
IEEE TRANSACTIONS ON ROBOTICS. PREPRINT VERSION. ACCEPTED JUNE, 2024 1

PIN-SLAM: LiDAR SLAM Using a Point-Based
Implicit Neural Representation for Achieving

Global Map Consistency
Yue Pan, Xingguang Zhong, Louis Wiesmann, Thorbjörn Posewsky, Jens Behley, and Cyrill Stachniss

PIN map memory: 0.5 GB
Raw point cloud memory: 183 GB

200 m

Fig. 1: We present PIN-SLAM, a novel LiDAR SLAM system using an elastic point-based implicit neural map representation. Depicted in
the middle, we show a large-scale globally consistent neural point map built with our approach using about 20,000 LiDAR scans recorded
with a car without using any information from a GNSS, IMU or wheel odometry. We can query the SDF value at an arbitrary position from
the neural point map and reconstruct surface meshes. The point colors represent the neural point feature after online optimization. On the
left, we show the consistent neural points (top) and mesh (bottom) of a region traversed by the car multiple times indicated by the dashed
orange box. The colors of the neural points (top) represent timesteps when the point was added to the map. On the right, we show the
high-fidelity mesh (bottom) of a building reconstructed from the neural point map (top) of the region indicated by a dashed blue box.

Abstract—Accurate and robust localization and mapping are
essential components for most autonomous robots. In this paper,
we propose a SLAM system for building globally consistent maps,
called PIN-SLAM, that is based on an elastic and compact
point-based implicit neural map representation. Taking range
measurements as input, our approach alternates between in-
cremental learning of the local implicit signed distance field
and the pose estimation using a correspondence-free, point-to-
implicit model registration to the current local map. Our implicit
map is based on sparse optimizable neural points, which are
inherently elastic and deformable with the global pose adjustment
when closing a loop. Loops are also detected using the neural
point features. Extensive experiments validate that PIN-SLAM is
robust to various environments and versatile to different range
sensors such as LiDAR and RGB-D cameras. PIN-SLAM achieves
pose estimation accuracy better or on par with the state-of-the-
art LiDAR odometry or SLAM systems and outperforms the

Manuscript received: January 16, 2024; Revised: May 28, 2024; Accepted:
June 26, 2024.

All authors are with the University of Bonn, Germany. Cyrill Stachniss is
additionally with the Department of Engineering Science at the University of
Oxford, UK, and with the Lamarr Institute for Machine Learning and Artificial
Intelligence, Germany.

This work has partially been funded by the European Union under the grant
agreements No 101070405 (DigiForest), and by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) under Germany’s Excellence
Strategy, EXC-2070 – 390732324 – PhenoRob, under STA 1051/5-1 within
the FOR 5351 – 459376902 (AID4Crops).

recent neural implicit SLAM approaches while maintaining a
more consistent, and highly compact implicit map that can be
reconstructed as accurate and complete meshes. Finally, thanks to
the voxel hashing for efficient neural points indexing and the fast
implicit map-based registration without closest point association,
PIN-SLAM can run at the sensor frame rate on a moderate GPU.

Index Terms—SLAM, mapping, localization, deep learning

I. INTRODUCTION

S IMULTANEOUS localization and mapping (SLAM)
based on range sensors, such as light detection and rang-

ing (LiDAR) sensors or RGB-D cameras, is a fundamental
building block for autonomous mobile robots [15], [48], [78],
[97]. Various map representations [4], [12], [76] and scan
registration algorithms [5], [52], [64] have been proposed over
the last decades for efficient and high-fidelity representations
of the environment as well as robust and accurate localization
of the robot within the mapped environment.

The recent advance in neural implicit representation has
shown several advantages over the classical explicit map rep-
resentation widely used nowadays. Instead of explicitly storing
properties in a grid map, one can train a neural network to fit
the observations in a scene. This allows for querying properties

2 IEEE TRANSACTIONS ON ROBOTICS. PREPRINT VERSION. ACCEPTED JUNE, 2024

such as signed distances [53], occupancy probability [43],
colors [44], intensities [22], and semantics [99] at an arbitrary
location within the scene implicitly using the neural network.
As a memory-efficient continuous representation, these kinds
of implicit neural maps support efficient rendering [47], sur-
face reconstruction [100], collision avoidance [51] and path
planning [91]. To enable the model to have a high representa-
tion capacity, current approaches often learn the neural implicit
representation using optimizable local latent features instead
of using a single globally shared neural network [51], [71].
The local latent features can be structured by a regular 3D
grid [47], an axis-aligned tri-plane [55] with 2D grids, or a set
of irregular points [89]. Consequently, several SLAM systems
based on neural implicit representation have been proposed,
mainly for RGB-D cameras operating indoor [24], [65], [71],
[92], [101] but also for LiDAR sensors operating outdoor [11].
However, these SLAM approaches lack support for direct loop
closure corrections and are not able to build globally consistent
maps of larger scenes. This is mainly due to the usage of
regular grid-based local feature embeddings, which are not
elastic and resilient to loop corrections.

In this paper, we investigate the problem of realizing a
SLAM system using an implicit neural map representation
that supports globally consistent mapping. We opt to use
a neural point-based implicit representation, which has two
main advantages over grid-based representations: the flexibility
of spatial distribution and the elasticity for transformations.
Recent work [65] only makes use of the first advantage for
neural RGB-D SLAM at the cost of scalability and inefficient
neighborhood querying. Instead, we exploit the second and
more important advantage to build a globally consistent map
that can be corrected while online mapping after closing a
loop, which is essential for large-scale LiDAR-based SLAM.
Our approach alternates between mapping, i.e., online learning
of the local implicit signed distance map given poses, and
odometry, i.e., tracking the next scan’s pose given the current
local map, additionally with the ability to correct the drift and
keep a globally consistent map after closing a detected loop.

For the mapping part, we adapt the training data sampling
strategy and loss function used in our previous work [100] but
replace the octree-based multi-resolution feature grid with a set
of neural feature points. The signed distance function (SDF)
and additional properties like color or semantics at a query
position are predicted by interpolating among the surrounding
neural points. For each neural point, we concatenate its opti-
mizable latent feature with the query position’s coordinates in
the neural point’s coordinate system. This concatenated feature
is then decoded by a globally shared multi-layer perceptron
(MLP) as the prediction for that neural point. For efficient
and scalable neighborhood querying for the interpolation, we
use a voxel hashing data structure to index the neural points
by keeping no more than one active neural point in each
voxel. This enables our system to run at the sensor frame
rate (10 Hz) regardless of the scale of the mapped scene. To
tackle the problem of “catastrophic forgetting” in incremental
learning, instead of using the less stable regularization-based
strategy [100], we use a local data pool replay and local map
update strategy in a sliding window manner.

For the odometry part, we extend our previous work Loc-
NDF [86] to accomplish scan-to-implicit map registration effi-
ciently without the effort of point correspondence association
using a second-order optimization to estimate the ego-motion
incrementally. We propose an additional robust kernel based
on the regularity of the predicted SDF to further improve the
registration accuracy and robustness.

To correct the drift accumulated by the odometry, we use
the optimized neural point local map for global loop closure
detection and correction. Pose graph optimization (PGO) is
conducted after a loop verification to correct the drift and the
inherently elastic neural points are transformed along with the
poses of their associated frames to form a globally consistent
map, from which a consistent SDF and mesh can be generated.

The main contribution of this paper is a novel neural SLAM
system, called PIN-SLAM, based on a point-based implicit
neural (PIN) map representation that supports building large-
scale globally consistent maps online, as shown in Fig. 1. To
the best of our knowledge, PIN-SLAM is the first full-fledged
implicit neural SLAM system including odometry, loop clo-
sure detection, and globally consistent implicit mapping.

In sum, we make four key claims, which will be backed
up in the experiments: (i) Our SLAM system achieves local-
ization accuracy better or on par with state-of-the-art LiDAR
odometry/SLAM approaches and is more accurate than recent
implicit neural SLAM methods on various datasets using
different range sensors. (ii) Our method can conduct large-
scale globally consistent mapping with loop closure thanks to
the elastic neural point representation. (iii) Our map repre-
sentation is more compact than the previous counterparts and
can be used to reconstruct accurate and complete meshes at
an arbitrary resolution. (iv) Our correspondence-free scan-to-
implicit map registration and the efficient neural point indexing
by voxel hashing enable our algorithm to run at the sensor
frame rate on a single NVIDIA A4000 GPU.

The open-source implementation of our approach is avail-
able at: https://github.com/PRBonn/PIN SLAM.

II. RELATED WORK

A. LiDAR Odometry and SLAM

SLAM using range sensors such as LiDAR sensors has been
an active research topic for the last decades. A LiDAR SLAM
system often consists of odometry, mapping and optionally the
loop closure correction. At the core of such a system are the
map representation and the point cloud registration algorithm.

The earlier works on 2D LiDAR SLAM [15], [18], [29]
adopt a probabilistic occupancy grid map and use 2D scan
matching based on iterative closest point (ICP) algorithm [5]
or particle filters [15], [46] for ego-motion estimation.

For 3D LiDAR odometry and mapping, similar to the
feature-matching-based methods popularized in visual SLAM,
the seminal work LOAM [97] proposes to extract sparse
planar or edge feature points from the scan point cloud and
registers them to the last frame or the feature point map
using ICP. LOAM inspired multiple follow-up works [36],
[52], [56], [67], [68], [82] based on more sophisticated fea-
ture point extraction [68], [82], classification and registration

https://github.com/PRBonn/PIN_SLAM

PAN et al.: PIN-SLAM: LIDAR SLAM USING A POINT-BASED IMPLICIT NEURAL REPRESENTATION FOR ACHIEVING GLOBAL MAP CONSISTENCY 3

optimization schemes [36], [52] or the fusing with inertial
measurements [56], [67], leading to faster, more accurate and
more robust odometry estimation.

Recently, CT-ICP [10] and KISS-ICP [78] achieved strong
LiDAR odometry performance without feature point extrac-
tion. They register and append voxel-downsampled point cloud
to a local point cloud map supporting efficient neighborhood
search using either point-to-plane or point-to-point metrics.
Combined with a motion model providing initial poses, these
feature-free “direct” methods [10], [13], [31], [78] are compa-
rably robust in structure-less scenarios and can take advantage
of denser observations for optimization. The same idea has
been applied to LiDAR-inertial odometry [88], [90] at a high
operating frequency. Our method belongs to the “direct” algo-
rithms but avoids the time-consuming and non-differentiable
correspondence association procedure of ICP.

Except for the point-based map used by aforementioned
methods, some other works estimate the ego-motion by con-
ducting scan registration to other explicit map representations
such as 3D surfels [4], [7], triangle meshes [62], [76], vox-
elized Gaussian distributions [30], [93] as well as the implicit
map representations such as moving least square model [12],
Gaussian process [63] and grid-based implicit neural SDF [11].
In contrast, our method uses a point-based implicit neural SDF
map representation, which combines the best of both worlds:
it retains the flexibility and elasticity characteristic of point-
based methods while offering continuity and compactness
simultaneously thanks to the neural representation.

There exists also learning-based LiDAR odometry meth-
ods [33], [80], [81], which realize registration between adja-
cent frames using end-to-end pose supervision. However, they
typically cannot generalize well to unseen test sets and do not
make use of the map for odometry. Similar to recent work
Nerf-LOAM [11], our method exploits neural networks to fit
the SDF online using the input point clouds, thus requiring no
pre-training and generalizing well in various scenarios.

Besides incremental pose estimation, loop closure detection
and correction are necessary for building a globally con-
sistent, long-term SLAM system. Various approaches have
been proposed to first conduct LiDAR place recognition and
then estimate the transformation between the queried and
retrieved scan using geometry-based [26], [27] or learning-
based [41], [42], [75] scan-wise global descriptor matching as
well as local feature matching and verification [40]. However,
previous methods often rely on the raw point cloud from a
sparse single scan for descriptor generation and matching. In
contrast, our method makes use of the neural point features
in the local maps for loop closure detection. The usage of the
local map makes our method robust to occlusions and sensors
with a narrow field of view. Besides, reusing the online-
optimized neural point features can avoid the generalizability
concern of offline-trained feature extractors and save additional
computation for local feature extraction.

B. Implicit Neural Map Representation
Over the past decades, explicit map representations have

been widely used in the robotics community for localiza-
tion [74], planning, and exploration [69]. These methods

explicitly represent the scene using point cloud [97], sur-
fels [4], triangle meshes [76], or voxel grids storing either
the occupancy probabilities [15] or a truncated signed distance
function (TSDF) [48]. Various approaches have been proposed
to improve the scalability and efficiency of the map data
structure [19], [49], [77] and to realize the incremental integra-
tion from sensor measurements [50] for the dense volumetric
mapping. These explicit representations often discretize the
scene with a fixed spatial resolution. Another line of work
adopts a continuous implicit representation such as Gaussian
processes [87] or reproducing kernel Hilbert maps [58]. How-
ever, these approaches currently do not scale well to 3D data.

