and Gaussian splatting radiance fields, enabling various robotic applications.

B. Neural Signed Distance Field

For the modeling and online training of a continuous SDF
using the neural points, we follow the same strategy as in
PIN-SLAM [51] and present a recap in this section.

We model the SDF value s at a query position p in the world
frame W conditioned on its nearby neural points. For each
neural point mj in the k-nearest neighborhood Np of p, we
define the relative coordinate dj = qj(p−xj)q−1j denoting p
in the local coordinate system of mj . Then, we feed the
geometric feature vector fgj and the relative coordinate dj
to a globally shared SDF decoder Dd to predict the SDF sj :

sj = Dd(f
g
j ,dj). (2)

As shown in Fig. 3 (a), the predicted SDF values sj of the
neighboring neural points at the query position p are then
interpolated as the final prediction s = S(p), given by:

S(p) =
∑
j∈Np

wj∑
k∈Np wk

sj , (3)

with the interpolation weights wj = ‖p− xj‖−2.
To optimize the neural SDF represented by the neural point

geometric features {fgi }Ni=1 and the SDF decoder Dd, we
sample points along the LiDAR rays around the measured end
points and in the free space. We take the projective signed
distance along the ray as a pseudo SDF label for each sample
point. For incremental learning, we maintain a training data
pool Qp containing sampled points from recent scans, with a
maximum capacity and bounded by a distance threshold from
the current robot position. At each timestep, we sample from

the training data pool in batches and predict the SDF value at
the sample positions. The SDF training loss Lsdf is formulated
as a weighted sum of the binary cross entropy loss term Lbce
and the Eikonal loss term Leik, given by:

Lsdf = λbceLbce + λeikLeik. (4)

The loss term Lbce applies a soft supervision on the SDF
values by comparing the sigmoid activation of both the pre-
dictions and the pseudo labels. The Eikonal loss term Leik
regularizes the SDF gradients by enforcing the Eikonal con-
straint [17], which requires unit-length gradients ‖∇S(x)‖ =
1 for the sampled points. For more details regarding the SDF
training, we refer readers to Pan et al. [51].

The incrementally built neural SDF map can then be used
for LiDAR odometry estimation and surface mesh extraction.

C. Neural Gaussian Splatting Radiance Field

We use camera image streams I to construct a radiance
field by spawning Gaussian primitives from our neural point
map M and optimizing M via differentiable rasterization.

Neural Point-based Gaussian Spawning. Inspired by
Scaffold-GS [38], we use our neural points as anchor points for
spawning Gaussian primitives, see Fig. 3 (b). For each neural
pointm lying within the current camera frustum, we spawn K
Gaussian primitives by feeding its feature vectors (fg , fa)
through globally shared MLP decoders. We parameterize each
spawned Gaussian primitive g with its position µ ∈ R3 in the
world frame, rotation r ∈ R4 in the form of a unit quaternion,
scale s ∈ R3, opacity α ∈ [−1 , 1], and RGB color c ∈ [0 , 1]

3.
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Fig. 3: Example of neural point-based SDF prediction, Gaussian primitives spawning, and the geometric consistency of PINGS: (a) SDF
prediction at a query point through weighted interpolation of predictions from neighboring neural points. (b) Neural points spawning multiple
Gaussian primitives to compose the radiance field. (c) Example of an accurate SDF but geometrically inaccurate radiance field with 3D
Gaussian ellipsoids in regions with dense LiDAR coverage but sparse camera views, weak texture, or poor lighting. (d) Example of a
geometrically accurate radiance field but inaccurate SDF in regions with rich visual data but sparse LiDAR measurements. (e) Our solution:
flattening 3D Gaussian ellipsoids to surfels and enforcing geometric consistency by aligning surfel centers with the SDF zero-level set and
aligning surfel normals with SDF gradients, resulting in accurate geometry for both fields.