Recently, implicit neural representations have been proven
effective in modeling radiance fields [44] and geometric (occu-
pancy or distance) fields [43], [53] using fairly simple neural
networks. These representations have demonstrated notable
success in various applications, including novel view synthesis,
3D surface reconstruction, and shape completion. Following
the seminal works on neural radiance field (NeRF) [44],
DeepSDF [53], and occupancy networks [43], numerous works
target improving the scalability of the implicit neural rep-
resentation while boosting the time and memory efficiency.
Instead of representing the whole scene with a single MLP,
more recent methods exploit a hybrid representation by jointly
optimizing explicitly stored local latent features and a shallow
MLP. These works propose to store the optimizable local latent
features in various data structures such as multi-resolution
dense voxel grids [55], sparse voxel hashing grids [35], [47],
octree nodes [72], permutohedral lattices [61], axis-aligned tri-
plane 2D grids [6], or as an unordered point sets [89].

The advances in efficient training of scalable implicit neural
representations open up an avenue to implicit neural mapping
and SLAM systems. Compared to traditional methods, implicit
neural map representations have several attractive properties
such as more compact storage, better noise smoothing ca-
pabilities and stronger inpainting and hole-filling ability for
sparse or occluded observations. In the realm of mapping
and SLAM from a stream of RGB-D data, several works
propose to use a single MLP [2], [51], [71] and a hybrid
representation combining grid-based local latent features and a
shallow MLP [21], [24], [83], [92], [101] to model the radiance
or geometric field of the scene and simultaneously track
the camera pose. These approaches have shown comparable
tracking accuracy compared to the classic visual odometry
methods and can generate a more complete and compact map,
which can be reconstructed as a 3D mesh.

Though with fewer works, a related trend can be seen in
LiDAR mapping and localization research. IR-MCL [32] and
LocNDF [86] propose to localize the robot within an implicit
neural distance map built by laser scans. To scale up the
implicit neural representation to large-scale outdoor LiDAR
data, SHINE-Mapping [100] stores local features in octree-
based sparse voxels. Towards a SLAM system, LONER [23]
integrates the incremental neural mapping into a LiDAR
odometry front-end using ICP. Recently, NeRF-LOAM [11]
proposed an implicit neural LiDAR odometry and mapping
system using an online optimizable octree-based feature grid.

Besides grid-based representations, the point-based implicit

4 IEEE TRANSACTIONS ON ROBOTICS. PREPRINT VERSION. ACCEPTED JUNE, 2024

neural representation stores latent features in a set of neural
points. It has been applied to efficient NeRF fitting [89],
dynamic NeRF [1], adaptive surface reconstruction [34] and
RGB-D SLAM [65]. Though also using neural points, the
recent work Point-SLAM [65] targets only indoor RGB-D
SLAM and does not support loop closure and globally consis-
tent mapping. Point-SLAM takes advantage of the flexibility
of point-based representation for the adaptive scene encoding,
i.e., allocating more features to structures that require more
details. We, instead, make use of the elasticity property of
neural points for building a globally consistent map online by
transforming the neural points on loop closures.

The aforementioned neural implicit RGB-D and LiDAR
SLAM systems still have two major limitations. First, most
of them [11], [65], [71], [101] cannot run at the sensor frame
rate, limiting their applications for online robotics applications.
This is mainly due to the map data structure, computation-
ally demanding differentiable rendering-based optimization for
mapping, or an inefficient gradient descent optimization for
pose estimation. Second, the map representations of previous
neural implicit SLAM approaches do not support loop closure
correction, and thus cannot build globally consistent maps,
especially in outdoor long-term robotics missions. The reason
for this is the usage of the regular latent feature grids that are
not elastic to pose corrections introduced by loop closures.
Once a loop is corrected and the poses are updated, previous
methods need to re-allocate the feature grids and re-train the
entire map, which is computationally demanding and clearly
prevents online applications. To solve the first challenge, we
realize an efficient SLAM system by adopting direct point-
wise SDF supervision in a local map during mapping and a
second-order on-manifold optimization for odometry estima-
tion. To deal with the second limitation, our approach exploits
the elastic and deformable point-based implicit representation
to avoid grids and thus the remapping after loop correction.

C. Global Consistency in SLAM
Global consistency is a desired property for maps. The

solutions to globally consistent mapping can be divided into
remapping-based, submap-based, and point-based methods.

The remapping-based method such as Bundle Fusion [8]
accomplishes online globally consistent 3D reconstruction
using on-the-fly surface re-integration in a bundle-adjustment
manner at the cost of substantial computational efforts.

The submap-based methods accumulate the observations
as a submap and assume the submap is a locally-defined
rigid body. The pseudo-global consistency is maintained by
optimizing a graph linking submaps and their associated poses
through submap-to-submap registrations. The submap can use
different representations, such as feature points [37], [52] and
TSDF [59], [84]. The usage of submaps decreases the number
of nodes and edges in pose graph optimization, thus saving
computational effort. However, these methods have issues of
ambiguity in the overlapping region of the adjacent submaps
and determining appropriate criteria for submap division to
balance the rigidity and efficiency.

The point-based methods represent the map as a fully
deformable point set or surfels, each associated with a frame

pose. Whelan et al. [85] proposes Elastic Fusion for globally
consistent RGB-D SLAM using surfel map with deformation
graph, which is further scaled for outdoor surfel-based LiDAR
SLAM [4], [7]. These methods can handle globally consistent
mapping without the need for submap division. However, in
contrast to volumetric mapping, point-based methods are less
suitable for online 3D reconstruction and path planning. This
is attributed to their sparsity and the absence of a direct
representation of free or unknown space.

Only a few recent works are trying to solve the loop
closure correction and globally consistent mapping using
implicit neural map representation without storing the raw
observation data and conducting remapping after the pose
update. IMT-Mapping [95] uses the SE(3)-equivalent grid-
based feature for implicit mapping. When a loop is corrected,
IMT-Mapping can directly get the updated grid features by
interpolating the transformed SE(3)-equivalent features. Fol-
lowing the submap-based explicit mapping systems [52], [59],
[84], MIPS-Fusion [73] and NF-Atlas [94] employ an implicit
submap with MLP or octree-based feature grid and adjust the
submaps when a loop is corrected to keep the consistency.

In contrast to previous methods, our point-based implicit
neural map belongs to the point-based globally consistent
mapping approach. It avoids the non-trivial submap division
and overlapping disambiguation while mapping a continuous
SDF that enables efficient 3D reconstruction.

III. OUR APPROACH TO GLOBALLY CONSISTENT
IMPLICIT NEURAL SLAM

Our approach PIN-SLAM primarily addresses large-scale
LiDAR SLAM for global map consistency, with applicability
to other range sensors such as RGB-D cameras.

Notation. In the following, we denote the transformation of
a point pA in coordinate frame A to a point pB in coordinate
frame B by TBA ∈ SE(3), such that pB = TBApA. Note
that we use the homogeneous coordinate conversion of points
before and after the affine transformation, but will not include
this operation explicitly in the following derivations. We let
RBA ∈ SO(3) and tBA ∈ R3 denote the corresponding
rotational and translational part of transformation TBA.

We denote the sensor coordinate frame at timestep t as Ct.
Frame Ct is associated to the world coordinate frame W by
a pose TWCt ∈ SE(3). We assume the transformation TWC0

from the first frame C0 to the world frame W is a constant, as
either the identity matrix or the extrinsic calibration matrix. We
denote the position of frame Ct as tWCt and the accumulated
travel distance up to frame Ct as D(t), which is given by:

D(t) =

t∑
n=1

∥∥tCn−1Cn

∥∥
2
. (1)

Overview. Before the detailed explanation of our method-
ology, we provide a brief overview of PIN-SLAM’s pipeline.
For each point cloud P = {p ∈ R3} measured at timestep t,
we simultaneously estimate the pose TWCt of the sensor
frame and update the point-based implicit neural mapM. For
every timestep, as shown in Fig. 2, PIN-SLAM performes the
following steps:

PAN et al.: PIN-SLAM: LIDAR SLAM USING A POINT-BASED IMPLICIT NEURAL REPRESENTATION FOR ACHIEVING GLOBAL MAP CONSISTENCY 5

Pose Graph Optimization

Signed Distance Field

Reconstructed Mesh

Raw Scan Preprocessing

1

2 3

4 5

Point-based Implicit Neural (PIN) Map

Odometry Map Update &
Optimization

Loop Closure Detection

Output

+
-

+1m

-1m

Fig. 2: Pipeline overview of PIN-SLAM. Starting from a point cloud P scanned at timestep t, (1) a point cloud for registration Pr and a
point cloud for mapping Pm are voxel-downsampled. (2) We align Pr to the implicit SDF of current local map Ml to estimate the global
pose of current frame TWCt . (3) TWCt is then used to transform Pm into the map coordinate system. With the transformed Pm, we update
the point-based implicit neural (PIN) map M and optimize the neural point features in the local map Ml by online incremental learning.
(4) We generate polar context descriptor Ut using the current local map Ml and search for loop closures by comparing Ut to descriptors
generated for previous frames. Once a loop between frame Ct and Ck is detected, we add the transformation TCkCt as a loop edge of the
pose graph and then (5) conduct the pose graph optimization. The position and orientation of the neural points in M are transformed along
with their associated frames after the pose graph optimization, leading to a globally consistent map. With the PIN map, we can query the
SDF value at an arbitrary position during or after the SLAM task for path planning and mesh reconstruction.

1) Preprocessing: We voxel-downsample the input point
cloud P into the point cloud for registration Pr and
the point cloud for mapping Pm (Sec. III-B).

2) Odometry: We estimate the global pose TWCt by reg-
istering the point cloud Pr to the implicit SDF of the
local mapMl. The odometry transformation TCt−1Ct is
added as an edge in the pose graph G (Sec. III-C).

3) Mapping: We filter the dynamic points in Pm based on
the map M. Then we sample along the ray from the
sensor to each point in Pm to get the training samples
D and transform them to the world frame using TWCt .
We use the close-to-surface samples Ds ⊂ D to initialize
new neural points, append them to the mapM and reset
the local mapMl centered at the current position tWCt .
We update the training sample pool Dp with the training
samples D of the current frame. Then we optimize the
neural point features in the local map Ml using the
samples in the pool Dp with direct SDF supervision
by gradient descent. After that, we allocate the updated
local map Ml back to the global map M (Sec. III-D).

4) Loop closure detection: We generate a local polar con-
text descriptor Ut using the local map Ml. Then we
search for a potential loop closure by comparing the
feature distances between the descriptors of the current
frame and candidate frames. Once a loop closure candi-
date between frame Ct and Ck is detected, we verify it
by registering the point cloud Pr of the current frame to
the local map Ml centered at the sensor position tWCk

of frame Ck. We add the loop transformation TCkCt
resulting from the registration as an edge in the pose
graph G if the registration succeeds (Sec. III-E).

5) Pose graph optimization: Once a loop closure edge is

added, we optimize the pose graph G. The position and
orientation of each neural point in the global map M
are transformed along with its associated frames after
the optimization to keep the global consistency. We then
transform the training sample pool Dp and reset the local
map Ml accordingly after loop correction (Sec. III-F).

For the first timestep, we initialize the map using only the
first scan as done in the mapping step. During or after the
SLAM, we can query the SDF value at an arbitrary position
for mesh reconstruction via the marching cubes algorithm [39].

Next, we will explain the basics, data structure, and training
process of the proposed PIN map representation (Sec. III-A)
and then explain each step of the pipeline in more detail.

A. Neural Point-based Map Representation
1) Map Representation: We define the proposed point-

based implicit neural map as a set of neural points:

M = {mi = (xi, qi,f
g
i , t

c
i , t

u
i , µi) | i = 1, . . . , N}, (2)

where each neural point mi is defined in the world frame W
by a position xi ∈ R3 and a quaternion qi ∈ R4 representing
the orientation of its own coordinate frame. Each neural
point stores the optimizable latent feature vectors fgi ∈ RFg
representing the local geometry. In addition, we keep track
of the creation timestep tci , the last update timestep tui and
the stability µi for each neural point to determine whether a
neural point is active or inactive, stable or unstable. We link
each neural point mi to the sensor pose TWCtm

i
at the mean of

the neural point’s creation and last timestep tmi = b(tci+tui)/2c
to directly manipulate the map by updating the sensor poses.

As shown in Fig. 3, similar to the auto-decoder architecture
of DeepSDF [53], we predict the SDF value s at a query

6 IEEE TRANSACTIONS ON ROBOTICS. PREPRINT VERSION. ACCEPTED JUNE, 2024

position p conditioned on K nearby neural points. For each
neural point mj in the K-neighborhood Np of the query
position p, we first concatenate the latent feature vector fgj
and the relative coordinate dj . Here, dj represents the query
position in the coordinate system of the neural point mj . Then
we feed the concatenated vector to a globally shared geometric
decoder Dg

θ , a shallow MLP containing Mmlp hidden layers
with Nmlp neurons, to predict the SDF value sj as:

sj = Dg
θ(fgj ,dj), (3)

where the relative coordinate dj is given by:

dj = qj(p− xj)q−1j . (4)

As shown in Fig. 3(b), the concatenation of relative coordinate
dj makes the prediction invariant to the local translation and
rotation, thus enabling the elasticity of the map after loop clo-
sure correction, which will be further explained in Sec. III-F.

The predicted SDF values sj of the K nearest neural points
at the query position p are then interpolated as the final
prediction s = S(p) by inverse distance weighting, given by:

S(p) =
∑
j∈Np

wj∑
k∈Np wk

sj , (5)

where the weights wj are defined as:

wj = ‖p− xj‖−2. (6)

Likewise, we define the stability µ = H(p) at the query
position p as a distance-weighted mean of the stability µj of
the K nearby neural points by switching sj with µj in Eq. (5).

Intuitively, the final prediction can be regarded as a voting of
the individual prediction from each neighboring neural point
mj or an ensemble of multiple locally defined DeepSDF-
like auto-decoder models. In contrast with the relatively deep
decoder used in DeepSDF [53], which needed to be pre-
trained to represent the object globally, we represent the local
geometries mainly in the locally defined latent feature space of
neural points and use a shallow decoder as a general interpreter
to map from the feature space to SDF values.

2) Map Data Structure: For fast neural point indexing
and neighborhood search, we maintain a voxel hashing data
structure with a fixed voxel resolution vp and a hash table size
T . This structure serves to organize the neural points, ensuring
that each voxel contains no more than one active neural point.
In line with prior work [47], [78], we use a spatial hashing
function κ = h(pW) to map from a position pW ∈ R3 to
an entry κ ∈ Z in the hash table. This entry stores either the
index i of a neural point mi in the map M or the default
value −1, indicating that the entry is not yet occupied.

In contrast to Point-SLAM [65], for efficient proximity
search during the SDF prediction at a query position p, we use
the voxel structure to find the neural points in the voxel-defined
neighborhood N v

p containing Nn ×Nn ×Nn voxels centered
at the corresponding voxel of p with constant time access.
We sort the distances and take the K nearest neural points in
N v
p to get the K-neighborhood Np for SDF prediction. The

larger Nn is, the larger the receptive field would be while the
computation time for neighborhood search would increase. If
the number of neighboring neural points Kn is 1 ≤ Kn < K,
we conduct SDF interpolation among the Kn points.

...

...

(a) (b)

Fig. 3: Diagram of SDF querying in our point-based implicit neural
map simplified in 2D. (a) The point in gray is the query position
p while the other points are the neighboring neural points. Each
neural point predicts the SDF value si at the query position by
feeding the neural point feature fgi and the query point’s position
di under the neural point’s coordinate system through a globally
shared decoder Dg

θ . Then the predictions are weighted as the final
prediction s according to the distances from the neural points to the
query position. (b) The orientation of each neural point defines its
local coordinate system, ensuring the relative coordinate di and thus
the SDF querying invariant to rigid-body transformation.

3) Map Initialization and Update: We initialize or update
neural points at each timestep using the measured point cloud.
For a point pW in the world frame W measured at timestep
t, we will initialize a new neural point mk, append it to the
map M and set the hashing entry’s value as the new neural
point’s index, i.e., κ ← k only under the following three
circumstances:

1) The hashing entry is not yet occupied, i.e., κ = −1.
2) There is a hash collision, i.e., the position xκ of cur-

rently stored neural point mκ in the voxel of the added
point pW is far away from pW due to hash collision.

3) The stored neural point mκ is no longer active, i.e.,
D(t) − D(tuκ) > dl, meaning the travel distance from
the last updated timestep tuκ of the neural point to
the current timestep t is larger than a travel distance
threshold dl. This is used to differentiate between the
historical observation and the present observation at the
same position in the world frame upon revisiting.

In such cases, we initialize a new neural point mk to have
a position x = pW , an identity quaternion q = (1, 0, 0, 0), a
zero feature vector fg = 0, creation and last update timestep
as tc = tu = t, and the stability as µ = 0. In the latter
two cases, the originally stored neural point is replaced by the
new one and no longer indexed by the voxel hashing map.
However, they are kept in the global neural point map for the
sake of loop closure correction (cf. Sec. III-E) and globally
consistent map adjustment (cf. Sec. III-F).

4) Local Map: Our method distinguishes between an active
local mapMl and a global mapM. The registration described
in Sec. III-C and Sec. III-E are performed using the local
map Ml to avoid the alignment to the inconsistent historical
observations caused by odometry drift.

In previous works, a local map is often defined using either
a spatial window [52], [78] or a temporal window [4], [85].
We propose to use both of them. In practice, the speed of the
robot may vary a lot during the operation. For instance, the
robot may stop at a position for a long time. Since the drift of
the odometry is often proportional to the accumulated travel

PAN et al.: PIN-SLAM: LIDAR SLAM USING A POINT-BASED IMPLICIT NEURAL REPRESENTATION FOR ACHIEVING GLOBAL MAP CONSISTENCY 7

distance D(t) instead of the time span, we propose to use a
travel distance threshold instead of the timestep threshold [4],
[85] to determine the local temporal window. Consequently,
we define a local map Ml centered at the sensor position
tWCt at timestep t. This map includes all neural points within
both the spatial window ‖xi − tWCt‖2 < rl and the temporal
window D(t) − D(tci) < dl. Here, rl represents the radius
of the local spatial window, and dl denotes the previously
mentioned travel distance threshold.

Next, we will explain how we incrementally optimize the
neural point features in the local map Ml using a sliding
window-like training sample pool Dp.

5) Map Training Samples: At each timestep t, we take
samples along the rays from the voxel-downsampled ego-
centric scan Pm = {p ∈ R3} to collect training data. On
each ray r = p/ ‖p‖2 from the sensor to the measured
point p, we can represent a sampled point u in the sensor
frame Ct uniquely with its depth d along the ray, given by:
u = dr. We take the endpoint (d = ‖p‖2) and Ns points
close to the surface with the depth sampled from a Gaussian
distribution ds ∼ N

(
‖p‖2 , σ2

s

)
with the endpoint as the mean

and σs as the standard deviation. Additionally, we sample Nf
points uniformly in the free space in front of the surface with
the depth df ∼ U (ζmin ‖p‖2 , ‖p‖2 − 2σs) and Nb points in
the truncated free space behind the surface with the depth
db ∼ U (‖p‖2 + 2σs, ‖p‖2 + db), where ζmin is the minimum
sample depth ratio and db represents the maximum sample
range behind surfaces. For each sample point u, we take the
projective signed distance along the ray as its SDF target value
ŝ = ‖p‖2 − d. Though the projective distance would always
be an overestimation, it is computed quickly and is a good
approximation when the sample point is close to the surface.

We define the training samples D at timestep t as Nt sample
positions and their target values from all the rays, given by:

D = {(uj , ŝj , t) | j = 1, . . . , Nt} , (7)

where Nt = Mt(Ns + Nf + Nb + 1) and Mt is the number
of points (rays) in point cloud Pm. We associate the training
samples with the corresponding sensor frame Ct by recording
the timestep t of each sample so that we can later transform
each sample point into the world frame.

To tackle the “catastrophic forgetting” problem in incre-
mental mapping, we maintain a training sample pool Dp by
appending the samples D from each timestep for replaying
the historical samples, as shown in Fig. 4(c). We filter Dp at
each timestep t by removing the samples lying outside a local
sliding window with a radius rp, centered at the current sensor
position tWCt , given by:∥∥uiW − tWCt

∥∥
2
> rp, (8)

where uiW = TWCti
ui is the sample position in world frame

and rp = rl −
√
3
2 Nnvp is set to enforce that the training

samples would only affect the neural points in the local map,
considering the local map radius rl, neighborhood voxel counts
Nn, and the voxel size vp. Additionally, to deal with the case
when the robot stops, if the number of samples in Dp exceeds
Np, we randomly keep Np samples.

(a) (b) (c)

weight

filtered
used

1
0

SDF label

+1m

-1m

Fig. 4: An example during the operation of PIN-SLAM at a timestep:
(a) shows the point cloud for mapping Pm. A moving bus is
highlighted in the green circle. (b) shows the sparser point cloud
for registration Pr , colorized according to the point-wise registration
weight from black to red. The points in blue are filtered, mainly lying
at dynamic objects, rough vegetation, and newly observed regions. (c)
shows points from the training sample pool Dp for map optimization,
colorized according to their SDF target values from blue to red.

6) Map Training Losses: We want to train our neural points
to predict SDF value on arbitrary locations and these neural
point features need to be trained ideally during the incremental
mapping process. During incremental mapping, we randomly
sample from the training sample pool Dp in batch for training.
For the training of the SDF, we use a similar loss function as
our previous work [100], which combines the binary cross
entropy (BCE) loss and the Ekional regularization loss.

At a sample position uiW = TWCti
ui in the world frame,

we map both the SDF prediction si = S(uiW) from the nearby
neural points and target value ŝi to the range of [0, 1] by a
scaled sigmoid function Φs(s) = 1/(1 + es/σt) as:

oi = Φs(si), ôi = Φs(ŝi), (9)

and then the BCE loss is calculated for N samples as:

Lbce =
1

N

N∑
i=1

ôi log(oi) + (1− ôi) log(1− oi). (10)

The BCE loss enables fast convergence of the SDF [100].
It accomplishes the logistic regression of the projective SDF
value and realizes the soft truncation of signed distance close
to the surface. We can adjust the truncation smoothness using
the scale factor σt in the scaled sigmoid function Φs.

One necessary property of SDF is the Ekional equation [16],
i.e., ‖∇S (x)‖2 = 1. Therefore, we use the Ekional loss Leik
to enforce the regularity and validity of the fitted SDF:

Leik =
1

N

N∑
i=1

(∥∥∇S (uiW)∥∥2 − 1
)2
. (11)

In line with Neuralangelo [35], we calculate the numerical
gradient by manually adding perturbations instead of using
the analytical gradient based on automatic differentiation. This
enables the backpropagation updates beyond the local hash
grid that stores neural points, resulting in a smoother SDF
gradient for the calculation of Leik. The gradient component
at a position x on the x axis is given by:

∇xS(x) =
S(x+ εx)− S(x− εx)

2ε
, (12)

where εx = (ε, 0, 0)> is the perturbation vector on the x axis
and ε is the perturbation step size used on every axis. The
gradient on the y and z axis can be calculated likewise.

8 IEEE TRANSACTIONS ON ROBOTICS. PREPRINT VERSION. ACCEPTED JUNE, 2024

The final loss is then formulated as a weighted sum of BCE
and Ekional term, given by:

L = Lbce + λeLeik, (13)

where λe is the weight for Ekional loss. During training, we
minimize the loss by optimizing latent features of the involved
neural points in the local map. For each sample point ui, we
also update the last update timestep tuj and stability µj of each
neural point mj in the neighborhood Np of ui, given by:

tuj ← max(tuj , ti), µj ← µj +
wj∑

j∈Np wj
, (14)

where ti is the timestep of this training sample, and the
weight wj can be calculated as Eq. (6).

Next, we will explain how we use the proposed map
representation, namely the PIN map, to realize a LiDAR
SLAM system towards globally consistent mapping.

B. Preprocessing
For each egocentric point cloud P measured at timestep t,

we voxel-downsample P into the point cloud for mapping
Pm with a smaller voxel size vm, and the point cloud
for registration Pr with a larger voxel size vr. During the
downsampling, we keep exactly one point, namely the one
whose coordinate is the closest to the voxel center.

Typically for LiDAR sensors, the point cloud of one
sweep (frame) consists of the continuously scanned points
measured across the acquisition time. Therefore, for each scan
frame, we first need to revert the distortions of the point cloud
caused by the sensor motion. In line with Vizzo et al. [78],
we use a constant velocity model for motion prediction. Based
on this model, we first deskew the points Pr for registration
before the odometry estimation by interpolating the motion
prediction with the pointwise timestamp. We deskew Pm with
the more accurate ego-motion from odometry afterward.

C. Odometry Estimation
To achieve efficient and robust odometry, we propose a

correspondence-free, scan-to-implicit map registration method
based on second-order optimization under multiple weighting
strategies, which is based on the approach proposed by Wies-
mann et al. [86] targeting localization in known maps.

Our goal is to align the source point cloud Pr at timestep t
to the neural SDF of the local PIN map Ml by finding the
transformation T∗ ∈ SE(3) minimizing the least square error
of the SDF prediction at the transformed points, given by:

T∗ = argmin
T

∑
p∈Pr

S (Tp)
2
, (15)

which can be solved by a Levenberg-Marquardt optimization
taking the initial guess predicted by a constant velocity model.

We denote the 6DOF transformation parameters as the Lie
algerba ξ = [t,Θ] = log(T), where t is the translation vector
and Θ = log(R) is the axis-angle representation of the rotation
matrix R. The Jacobian of the transformed point p′i = Tpi
with regards to ξ is given by:

Ji =

[
∂S (p′i)

∂t
,
∂S (p′i)

∂Θ

]
=
[
gTi , (p

′
i × gi)T

]
, (16)

where gi = ∇S (p′i) is the distance gradient at p′i, which
can be queried from the implicit neural distance field of
PIN map by automatic differentiation. In our experiments,
we discovered that using this analytical gradient for odom-
etry estimation enhances robustness compared to utilizing the
smoother but less precise numerical gradient employed for the
Ekional regularization in mapping, see Eq. (12).

Intuitively, the registration can be solved by knowing in
which direction, given by g and how much, given by S(p′),
we have to go. This is conducted without knowing the explicit
point-to-point correspondences. The de facto optimization
target in previous neural implicit SLAM approaches [65], [71],
[92], [101] is the depth rendering loss, which can be seen as
related to the point-to-point metric with projection-based data
association. Our method optimizes the point-to-model SDF
loss, which is similar to the point-to-plane metric in ICP with
the closest surface-based data association. The latter method
has a faster convergence rate and more robust optimization
according to the study by Rusinkiewicz, and Levoy [64].