Each neural point spawns Gaussian primitives in its local
coordinate frame defined by its position x and orientation q.
The world-frame position µi of each spawned primitive is:

{µi = qoiq
−1 + x | oi ∈ Do(f

g)}Ki=1 , (5)

where Do is the offset decoder that maps the geometric
feature fg to a set of K local offsets {oi}Ki=1, which are then
transformed into the world frame through quaternion rotation
and translation. Likewise, the rotation ri of each spawned
Gaussian primitive is predicted by the rotation decoder Dr

and then rotated by quaternion q as:

{ri = qr̂i | r̂i ∈ Dr(f
g)}Ki=1 . (6)

The scale decoder Ds predicts each primitive’s scale si as:

{si}Ki=1 = Ds(f
g) . (7)

We predict opacity values α in the range [−1, 1] and treat
only Gaussian primitives with positive opacity as being valid.
To adaptively control spatial density of Gaussian primitives
based on viewing distance, we feed the geometric feature fg

and the view distance δv = ‖x− tWC‖2 into the opacity
decoder Dα. This implicitly encourages the network to predict
fewer valid Gaussians for distant points and more for nearby
points, reducing computational load. The opacity value αi for
each Gaussian primitive is predicted as:

{αi}Ki=1 = Dα(fg, δv) . (8)

For view-dependent color prediction, we take a dif-
ferent approach than the spherical harmonics used in
3DGS [30]. We feed the appearance feature fa and the
view direction dv = (x− tWC)/δv to the color decoder Dc

to predict the color ci of each Gaussian primitive, given by:

{ci}Ki=1 = Dc(f
a, q−1dvq) , (9)

where the view direction dv is also transformed into the local
coordinate system of the neural point.

Note that we treat position, rotation, scale, and opacity
as geometric attributes of a Gaussian primitive, using the
geometric feature fg for their prediction, while using the
appearance feature fa to predict color.

Gaussian Splatting Rasterization. We gather all the valid
Gaussians primitives G [30] spawned at the current viewpoint:

G = {gi = (µi , ri , si, ci , αi) | i = 1, . . . , Ng} . (10)

The distribution of each Gaussian primitive gi in the world
frame is represented as:

N (x;µi,Σi) = exp

(
−1

2
(x− µi)>Σ−1i (x− µi)

)
, (11)

where the covariance matrix Σi is reparameterized as:

Σi = R(ri) S(si) S(si)
> R(ri)

> , (12)

where R(ri) ∈ SO(3) is the rotation matrix derived from the
quaternion ri and S(si) = diag(si) ∈ R3×3 is the diagonal
scale matrix composed of the scale si on each axis.

Using a tile-based rasterizer [98], we project the Gaussian
primitives to the 2D image plane and sort them according to
depth efficiently. The projected Gaussian distribution is:

µ′ = π(TCWµ) , Σ′ = JWΣW>J> , (13)

where µ′ and Σ′ are the projected mean and covariance,
π denotes the perspective projection, J is the Jacobian of the
projective transformation, and W is the viewing transforma-
tion deduced from current camera pose TWC . The rendered
RGB image I at each pixel u is computed via alpha blending:

I(u) =
∑

i∈G(u)

wici , (14)

where the weight wi of each of the depth-sorted Gaussian
primitives G(u) covering pixel u is given by:

wi = Tiσi , Ti =

i−1∏
j=1

(1− σj) , σi = N (u;µ′i,Σ
′
i)αi, (15)

where σi is the projected opacity of the i-th Gaussian
primitive, computed using the 2D Gaussian density function
N (u;µ′i,Σ

′
i) evaluated at pixel u with the projected mean µ′i

and covariance Σ′i.
Gaussian Surfels Training. To achieve accurate and multi-

view consistent geometry, we adopt Gaussian Surfels [11], a
state-of-the-art 2DGS representation [23], by flattening 3D



Gaussian ellipsoids into 2D disks (last dimension of scale
sz = 0). For each pixel u, we compute the surfel depth d (u)
as the ray-disk intersection distance, and obtain the normal n
as the third column of the rotation matrix R(r). Using alpha
blending, we render the depth map D and the normal map N
using the weights wi calculated in Eq. (15):

D(u) =
∑

i∈G(u)

widi (u) , N(u) =
∑

i∈G(u)

wini . (16)

Given the training view with the RGB image Î and the
sparse depth map D̂ projected from the LiDAR point cloud,
we define the Gaussian splatting loss Lgs combining the
photometric rendering Lphoto, depth rendering Ldepth, and area
regularization Larea terms, given by:

Lgs = λphotoLphoto + λdepthLdepth + λareaLarea, (17)

Lphoto = 0.8 · L1

(
I, Î
)

+ 0.2 · Lssim

(
I, Î
)
, (18)

Ldepth = L1

(
D, D̂

)
, (19)

Larea =
∑
gi∈G

sxi · s
y
i , (20)

where L1 is the L1 loss, Lssim is the structural similarity
index measure (SSIM) loss [71], sxi and syi are the scales of
the Gaussian surfel gi. The area loss term Larea encourages
minimal overlap among the surfels covering the surface.