We then approximate the Hessian matrix H as H = JTPJ
and calculate the gradient of the target function as g = JTPb,
where J ∈ RNr×6 is the Jacobian, P ∈ RNr×Nr is the weight
matrix, and b ∈ RNr is the residual vector. We filter points that
have fewer than K neural points in their Nv

p neighborhood and
set each row of J using the Nr remaining points as Eq. (16).

For each iteration, the increment of the transformation
parameters δξ is given by:

δξ =
(
H + λddiag (H)

)−1
g, (17)

where λd is the damping parameter for Levenberg-Marquardt
optimization. The termination criterion is determined by a
threshold γc for the applied correction δξ and a maximum
number of iterations τc.

To robustify the optimization under noisy measurements and
underfitted map, we apply the Geman-McClure (GM) robust
kernel for both the SDF residual S(p′i) and the SDF gradient
anomaly εi to down-weight the potential measurement noise,
dynamic objects, and underfitted details of the implicit map.
The pointwise robust kernel weights are given by:

wri =

(
κr

κ2r + S(p′i)
2

)2

, (18)

wgi =

(
κg

κ2g + ε2i

)2

, (19)

where κr and κg are the scale parameters of the robust kernel.
The gradient anomaly εi is defined as the deviation of the
distance gradient from the Ekional equation, given by:

εi =
∣∣ ‖∇S (p′i)‖2 − 1

∣∣. (20)

To apply the robust kernel to the optimization, we scale each
diagonal element of the weight matrix P with the point-wise
robust kernel weights wriw

g
i . An example of the filtering and

point-wise weight of Pr is shown in Fig. 4(b).
After convergence, we additionally calculate the Eigenval-

ues λ of the Hessian matrix H for a degeneracy check [96].
The registration will be regarded as a success if the average
residual b̄ > bs, the ratio of valid points α > αs, and the

PAN et al.: PIN-SLAM: LIDAR SLAM USING A POINT-BASED IMPLICIT NEURAL REPRESENTATION FOR ACHIEVING GLOBAL MAP CONSISTENCY 9

minimum Eigenvalue min(λ) > λs for the last iteration,
where bs, αs, and λs are the thresholds. If the optimization
succeeds, i.e., all checks are fulfilled, we take TWCt = exp(ξ)
as the estimated pose of the current frame Ct for mapping
(Sec. III-D). Otherwise, we directly use the initial guess, i.e.,
the constant velocity estimate, but skip the mapping step to
avoid introducing wrong measurements.

For a potential pose graph optimization, we add the odom-
etry transformation TCt−1Ct as an odometry edge connecting
pose node Ct−1 and Ct in the pose graph G.

D. Mapping and Local Bundle Adjustment

With the sensor poses TWCt estimated by the odometry at
each timestep, we can update and optimize the PIN map M
using the point cloud for mapping Pm.

Firstly, we filter the dynamic objects from Pm and use only
the static part for mapping. Inspired by Dynablox [66], we
make use of the assumption that a measured point lying in the
stable free space can be regarded as a dynamic point. Thereby,
we filter points fulfilling

(
S (pW) > γd

)
∧
(
H (pW) > γµ

)
,

where S (pW) and H (pW) are the SDF and stability predic-
tion at the measured point pW = TWCtp in the world frame.
γd and γµ are the free space distance and stability threshold,
respectively. Only the static points remain for mapping.

As we explained in Sec. III-A, we get training samples
D by sampling along the rays from the sensor to the static
points in Pm. We initialize new neural points in the map M
using the close-to-surface sample points Ds transformed by
current pose TWCt . We then reset the local mapMl centered
at the current position tWCt , and append current training
samples D to the training sample pool Dp. Next, we conduct
PIN map optimization by gradient descent using the training
samples from Dp in batches. When the SLAM starts, we
jointly optimize the neural point feature fg in the local map
Ml and the weights of the MLP decoder Dg

θ for the first Fmlp
timesteps. After Fmlp timesteps, we freeze Dg

θ and optimize
only the neural point features to avoid catastrophic forgetting
due to the ever-changing decoder while incremental mapping.

The odometry estimation relies on pairwise scan-to-map
registration and always optimizes only the latest pose. It
ignores the multi-view consistency of multiple scans in the
local sliding window, thus pruning to rapidly accumulated
drift. Inspired by the bundle adjustment (BA) technique widely
employed in photogrammetry and computer vision, Liu et
al. [38] introduce a LiDAR bundle adjustment algorithm. This
algorithm aims to refine odometry by simultaneously opti-
mizing the scene geometry and a collection of sensor poses.
The target of this optimization is to minimize inconsistencies
among explicit geometric features such as edges and planes.

We propose an implicit local bundle adjustment approach
making use of the implicit neural map without the tedious ex-
traction of explicit geometric features. For every Fba timesteps,
we jointly optimize the sensor poses at the past Nba timesteps,
and the neural point features in the local map Ml, taking the
current state as the initial guess. We optimize the L2 SDF
regression loss by gradient descent using only the endpoint

samples from the training sample pool Dp to achieve a more
consistent local map and poses. The loss function is given by:

Lba =
∑
τ∈Tba

∑
pi∈Pτm

S (TWCτpi)
2
, (21)

where Tba = {t−Nba + 1, . . . , t− 1, t} are the timesteps used
for local bundle adjustment. t is the current timestep, and Pτm
is the point cloud for mapping at timestep τ .

After the map optimization and local bundle adjustment, we
assign the updated local map Ml back to the global map M.

E. Loop Closure Detection

Detecting loop closures is essential to correct the accumu-
lated drift of the odometry for globally consistent mapping.

Firstly, we use a distance-based criterion for identifying lo-
cal loop closures. Specifically, we assess whether the positions
tt and tti of the current scan at Ct and a historical scan at
Cti (where ti < t and D(t)−D(ti) > dl) meet the condition:

‖tt − tti‖2 < dloop. (22)

If there is no local loop candidate, we search for global loop
closures by comparing frame-wise descriptors. We propose a
neural point feature enhanced local map descriptor for typical
driving scenarios. This descriptor is used for global loop
detection and provides a semi-metric localization as the initial
guess for the relative loop transformation. To address the place
recognition challenges arising from diverse scan patterns and
occlusions caused by varied viewpoints and dynamic objects,
we use the local map as the processing unit for loop detection,
instead of relying on a single scan. Therefore, at each timestep
t, with a latency of Flat timesteps waiting for sufficient map
training using the most recent observations, we generate a local
context descriptor Ut using neural points in the local mapMl.

Similar to Scan Context [27], the neural points in the local
map are mapped into discretized 2D polar-coordinate bins by a
bird-eye-view projection with the ring resolution Hr and sector
resolution Hs. Instead of encoding the maximum point height
in each bin to create the descriptor [27], we encode the average
neural point features optimized by the self-supervised online
mapping and keep a Fg dimensional vector in each bin, thus
resulting in a descriptor Ut ∈ RHr×Hs×Fg . We average the
sector dimensions of Ut to get a retrieval key Rt ∈ RHr×Fg
as a rotation-invariant descriptor of the local map for fast
global descriptor retrieval. We employ the mean of ring-wise
feature cosine distance as the comparative metric and select
the closest historical frame Ck as a loop candidate. Then the
rough relative rotation between the local map centered at the
current and candidate loop frame can be estimated by shifting
along the sector dimension of Ut and taking the shift number
n∗ with the minimum bin-wise feature cosine distance d∗c ,
which is calculated as the mean of Hr ·Hs bins. If d∗c < dmc,
where dmc is the cosine distance threshold, we accept the loop
candidate and use the relative rotation around z-axis by 2n∗π

Hs
as the rotation part of the semi-metric localization.

Furthermore, to deal with the deficiency in translational
invariance, we follow Scan Context++ [26] to use a polar
context augmentation to enable the loop with large relative

10 IEEE TRANSACTIONS ON ROBOTICS. PREPRINT VERSION. ACCEPTED JUNE, 2024

translation at the revisit. Specifically, for each scan position
tWCt , we generate 2Va local map context descriptors at
virtual positions ηjt shifted from tWCt by increments of equal
length dv along a direction perpendicular to the motion path
δt = tWCt − tWCt−1

, results in virtual scan positions:

ηjt = tWCt +
jdv
‖δt‖2

Rz (90◦) δt, j = −Va, . . . , Va, (23)

where Rz (90◦) denotes the rotation around z-axis by 90◦.
We use these descriptors to query the most similar historical
descriptors. We use the one resulting in the minimum cosine
distance and take ηt − tWCt as the translation part of semi-
metric localization results. We refer to Kim et al. [26] for more
details regarding retrieval and augmentation.

When a candidate loop is detected, we register the current
scan Pr to the local map Ml centered at the sensor position
tWCk of the loop frame Ck as described in Sec. III-C. For
scan-to-map registration of local loops, we initialize the trans-
formation with the identity matrix. For global loops, we use
the results obtained from semi-metric localization as the initial
guess for the transformation. If the registration succeeds, we
take the transformation TCkCt resulting from the registration
as the loop closure edge connecting node Ck and Ct in the
pose graph G. Otherwise, the candidate loop will be rejected.

F. Globally Consistent Implicit Neural Map Adjustment
Once a loop is detected and verified by scan-to-map regis-

tration, we conduct pose graph optimization taking the current
poses as the initial guess and using constant information
matrices. To avoid the almost redundant optimization which
would take up significant time, we disable the loop detection
for Floop timesteps after conducting a pose graph optimization.
After performing pose graph optimization, the neural points
in the global map M will move along with their associated
frames. We apply a transformation to both the position and
orientation of each neural point, as detailed in Sec. III-A.
The transformation is determined according to the associated
sensor frame Ctmi of the neural point as the mean of its
creation and last update timestep tmi = b(tci + tui)/2c. We
denote the pose difference of frame Ct before and after
the pose graph optimization as δTt = T−1WC′t

TWCt and the
quaternion for the rotation part of δTt as δqt. We can update
the position xi and orientation qi of the neural point as:

xi ← δTtmi xi, qi ← δqtmi qi. (24)

After transforming the neural points, we recreate the voxel
hash map and reset the local map to ensure correct neural
point indexing. If there are multiple neural points in one
voxel, we keep the one whose stability µ is higher to avoid
redundant map memory consumption in the revisiting region.
To enable incremental mapping after pose graph optimization,
we also transform the samples in the training sample pool Dp
according to the optimized poses of their associated frames.

IV. EXTENSION TO RGB-D OR METRIC-SEMANTIC SLAM
As a proof of concept, we show how we can extend our

approach to RGB-D and metric-semantic SLAM by extending
the environment model with color or semantic information.

If the input point cloud contains point-wise RGB values or
semantic classification probabilities predicted by any off-the-
shelf segmentation models [45], we can additionally predict
the RGB value c ∈ R3 and the L-class semantic probability
v ∈ RL at p by each nearby neural point mj in the same way
as the SDF value prediction:

cj = Dc
θ

(
f cj ,dj

)
, vj = Ds

θ

(
fsj ,dj

)
, (25)

where Dc
θ and Ds

θ are the globally shared color and semantic
decoder, f cj and fsj are the latent feature of neural point mj

assigned for color and semantics. We can interpolate the final
RGB prediction c = C (p) and semantic prediction v = V (p)
in the same way as Eq. (5). To train the color and semantic
field, we set the color target values ĉj and semantic pseudo
labels v̂j for the Ns + 1 close-to-surface samples as the same
value at the endpoint. We then add the L1 loss Lcol for color
regression with a weight λc or the L-class cross-entropy loss
Lsem for semantic segmentation with a weight λs to Eq. (13)
using the close-to-surface training samples:

Lcol =
1

Nc

Nc∑
i=1

‖ĉi − ci‖1 , (26)

Lsem = − 1

Nc

Nc∑
i=1

L∑
j=1

pji log p̂ji , (27)

where ĉi and ci = C(uiW) are the color label and prediction
while pji is the semantic prediction probability for class j and
p̂ji is the one-hot probability for the semantic pseudo label.

For odometry estimation explained in Sec. III-C, with the
point-wise color available, we add the photometric term into
the optimization with a weight of wc to provide more con-
straints. In this case, we additionally minimize the photometric
difference at the transformed position p′i between the observed
value ci and the predicted value C (p′i) from the PIN map as:

ξ∗ = argmin
ξ

∑
pi∈Pr

S (p′i)
2

+ wc ‖C (p′i)− ci‖
2
2 . (28)

The Jacobian for the photometric term Jci can be calculated
likewise the geometric term as Eq. (16), by replacing the SDF
gradient g with the color gradient defined by ∇C (p′i):

Jci =
[
∇C (p′i)

T
,
(
p′i ×∇C (p′i)

)T]
. (29)

We then append Jci to Jacobian matrix J for the iterative
optimization as Eq. (17).

During or after the mapping, we can colorize the mesh
reconstructed from the SDF by querying the color or semantic
value at the position of the mesh vertices.

V. EXPERIMENTAL EVALUATION

The main focus of this work is a LiDAR SLAM system for
building globally consistent maps using a point-based implicit
neural map representation.

We present our experiments to show the capabilities of
our method. The results of our experiments also support
our key claims, which are: (i) Our SLAM system achieves
localization accuracy better or on par with state-of-the-art

PAN et al.: PIN-SLAM: LIDAR SLAM USING A POINT-BASED IMPLICIT NEURAL REPRESENTATION FOR ACHIEVING GLOBAL MAP CONSISTENCY 11

LiDAR odometry/SLAM approaches and is more accurate
than recent implicit neural SLAM methods on various datasets
using different range sensors. (ii) Our method can conduct
large-scale globally consistent mapping with loop closure
thanks to the elastic neural point representation. (iii) Our map
representation is more compact than the previous counterparts
and can be used to reconstruct accurate and complete meshes
at an arbitrary resolution. (iv) Our correspondence-free scan-
to-implicit map registration and the efficient neural point
indexing by voxel hashing enable our algorithm to run at the
sensor frame rate on a single NVIDIA A4000 GPU.

A. Experimental Setup

1) Datasets: We extensively test our method on various
datasets summarized in Tab. I. For driving scenes, we test on
KITTI, MulRAN and our self-collected dataset called IPB-
car. KITTI odometry dataset [14] comprises 22 sequences of
LiDAR scans acquired by a Velodyne HDL64 LiDAR mounted
on a car driving through Karlsruhe, Germany. Reference poses
are available on sequences 00-10. MulRAN dataset [25] is
collected using an Ouster OS1-64 LiDAR mounted on a car
traversing the roads of Daejeon, South Korea. Note that for
the MulRAN dataset, the LiDAR is blocked by the Radar
sensor, resulting in a smaller FoV than KITTI. For KITTI and
MulRAN, the poses measured by GNSS-INS are regarded as
the reference for evaluation. We additionally collected another
challenging robot car dataset in Bonn, Germany with an OS1-
64 LiDAR in 2020 and an OS1-128 LiDAR in 2023. We
generate the reference poses by fusing GNSS-INS, LiDAR
odometry [78], loop closure constraints, and scan-to-map
constraints between OS1-128 and a global map obtained by a
geo-referenced terrestrial laser scanner (TLS) in a factor graph.

To further test our approach on handheld LiDARs which
have a less constant motion profile, we adopt the Newer
College and Hilti-21 dataset. Newer College dataset [57]
contains two longer sequences acquired by a handheld OS1-
64 LiDAR and a couple of shorter sequences collected by
an OS0-128 LiDAR on the campus of Oxford University,
UK. The reference poses are obtained by aligning each scan
to the survey grade point cloud map measured by TLS. We
also take the survey grade map as the reference model for
mapping quality evaluation. The Hilti 2021 SLAM challenge
dataset [17] comprises indoor sequences of offices, labs, and
basements, as well as outdoor sequences of construction sites.
These sequences were captured using a handheld OS0-64
LiDAR. The reference trajectories are measured by either a
total station tracking system or a motion capture system.

Aside from LiDAR datasets, we adopt the Replica synthetic
RGB-D dataset [70], which is a popular benchmark for recent
neural RGB-D SLAM methods to show that our approach can
also achieve precise pose estimation using RGB-D images.

2) Parameters and Implementation Details: We list the
parameter setting of our approach in Tab. II. All the length-
based parameters used in our method are set adaptively
according to the maximum used measurement range rmax of
the sensor. The maximum range is rmax = 80 m for KITTI,
MulRAN, and self-recorded IPB-Car datasets and rmax = 60 m

TABLE I: Characteristic of the datasets used for evaluation

dataset sensor scenario # seqs. # frames

KITTI [14] 64-beam LiDAR outdoor, car 22 43k
MulRAN [25] 64-beam LiDAR outdoor, car 9 64k
IPB-Car 64/128-beam LiDAR outdoor, car 4 43k
Newer College [57] 64/128-beam LiDAR outdoor/indoor, handheld 7 53k
Hilti-21 [17] 64-beam LiDAR outdoor/indoor, handheld 6 15k
Replica [70] synthetic RGB-D indoor, handheld 8 16k

TABLE II: Hyperparameters of our approach

type symbol value description

PIN map

vp 0.005rmax voxel hashing map resolution
Fg 8 dimensions of neural point latent features
Mmlp, Nmlp 2, 64 MLP level and neuron count
Nn 5 neighborhood voxel count on each axis
K 6 neighborhood neural point number
σt 0.001rmax sigmoid function scale factor
ε 0.002rmax perturbation step for numerical gradient
λe, λc, λs 0.5, 0.5, 1.0 weight for Ekional, color, and semantic loss
rl 1.05rmax radius of local map
dl 4rl travel distance threshold of local map
γd, γµ 0.008rmax, 4.0 dynamic filtering threshold for SDF and stability

sampling

vm 0.001rmax downsample voxel size for mapping
σs 0.003rmax close-to-surface sampling standard deviation
ζmin 0.3 minimum sample depth ratio
db 4σs maximum sample range behind the surface
Ns, Nf , Nb 4, 2, 1 surface, front, and behind free space sample count
Np 2× 107 maximum sample count in training sample pool

odometry
vr 0.0075rmax downsample voxel size for registration
wc 0.01 photometric tracking weight
κr, κg 0.005rmax, 0.1 GM kernel scale of residual and gradient anomaly

BA Fba 20 implicit bundle adjustment frequency
Nba 50 count of poses optimized during bundle adjustment

loop

Floop 20 PGO frequency
dloop 0.025rmax distance threshold for local loop
Hr, Hs 20, 60 ring and sector resolution of polar descriptor
dmc 0.3 cosine distance threshold for global loop
Va 6 polar descriptor augmentation count
dv 0.02rmax polar descriptor augmentation translation step

for Newer College, and Hilti-21 datasets. For RGB-D datasets,
we have rmax = 8 m. Our model is implemented mainly
in PyTorch [54]. For the online training of PIN map, we
use Adam optimizer [28] with a learning rate of 0.01 and
a batch size of 16384 for 15 iterations. Note that we train for
600 iterations at the first frame for the map initialization. To
improve training efficiency, we only use 1/10th of all training
samples to calculate the numerical gradient for the Ekional loss
Leik. For local bundle adjustment, the poses are represented
as Lie algebra tensors with PyPose [79]. We use a learning
rate of 0.01 for the neural point features, 0.0001 for the
poses, and a batch size of 16384 for 80 iterations. For pose
graph optimization, we employ GTSAM [9] and optimize the
pose graph using Levenberg-Marquardt optimization with a
maximum of 50 iterations.

B. Localization Accuracy Evaluation

In this section, we compare the pose estimation performance
of PIN-SLAM with state-of-the-art odometry/SLAM systems.

1) LiDAR Odometry Evaluation on KITTI: We first eval-
uate the pure odometry accuracy of our approach on the
competitive KITTI odometry benchmark [14]. We denote the
LiDAR odometry version of our approach as PIN-LO, which
disables the loop closure detection correction module of PIN-
SLAM. Since the LiDAR scans in KITTI odometry dataset
are already deskewed, we disable the motion compensation
for our method. We compare PIN LiDAR odometry against
various LiDAR odometry systems using different map repre-
sentations such as feature points [52], [68], [82], denser voxel-
downsampling points [10], [31], [78], normal distribution

12 IEEE TRANSACTIONS ON ROBOTICS. PREPRINT VERSION. ACCEPTED JUNE, 2024

TABLE III: LiDAR odometry performance comparison on KITTI LiDAR dataset with motion compensated point cloud with the average
relative translational drifting error (%). The numbers with † are the results of the training set for learning-based methods and are not included
in the ranking. - indicates the number is not reported. We highlight the best results in bold and the second best in underscored. For the
results of our method PIN-LO, we report the mean and standard deviation (in brackets) calculated from 10 runs with different random seeds.

Method Type 00 01 02 03 04 05 06 07 08 09 10 Avg. 11-21

LeGO-LOAM [68] feature points 2.17 13.4 2.17 2.34 1.27 1.28 1.06 1.12 1.99 1.97 2.21 2.49 -
F-LOAM [82] feature points 0.78 1.43 0.92 0.86 0.71 0.57 0.65 0.63 1.12 0.77 0.79 0.84 0.72
MULLS [52] feature points 0.56 0.64 0.55 0.71 0.41 0.30 0.30 0.38 0.78 0.48 0.59 0.52 0.65
VG-ICP [31] dense points 2.16 2.38 0.99 0.67 0.55 0.45 0.24 0.99 1.74 0.95 0.95 1.10 -
CT-ICP [10] dense points 0.49 0.76 0.52 0.72 0.39 0.25 0.27 0.31 0.81 0.49 0.48 0.50 0.59

KISS-ICP [78] dense points 0.52 0.63 0.51 0.66 0.36 0.31 0.26 0.33 0.82 0.51 0.56 0.50 0.61
SuMa-LO [4] surfels 0.73 1.71 1.06 0.66 0.38 0.50 0.42 0.39 1.02 0.48 0.71 0.73 1.39

Litamin-LO [93] normal distribution 0.78 2.10 0.95 0.96 1.05 0.55 0.55 0.48 1.01 0.69 0.80 0.88 -
IMLS-SLAM [12] implicit model 0.50 0.82 0.53 0.68 0.33 0.32 0.33 0.33 0.80 0.55 0.53 0.52 0.69

Puma [76] mesh 1.46 3.38 1.86 1.60 1.63 1.20 0.88 0.72 1.44 1.51 1.38 1.55 -
SLAMesh [62] mesh 0.77 1.25 0.77 0.64 0.50 0.52 0.53 0.36 0.87 0.57 0.65 0.68 -

LONet [33] supervised 1.47† 1.36† 1.52† 1.03† 0.51† 1.04† 0.71† 1.70 2.12 1.37 1.80 1.33 -
PWCLONet [81] supervised 0.78† 0.67† 0.86† 0.76† 0.37† 0.45† 0.27† 0.60 1.26 0.79 1.69 0.77 -

ELONet [80] supervised 0.83† 0.55† 0.71† 0.49† 0.22† 0.34† 0.36† 0.46 1.14 0.78 0.80 0.61 1.92
Nerf-LOAM [11] neural implicit 1.34 2.07 - 2.22 1.74 1.40 - 1.00 - 1.63 2.08 1.69 -

PIN-LO neural implicit 0.55 0.68 0.54 0.76 0.22 0.30 0.35 0.34 0.80 0.54 0.50 0.51 0.64
(±0.02) (±0.13) (±0.02) (±0.02) (±0.02) (±0.01) (±0.01) (±0.02) (±0.02) (±0.06) (±0.05) (±0.02) -

TABLE IV: SLAM performance comparison (ATE RMSE [m]) on KITTI LiDAR dataset with motion compensated point cloud. ∗ indicates
the sequence is with loops, Avg.* denotes the average metric on sequences with loops. We highlight the best results in bold and the second
best in underscored. ‡ indicates the method conducts offline pose graph optimization. For the results of our method PIN-LO and PIN-SLAM,
we report the mean and standard deviation (in brackets) calculated from 10 runs with different random seeds.

Method 00* 01 02* 03 04 05* 06* 07* 08* 09* 10 Avg.* Avg.

SuMa [4] 1.1 14.6 8.0 1.0 0.3 0.7 0.6 1.1 3.7 1.2 1.4 2.3 3.1
MULLS [52] 1.1 1.9 5.4 0.7 0.9 1.0 0.3 0.4 2.9 2.1 1.1 1.9 1.6
Litamin2 [93] 1.3 15.9 3.2 0.8 0.7 0.6 0.8 0.5 2.1 2.1 1.0 1.5 2.4

SC-LeGO-LOAM [27], [68] 2.3 19.7 5.3 1.6 0.4 1.2 1.0 1.5 5.9 2.0 1.7 2.7 5.3
HLBA [37]‡ 0.8 1.9 5.1 0.6 0.8 0.4 0.2 0.3 2.7 1.3 1.1 1.5 1.4

SC-F-LOAM [27], [82]‡ 1.3 4.7 3.3 0.7 0.3 1.2 0.4 0.5 3.0 1.3 1.6 1.6 1.7
SC-KISS-ICP [27], [78]‡ 1.0 3.7 1.9 0.4 0.3 0.3 0.3 0.3 2.2 1.0 0.8 1.0 1.1

PIN-LO 5.6 4.3 9.3 0.7 0.1 1.7 0.5 0.5 3.0 1.8 0.8 3.2 2.6
(±0.3) (±1.7) (±0.7) (±0.1) (±0.0) (±0.1) (±0.0) (±0.0) (±0.2) (±0.4) (±0.1) (±0.3) (±0.2)

PIN-SLAM 0.8 4.3 2.1 0.7 0.1 0.3 0.4 0.3 2.1 1.2 0.8 1.0 1.2
(±0.1) (±1.7) (±0.4) (±0.1) (±0.0) (±0.0) (±0.0) (±0.0) (±0.4) (±0.1) (±0.1) (±0.1) (±0.2)

(a) PIN-LO (b) PIN-SLAM

Fig. 5: Comparison of (a) the locally consistent mesh with duplicated structures reconstructed by PIN LiDAR odometry, and (b) the globally
consistent mesh reconstructed by PIN-SLAM built on KITTI sequence 00 after loop closure corrections. The estimated trajectories are
overlaid on the map and colorized according to the timestamp. Details of two revisited regions are highlighted in the boxes.

transformation [93], surfels [4], IMLS model [12], and triangle
meshes [62], [76]. Since our approach is based on online
learning of a neural implicit map, we additionally compare our
method against the learning-based LiDAR odometry systems,
including those using supervised learning [33], [80], [81]
and Nerf-LOAM [11] which also utilizes a neural implicit
map. Note that those systems based on supervised learning
are trained on sequences 00-06 and tested on sequences
07-10 while our method and Nerf-LOAM do not rely on any
pre-training. We use the average relative translational error
(ARTE) [14] as the metric for odometry drift evaluation.
Due to the non-deterministic nature of online training in our

method, the results may have slight variations with different
random seeds. Therefore, we opt to report the mean and
standard deviation of the metrics calculated from 10 different
runs with varying random seeds on the KITTI dataset. This
allows a fair comparison with other methods and provides a
better understanding of the stochastic nature of PIN-SLAM. As
shown in Tab. III, PIN LiDAR odometry outperforms all the
learning-based methods and most of the non-learning-based
methods. It attains an average translation error of 0.51% with
a standard deviation of 0.02%, which is on par with the two
open-source state-of-the-art LiDAR odometry KISS-ICP [78]
and CT-ICP [10] using a voxel-downsampled point cloud map.