To handle inaccurate camera poses resulting from imperfect
LiDAR odometry and camera-LiDAR synchronization, we
jointly optimize the camera poses on a manifold during radi-
ance field training [42]. We also account for real-world lighting
variations by optimizing per-frame exposure parameters [31].

D. Joint Optimization with Geometric Consistency

To enforce mutual alignment between the surfaces rep-
resented by the SDF and Gaussian splatting radiance field,
we futhermore propose to jointly optimize the geometric
consistency. This joint optimization helps resolve geometric
ambiguities in the radiance field through the direct surface
description of SDF, while simultaneously refining SDF’s ac-
curacy in regions with sparse LiDAR measurements using the
dense photometric cues and multi-view consistency from the
radiance field, see Fig. 3 (c), (d), and (e).

For each sampled Gaussian surfel, we randomly sample
points along its normal direction n from the center µ with
random offsets ε ∼ U (−εmax, εmax). We enforce geometric
consistency between the SDF and Gaussian surfels through a
two-part consistency loss Lcons, given by:

Lcons = λd
consLd

cons + λv
consLv

cons, (21)

Ld
cons =

∑
gi∈G

|S (µi + εini)− εi| , (22)

Lv
cons =

∑
gi∈G

(
1− ∇S (µi + εini)

T
ni

‖∇S (µi + εini) ‖

)
, (23)

where Ld
cons enforces SDF values to match sampled offsets via

an L1 loss, and Lv
cons aligns SDF gradients ∇S at the sampled

points with surfel normals n using cosine distance.
We define the total loss L given by the sum of the SDF loss

Lsdf in Eq. (4), Gaussian splatting loss Lgs in Eq. (17), and
the geometric consistency loss Lcons in Eq. (21):

L = Lsdf + Lgs + Lcons. (24)

We jointly optimize the neural point features {fgi ,f
a
i }
N
i=1,

decoder parameters, camera poses, and exposure correction
parameters to minimize the total loss L.

E. PINGS LiDAR-Visual SLAM System

We devise a LiDAR-visual SLAM system called PINGS
using the proposed map representation, built on top of the
LiDAR-only PIN-SLAM [51] system. PINGS alternates be-
tween two main steps: (i) mapping: incremental learning of
the local neural point mapMl, which jointly models the SDF
and Gaussian splatting radiance field, and (ii) localization:
odometry estimation using the learned SDF. In addition, loop
closure detection and pose graph optimization run in parallel.

We initialize PINGS with 600 iterations of SDF training
using only the first LiDAR scan. At subsequent timesteps, we
jointly train the SDF and radiance field for 100 iterations. To
prevent catastrophic forgetting during incremental mapping,
we freeze decoder parameters after 30 timesteps and only up-
date neural point features. We found the decoders converge on
learning the interpretation capability within these 30 frames.

We maintain sliding window-like training pools Qp and Qi
containing SDF-labeled sample points and image data whose
view frustum overlaps with the local map Ml, respectively.
Each training iteration samples one image from Qi and 8192
points from Qp for optimization.

We estimate LiDAR odometry by aligning each new scan
to the SDF’s zero level set using an efficient Gauss-Newton
optimization [74] that requires only SDF values and gradients
queried at source point locations, eliminating the need for
explicit point correspondences. Initial camera poses are de-
rived from the LiDAR odometry and extrinsic calibration, then
refined via gradient descent during the radiance field optimiza-
tion to account for imperfect camera-LiDAR synchronization,
as described in Sec. III-C.

In line with PIN-SLAM, we detect loop closures using
the layout and features of the local neural point map. We
then conduct pose graph optimization to correct the drift of
the LiDAR odometry and get globally consistent poses. We
move the neural points along with their associated LiDAR
frames to keep a globally consistent map. Suppose ∆T is the
pose correction matrix of LiDAR frame Li after pose graph
optimization, we update the position x and orientation q of
each neural point associated with Li as:

x← ∆Tx , q ← ∆qq , (25)

where ∆q is the rotation part of ∆T in the form of a
quaternion. Since the positions, rotations, and colors of the
spawned Gaussian primitives are predicted in the local frames



of their anchor neural points, see Eq. (5), Eq. (6), and Eq. (9),
they automatically transform with their anchor neural points,
thus maintaining the global consistency of the radiance field.