PAN et al.: PIN-SLAM: LIDAR SLAM USING A POINT-BASED IMPLICIT NEURAL REPRESENTATION FOR ACHIEVING GLOBAL MAP CONSISTENCY 13

TABLE V: SLAM performance comparison (ATE RMSE [m]) of our method vs. the state-of-the-art LiDAR odometry (above) and LiDAR
SLAM methods (below) on MulRAN LiDAR dataset. All sequences are with loops. The best result is in bold and the second best is
underscored. ‡ indicates the method conducts offline pose graph optimization.

Method KA1 KA2 KA3 DC1 DC2 DC3 RS1 RS2 RS3 Avg.

F-LOAM [82] 49.16 35.93 38.36 36.89 26.72 31.97 91.85 104.25 119.79 59.44
KISS-ICP [78] 20.81 13.52 14.85 20.26 12.79 13.17 14.35 32.74 75.14 24.18

SuMa [4] 10.45 9.33 10.33 13.00 86.04 12.03 114.89 818.74 367.41 160.25
MULLS [52] 19.72 15.26 6.93 14.95 11.31 6.00 41.25 45.05 44.18 22.74

SC-LeGO-LOAM [27], [68] 5.45 5.49 5.70 6.95 5.49 6.29 19.05 16.04 30.91 11.26
HLBA [37]‡ 3.36 3.75 3.53 5.20 3.22 2.54 8.92 7.94 10.26 5.71

SC-F-LOAM [27], [82]‡ 4.74 4.70 4.32 9.67 5.57 3.98 17.72 22.42 24.07 10.80
SC-KISS-ICP [27], [78]‡ 3.33 2.80 2.65 6.41 3.42 2.13 6.59 9.45 8.97 5.08

PIN-LO 29.07 24.74 23.05 22.07 12.94 23.42 45.81 54.41 44.41 31.10
PIN-SLAM 2.25 2.86 2.15 5.25 2.83 2.65 8.70 7.94 6.00 4.51

TABLE VI: SLAM performance comparison (ATE RMSE [m]) of the
proposed method vs. the state-of-the-art LiDAR odometry (above)
and LiDAR SLAM methods (below) on our self-collected IPB-Car
LiDAR dataset. ∗ means the sequence is with loops. The best result
is in bold and the second best is underscored.

Method 2020-0* 2020-1* 2023-0 2023-1* Avg.

F-LOAM [82] 11.75 39.92 92.48 52.70 49.21
KISS-ICP [78] 6.13 15.66 93.70 22.91 34.60

SuMa [4] 7.15 117.91 100.12 57.66 70.71
MULLS [52] 10.79 47.07 78.10 68.63 51.15

PIN-LO 5.70 17.42 87.59 21.44 33.04
PIN-SLAM 3.51 6.12 87.59 19.27 29.12

TABLE VII: SLAM performance comparison (ATE RMSE [m]) of
our method vs. the state-of-the-art LiDAR odometry (above) and
LiDAR SLAM methods (below) on Newer College handheld LiDAR
dataset. All sequences are with loops. The best result is bold and the
second best is underscored. 7 denotes failure. - indicates the number
is not reported and unavailable using the open-source code.

Method 01 02 quad e math e ug e cloister stairs Avg.

F-LOAM [82] 6.74 7 0.40 0.26 0.09 7.69 7 3.04
KISS-ICP [78] 0.62 1.88 0.10 0.07 0.33 0.30 7 0.55

SuMa [4] 2.03 3.65 0.28 0.16 0.09 0.20 1.85 1.18
MULLS [52] 2.51 8.39 0.12 0.35 0.86 0.41 7 2.11

MD-SLAM [13] - 1.74 0.25 - - 0.36 0.34 -
SC-LeGO-LOAM [27], [68] - 1.30 0.09 - - 0.20 3.20 -

PIN-LO 2.08 5.32 0.09 0.09 0.07 0.19 0.07 1.13
PIN-SLAM 0.43 0.31 0.09 0.09 0.07 0.15 0.06 0.17

TABLE VIII: SLAM performance comparison (ATE RMSE [m])
of the proposed method vs. the state-of-the-art methods on Hilti-21
LiDAR dataset. Best result is bold and the second best is underscored.

Method rpg lab base1 base4 cons2 camp2 Avg.

F-LOAM [82] 2.78 0.18 0.91 0.29 11.52 8.95 4.10
KISS-ICP [78] 0.22 0.07 0.32 0.11 0.84 1.98 0.58

HDLGraph-SLAM [30] 0.35 0.05 0.28 0.37 0.74 0.35 0.36

PIN-SLAM 0.21 0.04 0.30 0.08 0.41 0.11 0.19

Our method demonstrates superior performance compared
to Nerf-LOAM [11], the sole baseline using also an implicit
neural map representation. This achievement is attributed to
our better SDF training in the close-to-surface free space and
the more robust point-to-SDF registration using Levenberg-
Marquardt optimization combined with robust kernels instead
of the gradient descent used by Nerf-LOAM.

Additionally, as shown in the last column of Tab. III, our
method performs among the best LiDAR odometry/SLAM
systems on the hidden sequences 11-21 of the KITTI odometry
leaderboard and is the best-ranked learning-based method.

2) LiDAR SLAM Evaluation: We proceed to evaluate the
full system of PIN-SLAM, including the loop closure correc-
tion module. We test PIN-SLAM quantitatively and compare
it against state-of-the-art LiDAR SLAM/odometry approaches
on four public datasets and one self-recorded dataset collected
by different robot platforms in various scenarios. Instead of
using the average relative translational error, we adopt the
root mean square error (RMSE) of the absolute trajectory
error (ATE) [98] with Umeyama trajectory alignment as the
localization accuracy metric since it can better reflect the
global consistency of the estimated pose. For comparison,
we focus on methods that either disclose their achieved ATE
RMSE on our utilized datasets in their papers or release open-
sourced code that supports our utilized datasets.

Firstly, on the KITTI sequence 00-10, we compare our
approach with four state-of-the-art LiDAR SLAM systems
enabling loop closure correction, and HLBA [37], a postpro-
cessing method using LiDAR bundle adjustment with the pose
initial guess of MULLS [52]. In line with previous work [37],
[93], we report the accuracy at decimeter precision. As shown
in Tab. IV, PIN-SLAM achieves the smallest average RMSE
of 1.0 m on the sequences with loops and 1.2 m on all the
eleven sequences with a standard deviation of 0.2 m calculated
from 10 runs with different random seeds. Notably, PIN-
SLAM even outperforms the post-processing approach [37]
while PIN-SLAM can run online. In addition to SC-LeGO-
LOAM, an open-source SLAM system combining LeGO-
LOAM [68] with scan context [27], we additionally implement
SC-F-LOAM and SC-KISS-ICP, which perform offline pose
graph optimization using the pose of more recent LiDAR
odometry systems F-LOAM and KISS-ICP with the loop
closures detected by scan context. We conduct a fine ICP
registration between the query and retrieved point cloud to
refine the loop transformation initial guess. PIN-SLAM out-
performs SC-F-LOAM and achieves comparable localization
accuracy to SC-KISS-ICP. Meanwhile, PIN-SLAM can main-
tain a continuous SDF map online for downstream tasks such
as mesh reconstruction or path planning whereas the compared
methods typically construct only a sparse point cloud map. We
also report the result of PIN LiDAR odometry to show the
significant improvement of PIN-SLAM on trajectory global
consistency, with the RMSE decreasing from 3.2 m to 1.0 m on
sequences with loop closures. As shown in Fig. 5, PIN-SLAM
manages to correct the drift of PIN LiDAR odometry and build
a globally consistent map without duplicated structures.

14 IEEE TRANSACTIONS ON ROBOTICS. PREPRINT VERSION. ACCEPTED JUNE, 2024

TABLE IX: SLAM performance comparison (ATE RMSE [cm]) of
the proposed method vs. the state-of-the-art methods on Replica
RGB-D dataset. Best result is bold and second best is underscored.

Method r0 r1 r2 o0 o1 o2 o3 o4 Avg.

iMAP [71] 3.12 2.54 2.31 1.69 1.03 3.99 4.05 1.93 2.58
NICE-SLAM [101] 1.69 2.04 1.55 0.99 0.90 1.39 3.97 3.08 1.95

Vox-Fusion [92] 0.40 0.54 0.54 0.50 0.46 0.75 0.50 0.60 0.54
Co-SLAM [83] 0.60 1.13 1.43 0.55 0.50 0.46 1.40 0.77 0.86

ESLAM [24] 0.71 0.70 0.52 0.57 0.55 0.58 0.72 0.63 0.63
Point-SLAM [65] 0.61 0.41 0.37 0.38 0.48 0.54 0.72 0.63 0.52

PIN-SLAM 0.27 0.31 0.13 0.22 0.30 0.28 0.16 0.28 0.24

PIN-SLAM w/o BA 0.41 0.36 0.25 0.36 0.33 0.34 0.38 0.73 0.40
PIN-SLAM w/o color 0.38 0.40 0.16 0.39 0.27 0.30 0.52 0.40 0.35

Fig. 6: Qualitative results of PIN-SLAM on Room0 sequence of
Replica RGB-D dataset. We show the mesh colorized in the normal
direction and the mesh colorized by RGB built by PIN-SLAM. The
estimated trajectory is shown in red.

Next, we test PIN-SLAM on longer and more challenging
driving scenes, i.e., nine sequences of the MulRan dataset
and four sequences of our self-recorded IPB-Car dataset. As
shown in Tab. V and Tab. VI, compared with the state-of-the-
art LiDAR odometry, SLAM or offline optimized approaches,
PIN-SLAM is able to correct the drift of PIN LiDAR odometry
and achieves the best overall localization accuracy.

To further test our method on other motion profiles, we
run experiments on Newer College and Hilti-21 datasets,
which are mainly collected by a handheld LiDAR in both
indoor and outdoor environments. We evaluate PIN-SLAM
against existing LiDAR odometry/SLAM systems supporting
handheld LiDARs. As shown in Tab. VII and Tab. VIII,
PIN-SLAM demonstrates superior performance, yielding the
smallest localization error on both datasets and surpassing
the compared approaches by a large margin. For the Newer
College dataset, half of the compared methods fail on the
challenging stairs sequence while our approach achieves the
smallest RMSE of 6 cm. Note that the sequences in Hilti-21
dataset are relatively short and the LiDAR is mainly moving
in a confined area without explicit loops. Therefore we do not
distinguish an odometry and a SLAM method on Hilti-21.

3) RGB-D SLAM Evaluation: We also conducted exper-
iments to show that PIN-SLAM can also work well taking
as input the RGB-D images. We compare the localization
(camera pose tracking) accuracy of PIN-SLAM against six
state-of-the-art neural implicit RGB-D SLAM approaches on
all 8 sequences of the popular Replica dataset. Since the
camera is moving in a single room that is always covered
by the local map, we disable the loop closure detection and
correction. As shown in Tab. IX, PIN-SLAM achieves the best
camera tracking accuracy on average with an RMSE of only
2.4 mm. The superior performance demonstrates that, with
precise depth measurements, our point-to-SDF registration
achieves greater accuracy compared to the rendering-based
camera tracking utilized in most of the neural implicit SLAM
approaches under comparison. As an ablation study, we show

50 m

50 cm0 cm

Mapping Error

Fig. 7: Qualitative results on the Nebula dataset collected by a Spot1
robot with a 32-beam LiDAR moving back-and-forth in the Valentine
Cave. We show the estimated trajectory and mesh built by PIN-SLAM
on the top. We show the mapping error compared to the survey-grade
map measured by a terrestrial laser scanner on the bottom.

(a) (b)

Fig. 8: Qualitative results on the hauptgebaeude and station sequences
of ETH DOALS dataset. We show the lidar scan overlaid on the static
mesh built by PIN-SLAM. The dynamic points (in red) are filtered
from a LiDAR scan (in gray) online using the PIN map.

TABLE X: Loop closure detection recall at Top-1 of the proposed
method vs. the state-of-the-art non-learning (above) and learning-
based (below) methods on four sequences from KITTI dataset. The
results of the compared methods are reported by BEVPlace [41]. The
best result is in bold and the second best is underscored.

Method 00 02 05 06 Avg.

Scan Context [27] 89.7 73.9 77.0 86.7 81.8
BVMatch [40] 93.8 78.2 90.2 93.8 89.0

PointNetVLAD [75] 91.6 62.3 76.9 77.8 77.2
OverlapTransformer [42] 96.7 80.1 91.9 95.6 91.1

BEVPlace [41] 99.7 98.1 99.3 100.0 99.3

Ours (local map context) 96.0 73.0 98.3 100.0 91.8
Ours (full) 99.4 78.4 100.0 100.0 94.5

that the localization RMSE of PIN-SLAM decreases by 40%
and 31% by conducting local bundle adjustment and using the
color information during camera tracking. Moreover, as shown
in Fig. 6, PIN-SLAM can reconstruct high-fidelity colorized
mesh from the neural point map built by the RGB-D SLAM.