PINGS aims to build static distance and radiance fields
without artifacts from dynamic objects. Since measured points
with large SDF values in stable free space likely correspond to
dynamic objects [57], we identify neural points representing
dynamic objects through SDF thresholding. We disable Gaus-
sian primitive spawning for these points, effectively preventing
dynamic objects from being rendered from the radiance field.

IV. EXPERIMENTAL EVALUATION

The main focus of this paper is an approach for LiDAR-
visual SLAM that unifies Gaussian splatting radiance fields
and signed distance fields by leveraging their mutual consis-
tency within a point-based implicit neural map representation.

We present our experiments to show the capabilities of our
method called PINGS. The results of our experiments support
our key claims, which are: (i) PINGS achieves better RGB
and geometric rendering at novel views by constraining the
Gaussian splatting radiance field using the SDF; (ii) PINGS
builds a more accurate SDF for more accurate localization
and surface reconstruction by leveraging dense photometric
cues from the radiance field; (iii) PINGS enables large-scale
globally consistent mapping with loop closures; (iv) PINGS
builds a more compact map than previous methods for both
radiance and distance fields.

A. Experimental Setup

1) Datasets: We evaluate PINGS on self-collected in-house
car datasets and the Oxford Spires dataset [64]. Our in-house
car datasets were collected using a robot car equipped with
four Basler Ace cameras providing 360◦ visual coverage and
an Ouster OS1-128 LiDAR (45◦ vertical FOV, 128 beams)
mounted horizontally, both operating at 10 Hz. We calibrate
the LiDAR-camera system using the method proposed by
Wiesmann et al. [75] and generate reference poses through
offline LiDAR bundle adjustment [76], incorporating RTK-
GNSS data, point cloud alignment as well as constraints from
precise geo-referenced terrestrial laser scans.

We evaluate the SLAM localization accuracy and scalability
of PINGS on two long sequences from our dataset: a 5 km se-
quence with around 10,000 LiDAR scans and 40,000 images,
and a second sequence which is a bit shorter. Both sequences
traverse the same area in opposite directions on the same day.
For better quantitative evaluation of the radiance field mapping
quality, we select five subsequences of 150 LiDAR scans
and 600 images each, as shown in Fig. 4. Having sequences
captured in opposite driving directions and lane-level lateral
displacement allows us to evaluate novel view rendering from
substantially different viewpoints from the training views (out-
of-sequence testing views), which is a critical capability for
downstream tasks such as planning and simulation.

We evaluate surface reconstruction accuracy on the Oxford
Spires dataset [64], which provides a millimeter-accurate refer-
ence map from a Leica RTC360 terrestrial laser scanner. The

In-sequence trajectory 
Out-of-sequence trajectory   

StreetChurch Roundabout

Residential Area

Campus

Fig. 4: Visualization of the five scenes from our in-house car dataset
used for novel view rendering evaluation. For each scene, we show a
bird’s eye view rendering from the radiance field built by PINGS, with
a detailed zoom-in of the Campus scene. The robot car traversed each
area twice in opposite directions with lane-level lateral displacement.
The black trajectory provided images for training (sampled) and in-
sequence testing (unsampled), while the red trajectory provided out-
of-sequence testing views.

data was collected using a handheld system equipped with
three global-shutter cameras and a 64-beam LiDAR.

2) Parameters and Implementation Details: For mapping
parameters, we set the local map radius rl to 80 m, voxel reso-
lution vp to 0.3 m, and maximum sample offset for consistency
loss εmax to 0.5 vp. The training data pool Qd has a capacity
of 2 · 107 SDF-labeled sample points, and Qi has a capacity
of 200 images. During map optimization, we use Adam [32]
with learning rates of 0.002 for neural point features, 0.001 for
decoder, camera poses and exposure corrections parameters.
The neural point feature dimensions Fg and Fa are set to
32 and 16, respectively. All decoders use shallow MLPs with
one hidden layer of 128 neurons. Each neural point spawns
K = 8 Gaussian primitives. For decoder activations, we use
sigmoid for SDF decoder Dd and color decoder Dc, tanh for
offset decoder Do and opacity decoder Dα, and exponential
for scale decoder Ds. The Gaussian spawning offset is scaled
to [−2vp, 2vp], and the scale output is clamped to a maximum
of 2vp. The rotation decoder Dr output is normalized to valid
unit quaternions. The weights for different loss terms are set
to: λbce = 1.0, λeik = 0.5, λphoto = 1.0, λdepth = 0.01,
λarea = 0.001, and λdcons = λvcons = 0.02.