4) Additional Challenging Scenarios: We show qualitative
results on various challenging scenarios such as a cave tunnel
from Nebula dataset [60] as shown in Fig. 7. PIN-SLAM
manages to build a globally consistent map using the data
collected by a quadruped robot moving in the cave. PIN-
SLAM is also robust to highly dynamic scenes in ETH
DOALS dataset [66] as shown in Fig. 8. PIN-SLAM manages
to filter the moving pedestrians and reconstruct a static mesh.

C. Evaluation of the Loop Closure Detection Performance

We follow BEVPlace [41] to evaluate loop closure detection
performance on the KITTI dataset. We use the same partition
of database and query frames as used in BEVPlace. We show
the loop detection recall at Top-1 in Tab. X and compare
our approach with several non-learning and learning-based

PAN et al.: PIN-SLAM: LIDAR SLAM USING A POINT-BASED IMPLICIT NEURAL REPRESENTATION FOR ACHIEVING GLOBAL MAP CONSISTENCY 15

TABLE XI: 3D reconstruction quality of different methods on Quad and Math Institute sequence of the Newer College dataset [57]. The
reference model is measured by terrestrial laser scanning with mm-level accuracy. We report completion, accuracy and Chamfer-L1 in cm
as well as F-score in % calculated with a 20 cm error threshold. We highlight the best results in bold and the second best in underscored.
- indicates the number is not reported and unavailable using the open-source code.

Method Pose Quad Math Institute
Map. Acc. ↓ Map. Comp. ↓ C-l1. ↓ F-score ↑ Map. Acc. ↓ Map. Comp. ↓ C-l1. ↓ F-score ↑

VDB-Fusion [77]
KISS-ICP [78]

14.03 25.46 19.75 69.50 15.21 28.66 21.94 63.35
SHINE [100] 14.87 20.02 17.45 68.85 14.46 34.03 24.24 64.38
NKSR [20] 15.67 36.87 26.27 58.57 15.11 27.10 21.11 65.08

Puma [76]

Own Odometry

15.30 71.91 43.60 57.27 15.81 46.00 30.91 54.95
SLAMesh [62] 19.21 48.83 34.02 45.24 12.80 23.50 18.16 75.17
Nerf-LOAM [11] 12.89 22.21 17.55 74.37 - - - -
PIN-SLAM 11.55 15.25 13.40 82.08 13.70 21.91 17.80 75.49

02_long Stairs Underground

Fig. 9: Globally consistent mesh reconstructed by PIN-SLAM on Newer College dataset with multiple loops. The estimated trajectories are
overlaid on the map and colorized according to the timestamp. Details of several revisited regions are highlighted in the dashed boxes.

KITTI 13 KITTI 14 KITTI 05 KITTI 02

Fig. 10: Globally consistent mesh reconstructed by PIN-SLAM on KITTI dataset with multiple loops. The estimated trajectories are overlaid
on the map and colorized according to the timestamp. Details of several revisited regions are highlighted in the dashed boxes.

methods. Even without any offline pre-training, our approach
achieves the second-best average recall after BEVPlace, out-
performing the other compared methods. We show that using
the polar context descriptor of neural points in the local map
can improve the loop detection recall over the original scan
context [27]. Moreover, leveraging online optimized neural
point features can enhance the distinctiveness of the context
descriptor. Though our approach does not achieve the best
performance in LiDAR place recognition, it proves to be
adequate for a highly accurate SLAM system, without the need
for pre-training or external map representations.

D. Evaluation of the Mapping Performance
1) 3D Reconstruction Quality: In this section, we show

the mapping quality of PIN-SLAM in terms of the 3D re-
construction quality of the resulting mesh in Tab. XI. The

mesh is reconstructed from the SDF queried at the fixed-
size grid using the marching cubes algorithm [39]. For the
quantitative evaluation, we use the commonly used 3D recon-
struction metrics [43] calculated between the reconstructed and
reference 3D model, namely accuracy, completeness, Chamfer-
L1 distance, and F-score. We select two scenes from the Newer
College dataset [57], namely Quad from the 02 long sequence
and Math Institute from the math easy sequence. Both scenes
have the survey-grade point cloud map measured by TLS
available, which is taken as the reference model for evaluation.
We compare PIN-SLAM against three state-of-the-art LiDAR
SLAM approaches that can reconstruct dense 3D meshes,
namely Puma [76] based on Poisson surface reconstruction,
SLAMesh [62] utilizing Gaussian process reconstruction, and
Nerf-LOAM [11] employing implicit neural representation
like us. We additionally include three state-of-the-art “map-

16 IEEE TRANSACTIONS ON ROBOTICS. PREPRINT VERSION. ACCEPTED JUNE, 2024

ping with known poses” methods tailored for LiDAR data,
namely VDB-Fusion [77] based on TSDF integration, SHINE-
Mapping [100] based on implicit neural scene reconstruction,
and the data-driven method NKSR [20] based on neural kernel
field. We use the pose estimation of KISS-ICP [78] as the pose
input to these three mapping methods. Note that KISS-ICP
and PIN-SLAM achieve similar localization RMSE of about
10 cm in both scenes. We use the same voxel size of 20 cm
for mesh reconstruction for the compared methods. Tab. XI
lists the obtained results. As can be seen, PIN-SLAM achieves
the best mapping quality in terms of completeness, Chamfer
distance and F-score in both scenes, indicating that PIN-SLAM
can achieve more accurate and more complete reconstruction
of the environment than the compared methods. The superior
performance of PIN-SLAM owes to the continuous implicit
neural representation and the more consistent pose estimation.

2) Map Consistency: Since the global localization accuracy
can reflect the mapping consistency, we qualitatively depict the
globally consistent mesh reconstructed from PIN map built by
PIN-SLAM on Newer College in Fig. 9, KITTI in Fig. 10,
MulRAN in Fig. 11, and IPB-Car dataset in Fig. 12. Several
regions with multiple loop closures are highlighted.

E. Ablation studies

In this subsection, we conduct ablation studies to validate
our design choices. We use the average relative translational
drifting error (ARTE) on KITTI dataset as the metrics and
the same random seed to carry out the studies. We show
ARTE obtained on KITTI sequences 00-10 with different
design choices for mapping and odometry in Tab. XII and
Tab. XIII, respectively. For the mapping losses, we find out
that the BCE loss used by our method is more suitable
for SDF training than L1 or L2 loss. Besides, Ekional loss
is necessary for the odometry and a weight λe of 0.5 is
preferable. To calculate the Ekional loss, using the numerical
gradient rather than the analytical gradient leads to a smooth
and regular SDF in the free space, thus improving localization
accuracy. A perturbation step ε of 8 cm for numerical gradient
calculation is preferable. For odometry estimation, we verify
that the usage of GM robust kernel for SDF residual and SDF
gradient anomaly are both beneficial to localization accuracy.
The odometry loses track when using the numerical gradient
because it is often less accurate than the analytical one once
the SDF has been fitted. Besides, as shown in Tab. XIV, we
find out that a too-large or too-small neural point resolution
vp would lead to suboptimal odometry accuracy. Setting vp as
0.4 m, corresponding to our adaptive setting 0.005rmax, leads
to the smallest ARTE on all three tested sequences.

F. Memory and Computational Resources

1) Memory Requirement: We report the map memory con-
sumption of PIN-SLAM on four representative sequences from
KITTI and Newer College dataset in Tab. XV. We compare the
proposed point-based implicit neural (PIN) map with several
common map representations: surfel map used by SuMa [4],
mesh map used by Puma [76], VDB TSDF map used by VDB
Fusion [77], and the grid-based sparse hierarchical implicit

TABLE XII: Ablation study: design choices of map training losses.
ARTE represents the average relative translational drifting errors on
KITTI sequence 00-10. 7 denotes failure.

SDF loss Ekional loss λe num. grad. ε [m] ARTE [%] ↓

BCE 0.5 7 - 0.57
BCE 1.0 3 0.08 0.59
BCE 0.2 3 0.08 0.55
BCE 0.0 - - 7
L1 0.5 3 0.08 1.15
L2 0.5 3 0.08 7

BCE 0.5 3 0.04 0.54
BCE 0.5 3 0.16 1.48

BCE 0.5 3 0.08 0.50

TABLE XIII: Ablation study: design choices of odometry estimation.
ARTE represents the average relative translational drifting errors on
KITTI sequence 00-10. 7 denotes failure.

GM kernel wr GM kernel wg anl. grad. ARTE [%] ↓

7 7 3 0.56
3 7 3 0.52
7 3 3 0.55
3 3 7 7

3 3 3 0.50

TABLE XIV: Ablation study: average relative translational drifting
error [%] with regards to different neural point resolutions vp.

Sequence Neural point resolution vp
1.0m 0.8m 0.6m 0.4m 0.2m

KITTI 00 0.98 0.75 0.85 0.55 1.06
KITTI 05 0.36 0.56 0.45 0.29 0.50
KITTI 08 0.96 0.88 0.85 0.83 1.05

TABLE XV: Memory consumption in MB and the compression ratio
with regards to the raw point cloud of different map representations.

Representation KITTI 00 KITTI 05 KITTI 08 NCD 02

Raw point cloud 13624.2 8284.7 12214.1 26559.0
Surfel map 887.7 512.6 835.7 79.0
Mesh map 2032.9 1317.4 1894.1 1503.7

VDB TSDF map 748.1 434.6 958.6 462.5
SHINE map 160.6 114.2 189.9 117.1

PIN-LO map 137.3 89.6 162.4 110.3
PIN-SLAM map 102.1 (0.7%) 66.3 (0.8%) 138.8 (1.1%) 76.8 (0.3%)

neural (SHINE) map used by SHINE-Mapping [100] and Nerf-
LOAM [11]. We also provide the raw point cloud memory
consumption as a reference. For the VDB TSDF map, we
use a voxel size of 20 cm. For SHINE map and PIN map,
we use the same resolution of 40 cm for the local latent
feature grid and neural points. With the continuous neural
SDF queried from SHINE or PIN map, we can reconstruct
the mesh with a voxel size of 20 cm with a similar quality
as the mesh reconstructed from the discrete VDB TSDF map.
Besides, for VDB TSDF map and SHINE map, we take the
odometry estimation of KISS-ICP [78] as their pose. As shown
in Tab. XV, our PIN map is the most compact representation
among the compared methods with a compression ratio of
about 0.7% on average. Compared to SHINE map, PIN map
using the same resolution and feature dimensions is about 15%
more memory efficient even with the additional storage of
neural point coordinates and orientations. This is because PIN
map does not have a hierarchical tree structure like SHINE
map and the neural points are only allocated close to the
surface. Notably, compared with PIN LiDAR odometry, the
memory consumption of PIN map decreases by about 20%
due to the loop correction and map update of PIN-SLAM.
The elastic PIN map can deform with the corrected pose and

PAN et al.: PIN-SLAM: LIDAR SLAM USING A POINT-BASED IMPLICIT NEURAL REPRESENTATION FOR ACHIEVING GLOBAL MAP CONSISTENCY 17

KAIST DCC Riverside

Fig. 11: Globally consistent mesh reconstructed by PIN-SLAM on MulRAN dataset with multiple loops. The estimated trajectories are
overlaid on the map and colorized according to the timestamp. Details of several revisited regions are highlighted in the dashed boxes.

Fig. 12: Qualitative results on the IPB-Car dataset. On the left, we
show the globally consistent mesh reconstructed by PIN-SLAM. On
the right, we show two examples of the colorized mesh reconstructed
using our calibrated LiDAR-camera multi-sensor platform.

eliminate duplicated neural points representing the same place.
This is not possible for the grid-based VDB or SHINE map
without the submap scheme or offline remapping.

2) Computational Requirement: In Tab. XVI, we report the
average runtime of PIN-SLAM running on a single NVIDIA
Quadro A4000 GPU over the whole 11 sequences of the KITTI
dataset. We show the results of two versions of PIN-SLAM,
the full version as used in the localization evaluation above
and the light version which takes a fewer number of iterations
during mapping and odometry. The light version of PIN-
SLAM works 38% faster at the cost of a minor degradation
(10%) of the localization accuracy. It can operate efficiently at
approximately 11 Hz, aligning with the typical sensor frame
rate. In Fig. 13, we report the average processing time for
each sub-module of PIN-SLAM (light). Odometry and map
optimization are the two most time-consuming parts, each
taking up about 40% of the total run time. When loops are
detected and pose graph optimization is conducted, the run
time per frame occasionally exceeds 200 ms (as the spikes in
the figure). Notably, the processing time remains consistent as
the frame count increases. In contrast, the only implicit neural
LiDAR odometry baseline, Nerf-LOAM [11] takes more than
4 seconds per frame, which is 30× slower than PIN-SLAM.
Moreover, we observe that Nerf-LOAM’s processing time
increases drastically with an increasing number of scans.

Fig. 13: Processing time for each sub-module of the light version of
PIN-SLAM on KITTI sequence 00.

TABLE XVI: Comparison of the average operation speed and the
localization error on KITTI sequence 00-10 using a single NVIDIA
A4000 GPU. ARTE represents the average relative translational error.