For training and testing, we use image resolutions of 512×
1, 032 for the in-house car dataset and 540×720 for the Oxford
Spires dataset. The experiments are carried out on a single
NVIDIA A6000 GPU.

B. Novel View Rendering Quality Evaluation

We evaluate novel view rendering quality on five subse-
quences from the in-house car dataset. For quantitative evalu-
ation, we employ standard metrics: PSNR [45], SSIM [71], and
LPIPS [88] to assess photorealism, along with Depth-L1 error
to measure geometric accuracy. We compute these metrics



TABLE I: Quantitative comparison of rendering quality on the in-house car dataset. We evaluate rendering photorealism using PSNR, SSIM,
and LPIPS metrics, and geometric accuracy using Depth-L1 error (in m). Best results are shown in bold, second best are underscored.

Sequence Method In-Sequence Testing View Out-of-Sequence Testing View
PSNR↑ SSIM↑ LPIPS↓ Depth-L1↓ PSNR↑ SSIM↑ LPIPS↓ Depth-L1↓

Church

3DGS 18.02 0.62 0.52 1.45 16.37 0.59 0.52 1.22
GSS 18.04 0.63 0.51 1.37 16.44 0.60 0.52 1.25

Neural Point + 3DGS 20.89 0.71 0.41 0.80 19.56 0.70 0.42 0.78
Neural Point + GGS 22.56 0.75 0.36 0.43 20.48 0.74 0.38 0.47

PINGS (Ours) 22.93 0.78 0.33 0.43 20.79 0.76 0.34 0.46

Residential Area

3DGS 17.60 0.58 0.52 2.22 14.63 0.53 0.56 2.78
GSS 17.56 0.59 0.51 2.26 14.80 0.54 0.55 2.68

Neural Point + 3DGS 21.10 0.71 0.38 0.89 18.34 0.65 0.42 0.93
Neural Point + GSS 22.33 0.73 0.35 0.53 19.31 0.69 0.38 0.69

PINGS (Ours) 22.67 0.77 0.30 0.53 19.48 0.71 0.34 0.68

Street

3DGS 16.39 0.56 0.55 2.09 15.73 0.57 0.53 2.30
GSS 16.85 0.59 0.53 1.87 16.01 0.59 0.52 2.15

Neural Point + 3DGS 19.74 0.68 0.42 0.81 18.02 0.64 0.44 0.79
Neural Point + GSS 22.13 0.75 0.35 0.29 19.09 0.69 0.40 0.49

PINGS (Ours) 22.45 0.78 0.32 0.28 19.34 0.71 0.37 0.47

Campus

3DGS 17.38 0.57 0.52 2.70 14.88 0.49 0.58 3.60
GSS 17.34 0.59 0.51 2.36 14.96 0.51 0.57 3.42

Neural Point + 3DGS 20.04 0.67 0.40 1.06 17.83 0.60 0.44 1.19
Neural Point + GSS 21.82 0.72 0.35 0.65 18.71 0.64 0.41 0.79

PINGS (Ours) 22.40 0.76 0.31 0.64 18.91 0.66 0.38 0.80

Roundabout

3DGS 21.20 0.71 0.39 0.87 18.97 0.69 0.40 0.85
GSS 21.74 0.72 0.38 0.55 19.10 0.69 0.40 0.60

Neural Point + 3DGS 21.44 0.75 0.35 0.72 19.23 0.72 0.37 0.78
Neural Point + GSS 23.54 0.82 0.28 0.47 20.22 0.78 0.31 0.55

PINGS (Ours) 23.45 0.82 0.28 0.47 20.23 0.77 0.30 0.54

PINGS (Ours)
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Fig. 5: Qualitative comparison of rendering quality on the in-house car dataset. Left: Bird’s eye view rendering of the Church scene,
showing the training view trajectory (black line) and the test viewpoint for comparison (green camera frustum). Right: RGB and normal map
renderings from different methods at the test viewpoint, with detailed comparison of curb and sidewalk rendering in the highlighted box.

for both in-sequence and out-of-sequence testing views. We
consider the following methods for comparison:
• 3DGS [30]: An incremental training variant of 3DGS ini-

tialized with LiDAR measurements and supervised with
the depth rendering loss Ldepth as defined in Sec. III-C.

• GSS [11]: Gaussian surfels splatting, a state-of-the-art
2D Gaussian representation using surfels instead of 3D
ellipsoids. It uses the same setup as the 3DGS baseline but
adds the depth-normal consistency loss from GSS [11].

• Neural Point+3DGS: Our extension of Scaffold-GS [38]
that enables incremental training and adds supervision of
neural point geometric features through the SDF branch,
as detailed in Sec. III-C.

• Neural Point+GSS: A variant that replaces the 3D Gaus-
sian in Neural Point+3DGS with 2D Gaussian surfels.

• PINGS: Our complete framework that extends Neural
Point+GSS by introducing geometric consistency loss
Lcons into the joint training, as described in Sec. III-D.

For fair comparison, we disable the localization part and
use the ground truth pose for all the compared methods. For
3DGS and GSS, we initialize their Gaussian primitive density
to match the total number of Gaussians spawned by PINGS.

We show the quantitative comparison on five sequences
in Tab. I as well as show the qualitative comparison of the
RGB and normal map rendering results on the church scene
at a novel view in Fig. 5. Our method PINGS achieves



TABLE II: Quantitative evaluation of surface reconstruction quality on the Oxford-Spires dataset. We use the metrics include accuracy error
(in m), completeness error (in m), and Chamfer distance (in m), as well as precision, recall and F-score (with 0.1m threshold). † denotes
methods requiring offline batch processing. Best results are shown in bold, second best are underscored.

Sequence Method Accuracy ↓ Completeness ↓ Chamfer Distance ↓ Precision ↑ Recall ↑ F-score ↑

Blenheim Palace 05

OpenMVS† 0.126 1.045 0.586 0.574 0.381 0.458
Nerfacto† 0.302 0.676 0.489 0.388 0.257 0.309

GSS 0.204 0.254 0.229 0.271 0.261 0.266
VDB-Fusion 0.098 0.123 0.111 0.646 0.746 0.692
PIN-SLAM 0.078 0.136 0.107 0.768 0.712 0.739

PINGS (Ours) 0.072 0.133 0.102 0.794 0.726 0.758

Christ Church 02

OpenMVS† 0.046 5.381 2.714 0.886 0.266 0.410
Nerfacto† 0.219 4.435 2.327 0.532 0.254 0.343

GSS 0.174 0.292 0.233 0.407 0.301 0.346
VDB-Fusion 0.098 0.243 0.171 0.655 0.524 0.582
PIN-SLAM 0.069 0.252 0.160 0.812 0.497 0.617

PINGS (Ours) 0.067 0.251 0.159 0.815 0.502 0.622

Keble College 04

OpenMVS† 0.067 0.342 0.205 0.918 0.718 0.806
Nerfacto† 0.137 0.150 0.144 0.654 0.709 0.680

GSS 0.171 0.162 0.167 0.424 0.518 0.466
VDB-Fusion 0.103 0.101 0.102 0.639 0.821 0.719
PIN-SLAM 0.096 0.108 0.102 0.701 0.793 0.744

PINGS (Ours) 0.093 0.106 0.099 0.705 0.799 0.749

Observatory Quarter 01

OpenMVS† 0.048 0.622 0.335 0.902 0.618 0.734
Nerfacto† 0.197 0.398 0.298 0.587 0.598 0.592

GSS 0.179 0.184 0.181 0.377 0.443 0.407
VDB-Fusion 0.123 0.109 0.116 0.573 0.737 0.645
PIN-SLAM 0.105 0.129 0.117 0.654 0.677 0.665

PINGS (Ours) 0.102 0.124 0.113 0.659 0.705 0.681

Blenheim Palace Christ Church Keble College Observatory Quarter

Fig. 6: Qualitative results of the surface mesh reconstruction by PINGS on the Oxford-Spires dataset. The meshes are extracted using
marching cubes algorithm from the SDF with a resolution of 0.1m.

superior performance in both photorealistic rendering quality
and depth rendering accuracy on the in-house car dataset, and
consistently outperforms the baselines for both in-sequence
and out-of-sequence testing views. Analysis of the results
reveals several insights: (i) The adoption of GSS over 3DGS
leads to improved geometric rendering quality and enhanced
out-of-sequence rendering photorealism; (ii) Our approach of
spawning Gaussians from neural points and jointly training
with the distance field provides better optimization control
and reduces floating Gaussians in free space, resulting in
superior rendering quality; (iii) The addition of geometric
consistency constraints from SDF enables better surface align-
ment of Gaussian surfels, further enhancing both geometric
accuracy and photorealistic rendering quality, as evidenced by
the smoother normal maps produced by PINGS compared to
Neural Point+GSS. These improvements are less significant
in the Roundabout scene, where the dense viewpoint coverage
from the vehicle’s circular trajectory provides strong multi-
view constraints, reducing the benefit of additional geometric
constraints from the SDF.

In sum, this experiment validates that PINGS achieves better
RGB and geometric rendering at novel views by constraining
the Gaussian splatting radiance field using the SDF.

C. Surface Reconstruction Quality Evaluation
We evaluate surface reconstruction quality on four se-

quences from the Oxford-Spires dataset. We follow the bench-
mark [64] to report the metrics including accuracy error,
completeness error, and Chamfer distance, as well as precision,
recall and F-score calculated with a threshold of 0.1 m. We
compare the performance of PINGS with five state-of-the-art
methods, including OpenMVS [5], Nerfacto [62], GSS [11],
VDB-Fusion [67], and PIN-SLAM [51]. To ensure fair com-
parison of geometric mapping quality, we disable the local-
ization modules of PIN-SLAM and PINGS and use ground
truth poses across all methods. For GSS, after completing the
radiance field mapping, we render depth maps at each frame
and apply TSDF fusion [67] for mesh extraction. Results of
the vision-based offline processing methods (OpenMVS and
Nerfacto) are taken from the benchmark [64]. For the remain-
ing methods (GSS, VDB-Fusion, PIN-SLAM, and PINGS),



TABLE III: Localization performance comparison of PINGS against
state-of-the-art odometry/SLAM methods on the in-house car dataset.
We report average relative translation error (ARTE) [%] and absolute
trajectory error (ATE) [m]. Odometry methods are shown above the
midrule, SLAM methods below. Best results are shown in bold,
second best are underscored.

Method Seq. 1 (5.0 km) Seq. 2 (3.7 km)
ARTE [%] ↓ ATE [m] ↓ ARTE [%] ↓ ATE [m] ↓

F-LOAM [69] 1.96 28.52 1.93 27.00
KISS-ICP [68] 1.49 8.17 1.38 8.22
PIN odometry [51] 0.95 4.51 0.98 5.64
PINGS odometry 0.73 5.17 0.59 4.78

SuMa [3] 5.55 39.90 4.42 44.78
MULLS [50] 2.23 40.37 1.64 33.82
PIN-SLAM [51] 1.00 3.17 0.98 4.44
PINGS (Ours) 0.68 1.99 0.58 3.47

we extract surface meshes from their SDFs using marching
cubes [37] at a resolution of 0.1 m.

We show the qualitative results of PINGS on the four se-
quences in Fig. 6. Quantitative comparisons in Tab. II demon-
strate that PINGS achieves superior performance, particularly
in terms of Chamfer distance and F-score metrics. Notably,
when using identical neural point resolution, PINGS con-
sistently outperforms PIN-SLAM across all metrics through
its joint optimization of the radiance field and geometric
consistency constraints. This improvement validates that incor-
porating dense photometric cues and multi-view consistency
from the radiance field improves the SDF accuracy, ultimately
enabling surface mesh reconstruction with higher quality.

D. SLAM Localization Accuracy Evaluation

We compare the pose estimation performance of PINGS
against state-of-the-art LiDAR odometry/SLAM systems on
two full sequences of the in-house car dataset. The compared
methods include F-LOAM [69], KISS-ICP [68], SuMa [3],
MULLS [50], and PIN-SLAM [51]. For evaluation metrics,
we use average relative translation error (ARTE) [15] to
assess odometry drift and absolute trajectory error (ATE) [89]
to measure the global pose estimation accuracy. The results
shown in Tab. III demonstrate that PINGS achieves both lower
odometry drift and superior global localization accuracy than
the compared approaches. Compared to PIN-SLAM, the im-
provement stems from the refined SDF obtained through joint
optimization with the radiance field and geometric consistency
constraints. The improved SDF leads to more accurate LiDAR
odometry and relocalization during loop closure correction.

E. Large-Scale Globally Consistent Mapping

Fig. 1 demonstrates the globally consistent SLAM capa-
bilities of PINGS on a challenging 5 km sequence from our
in-house car dataset. In Fig. 7, we show the effect of loop
closure correction. Without loop closure correction, odometry
drift accumulates over time, causing neural points to be incon-
sistently placed when revisiting previously mapped regions.
This results in visual artifacts in the radiance field rendering,
such as duplicate objects and trees incorrectly appearing on the
road. After conducting loop closure correction and updating
the map, both the neural point map and RGB rendering achieve
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Fig. 7: Demonstration of the effect of loop closure correction on the
in-house car dataset. When the vehicle revisits a previously mapped
region, we compare the neural point map (colored by timestep) and
RGB rendering (viewed from the green frustum) with and without
correcting the loop closure. Without loop closure correction, the
misaligned neural points create visual artifacts like trees appearing
on the road. After applying loop closure correction and map update,
we achieve globally consistent neural point map and RGB rendering.

101 102

← Map memory (MB)

0.3

0.4

0.5
←

 L
PI

PS
PINGS
GSS

101 102

← Map memory (MB)

0.10

0.12

0.14

←
 C

D
 (m

)

PINGS
VDB Fusion

Fig. 8: Map memory efficiency analysis comparing mapping quality
versus memory usage. Left: Radiance field comparison between
PINGS and GSS on the in-house car dataset using LPIPS metric.
Right: Distance field comparison between PINGS and VDB-Fusion
on the Oxford Spires dataset using Chamfer distance. Points represent
results at different map resolution, with points closer to the bottom-
left corner indicating better quality-memory trade-off.

global consistency. These results validate that PINGS can build
globally consistent maps at large scale through loop closure
correction by leveraging the elasticity of neural points.

F. Map Memory Efficiency Evaluation

Fig. 8 depicts the map memory usage in relation to the ren-
dering quality for the radiance field and the surface reconstruc-
tion quality for the distance field. Experiment results validate
that storing the neural points and decoder MLPs in PINGS
is more memory-efficient than directly storing the Gaussian
primitives or the discrete SDF in voxels. With equivalent
memory usage, PINGS achieves superior performance across
both metrics: better novel view rendering photorealism (lower
LPIPS) compared to GSS [11] on the in-house car dataset,
and better surface reconstruction accuracy (lower Chamfer
distance) compared to the discrete TSDF-based method VDB-
Fusion [67] on the Oxford Spires dataset. Moreover, while
GSS and VDB-Fusion each model only a single field type, our
PINGS framework efficiently represents both radiance field
and SDF within a single map. The efficiency of PINGS comes
from the globally-shared decoder MLPs that learn common



patterns, and locally-defined neural points that compactly en-
code multiple Gaussian primitives and continuous SDF values
through feature vectors instead of storing them explicitly.

V. LIMITATIONS

Our current approach has three main limitations. First,
although our SDF mapping and LiDAR odometry modules
operate at sensor frame rate, the computationally intensive
radiance field mapping results in an overall processing time of
around five seconds per frame on an NVIDIA A6000 GPU.
This performance bottleneck could potentially be addressed
through recent advances in efficient optimization schemes for
Gaussian splatting training [20, 40]. Second, PINGS relies
solely on online per-scene optimization without using any pre-
trained priors. Incorporating such priors [7] into our unified
map representation could improve both mapping quality and
convergence speed. Finally, though PINGS can filter dynamic
objects using the distance field, it lacks explicit 4D modeling
capabilities. This limitation is noticeable in highly dynamic
environments and when objects transition between static and
dynamic states. Future work could address this challenge by
incorporating object detection priors [9, 80] to enable accurate
4D mapping of both radiance and distance fields.

VI. CONCLUSION

In this paper, we present a new LiDAR-visual SLAM system
making use of a novel map representation that unifies a con-
tinuous signed distance field and a Gaussian splatting radiance
field within an elastic and compact set of neural points. By
introducing mutual geometric consistency constraints between
these fields, we jointly improve both representations. The
distance field provides geometric structure to guide radiance
field optimization, while the radiance field’s dense photometric
cues and multi-view consistency enhance the distance field’s
accuracy. Our experimental results on challenging large-scale
datasets show that our method can incrementally construct
globally consistent maps that outperform baseline methods in
the novel view rendering fidelity, surface reconstruction qual-
ity, odometry estimation accuracy, and map memory efficiency.
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