Method Time per frame [s] ↓ FPS [Hz] ↑ ARTE [%] ↓

PIN-SLAM (full) 0.14 7.1 0.50
PIN-SLAM (light) 0.09 11.3 0.56
Nerf-LOAM [11] 4.43 0.2 1.69

G. Extension on Semantic Mapping

As a proof of concept, we illustrate briefly that our approach
is capable of conducting metric-semantic SLAM with global
consistency. As shown in Fig. 14, PIN-SLAM manages to
build a metric-semantic map using the SemanticKITTI [3]
dataset by integrating the semantic labels as described in
Sec. IV. Note that we only need to add another shallow MLP
for the semantic querying. Currently, the semantics do not
play a role in odometry estimation and loop closure detection.
Considering this is outside the scope of this work but a
possible future extension.

VI. CONCLUSION

In this paper, we presented PIN-SLAM, a novel LiDAR
SLAM approach to perform globally consistent mapping us-
ing a point-based implicit neural map representation. Our
approach alternates between the online incremental learning
of the local implicit map and the odometry estimation using
a correspondence-free point-to-implicit map registration. We
exploit sparse neural points as local feature embeddings, which
are inherently elastic and deformable throughout the global
pose adjustment when correcting a loop closure. This enables
us to effectively maintain the global consistency of both the
neural points and the underlying implicit map. We imple-
mented and evaluated our approach on various datasets, pro-

18 IEEE TRANSACTIONS ON ROBOTICS. PREPRINT VERSION. ACCEPTED JUNE, 2024

car motorcycle bicycleparking

otherspole

sidewalkroad

trunkvegetationterrain signbuildingfence

other-vehicle person

Fig. 14: An example of the metric-semantic map built by PIN-SLAM
on KITTI sequence 00 using the semantic labels of SemanticKITTI.

vided comparisons to other existing techniques and supported
all claims made in this paper. Extensive experiments suggest
PIN-SLAM achieves better or on-par localization accuracy
than previous methods. Additionally, it builds a more con-
sistent and compact implicit map, which can be reconstructed
into more accurate and complete meshes. Besides, PIN-SLAM
can run at the sensor frame rate using a moderate GPU.

Limitations and Future Work. Future work may use
additionally an IMU for a more robust, accurate and efficient
SLAM system. Besides, we are currently using a fixed res-
olution of neural points. We can enhance the reconstruction
quality by adaptively distributing and dynamically moving
neural points throughout the scene like previous works [34],
[65], and use a data structure such as i-Kdtree [90] enabling
efficient neighbor search without using voxel structures. An-
other direction can be using semantic information to further
enhance odometry estimation and loop closure detection.

VII. ACKNOWLEDGEMENTS

We thank Ignacio Vizzo, Benedikt Mersch, Yibin Wu,
Tiziano Guadagnino, Haofei Kuang for the fruitful discussions
and Rodrigo Marcuzzi for the colorized point cloud.

REFERENCES

[1] J. Abou-Chakra, F. Dayoub, and N. Sünderhauf. Particlenerf: A
particle-based encoding for online neural radiance fields. In Proc. of
the IEEE Winter Conf. on Applications of Computer Vision (WACV),
2024.

[2] D. Azinović, R. Martin-Brualla, D.B. Goldman, M. Nießner, and
J. Thies. Neural RGB-D Surface Reconstruction. In Proc. of the
IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR),
2022.

[3] J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stachniss,
and J. Gall. SemanticKITTI: A Dataset for Semantic Scene Under-
standing of LiDAR Sequences. In Proc. of the IEEE/CVF Intl. Conf. on
Computer Vision (ICCV), 2019.

[4] J. Behley and C. Stachniss. Efficient Surfel-Based SLAM using 3D
Laser Range Data in Urban Environments. In Proc. of Robotics:
Science and Systems (RSS), 2018.

[5] P. Besl and N. McKay. A Method for Registration of 3D Shapes.
IEEE Trans. on Pattern Analysis and Machine Intelligence (TPAMI),
14(2):239–256, 1992.

[6] A. Chen, Z. Xu, A. Geiger, J. Yu, and H. Su. Tensorf: Tensorial
radiance fields. In Proc. of the Europ. Conf. on Computer Vision
(ECCV), 2022.

[7] X. Chen, A. Milioto, E. Palazzolo, P. Giguère, J. Behley, and C. Stach-
niss. SuMa++: Efficient LiDAR-based Semantic SLAM. In Proc. of
the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS),
2019.

[8] A. Dai, M. Nießner, M. Zollhöfer, S. Izadi, and C. Theobalt. Bundle-
Fusion: Real-time Globally Consistent 3D Reconstruction using Online
Surface Re-integration. ACM Trans. on Graphics (TOG), 36(3):1–18,
2017.

[9] F. Dellaert. Factor graphs and gtsam: A hands-on introduction. Georgia
Institute of Technology, Tech. Rep, 2:4, 2012.

[10] P. Dellenbach, J. Deschaud, B. Jacquet, and F. Goulette. CT-ICP Real-
Time Elastic LiDAR Odometry with Loop Closure. In Proc. of the
IEEE Intl. Conf. on Robotics & Automation (ICRA), 2022.

[11] J. Deng, X. Chen, S. Xia, Z. Sun, G. Liu, W. Yu, and L. Pei. Nerf-
loam: Neural implicit representation for large-scale incremental lidar
odometry and mapping. In Proc. of the IEEE/CVF Intl. Conf. on
Computer Vision (ICCV), 2023.

[12] J. Deschaud. IMLS-SLAM: scan-to-model matching based on 3D data.
In Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA),
2018.

[13] L. Di Giammarino, L. Brizi, T. Guadagnino, C. Stachniss, and
G. Grisetti. Md-slam: Multi-cue direct slam. In Proc. of the IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), 2022.

[14] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for Autonomous
Driving? The KITTI Vision Benchmark Suite. In Proc. of the IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), 2012.

[15] G. Grisetti, C. Stachniss, and W. Burgard. Improved Techniques for
Grid Mapping with Rao-Blackwellized Particle Filters. IEEE Trans. on
Robotics (TRO), 23(1):34–46, 2007.

[16] A. Gropp, L. Yariv, N. Haim, M. Atzmon, and Y. Lipman. Implicit ge-
ometric regularization for learning shapes. In Proc. of the Intl. Conf. on
Machine Learning (ICML), 2020.

[17] M. Helmberger, K. Morin, B. Berner, N. Kumar, G. Cioffi, and
D. Scaramuzza. The hilti slam challenge dataset. IEEE Robotics and
Automation Letters (RA-L), 7(3):7518–7525, 2022.

[18] W. Hess, D. Kohler, H. Rapp, and D. Andor. Real-Time Loop Closure
in 2D LIDAR SLAM. In Proc. of the IEEE Intl. Conf. on Robotics &
Automation (ICRA), 2016.

[19] A. Hornung, K. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard.
OctoMap: An Efficient Probabilistic 3D Mapping Framework Based
on Octrees. Autonomous Robots, 34(3):189–206, 2013.

[20] J. Huang, Z. Gojcic, M. Atzmon, O. Litany, S. Fidler, and F. Williams.
Neural kernel surface reconstruction. In Proc. of the IEEE/CVF
Conf. on Computer Vision and Pattern Recognition (CVPR), 2023.

[21] J. Huang, S.S. Huang, H. Song, and S.M. Hu. Di-fusion: Online
implicit 3d reconstruction with deep priors. In Proc. of the IEEE/CVF
Conf. on Computer Vision and Pattern Recognition (CVPR), 2021.

[22] S. Huang, Z. Gojcic, Z. Wang, F. Williams, Y. Kasten, S. Fidler,
K. Schindler, and O. Litany. Neural lidar fields for novel view synthesis.
In Proc. of the IEEE/CVF Intl. Conf. on Computer Vision (ICCV), 2023.

[23] S. Isaacson, P.C. Kung, M. Ramanagopal, R. Vasudevan, and K.A.
Skinner. Loner: Lidar only neural representations for real-time slam.
IEEE Robotics and Automation Letters (RA-L), 8(12):8042–8049, 2023.

[24] M.M. Johari, C. Carta, and F. Fleuret. ESLAM: Efficient dense
slam system based on hybrid representation of signed distance fields.
In Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern
Recognition (CVPR), 2023.

[25] G. Kim, Y. Park, Y. Cho, J. Jeong, and A. Kim. Mulran: Multimodal
range dataset for urban place recognition. In Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), 2020.

[26] G. Kim, S. Choi, and A. Kim. Scan context++: Structural place recog-
nition robust to rotation and lateral variations in urban environments.
IEEE Trans. on Robotics (TRO), 38(3):1856–1874, 2022.

[27] G. Kim and A. Kim. Scan Context: Egocentric Spatial Descriptor
for Place Recognition within 3D Point Cloud Map. In Proc. of the
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2018.

[28] D. Kingma and J. Ba. Adam: A Method for Stochastic Optimization.
In Proc. of the Int. Conf. on Learning Representations (ICLR), 2015.

[29] S. Kohlbrecher, S.O. Von, J. Meyer, and U. Klingauf. A flexible and
scalable slam system with full 3d motion estimation. In Proc. of the
IEEE Intl. Sym. on Safety, Security, and Rescue Robotics (SSRR), 2011.

[30] K. Koide, J. Miura, and E. Menegatti. A portable three-dimensional
lidar-based system for long-term and wide-area people behavior mea-
surement. Intl. Journal of Advanced Robotic Systems, 16(2):1–20,
2019.

[31] K. Koide, M. Yokozuka, S. Oishi, and A. Banno. Voxelized gicp for
fast and accurate 3d point cloud registration. In Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), 2021.

[32] H. Kuang, X. Chen, T. Guadagnino, N. Zimmerman, J. Behley,
and C. Stachniss. IR-MCL: Implicit Representation-Based Online

PAN et al.: PIN-SLAM: LIDAR SLAM USING A POINT-BASED IMPLICIT NEURAL REPRESENTATION FOR ACHIEVING GLOBAL MAP CONSISTENCY 19

Global Localization. IEEE Robotics and Automation Letters (RA-L),
8(3):1627–1634, 2023.

[33] Q. Li, S. Chen, C. Wang, X. Li, C. Wen, M. Cheng, and J. Li. Lo-net:
Deep real-time lidar odometry. In Proc. of the IEEE/CVF Conf. on
Computer Vision and Pattern Recognition (CVPR), 2019.

[34] T. Li, X. Wen, Y.S. Liu, H. Su, and Z. Han. Learning deep implicit
functions for 3d shapes with dynamic code clouds. In Proc. of the
IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR),
2022.

[35] Z. Li, T. Müller, A. Evans, R.H. Taylor, M. Unberath, M.Y. Liu, and
C.H. Lin. Neuralangelo: High-fidelity neural surface reconstruction.
In Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern
Recognition (CVPR), 2023.

[36] J. Lin and F. Zhang. Loam livox A Robust LiDAR Odemetry and
Mapping LOAM Package for Livox LiDAR. In Proc. of the IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), 2019.

[37] X. Liu, Z. Liu, F. Kong, and F. Zhang. Large-scale lidar consistent
mapping using hierarchical lidar bundle adjustment. IEEE Robotics
and Automation Letters (RA-L), 8(3):1523–1530, 2023.

[38] Z. Liu, X. Liu, and F. Zhang. Efficient and consistent bundle adjustment
on lidar point clouds. IEEE Trans. on Robotics (TRO), 39(6):4366–
4386, 2023.

[39] W. Lorensen and H. Cline. Marching Cubes: a High Resolution
3D Surface Construction Algorithm. In Proc. of the Intl. Conf. on
Computer Graphics and Interactive Techniques (SIGGRAPH), 1987.

[40] L. Luo, S.Y. Cao, B. Han, H.L. Shen, and J. Li. Bvmatch: Lidar-based
place recognition using bird’s-eye view images. IEEE Robotics and
Automation Letters (RA-L), 6(3):6076–6083, 2021.

[41] L. Luo, S. Zheng, Y. Li, Y. Fan, B. Yu, S. Cao, and H.L. Shen.
BEVPlace: Learning LiDAR-based place recognition using bird’s eye
view images. In Proc. of the IEEE/CVF Intl. Conf. on Computer Vision
(ICCV), 2023.

[42] J. Ma, J. Zhang, J. Xu, R. Ai, W. Gu, and X. Chen. Overlaptransformer:
An efficient and yaw-angle-invariant transformer network for lidar-
based place recognition. IEEE Robotics and Automation Letters (RA-L),
7(3):6958–6965, 2022.

[43] L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger.
Occupancy networks: Learning 3d reconstruction in function space.
In Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern
Recognition (CVPR), 2019.

[44] B. Mildenhall, P. Srinivasan, M. Tancik, J. Barron, R. Ramamoorthi,
and R. Ng. NeRF: Representing Scenes as Neural Radiance Fields
for View Synthesis. In Proc. of the Europ. Conf. on Computer Vision
(ECCV), 2020.

[45] A. Milioto, I. Vizzo, J. Behley, and C. Stachniss. RangeNet++: Fast
and Accurate LiDAR Semantic Segmentation. In Proc. of the IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), 2019.

[46] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM: A
Factored Solution to the Simultaneous Localization and Mapping Prob-
lem. In Proc. of the Conf. on Advancements of Artificial Intelligence
(AAAI), 2002.

[47] T. Müller, A. Evans, C. Schied, and A. Keller. Instant neural graphics
primitives with a multiresolution hash encoding. ACM Trans. on
Graphics, 41(4):102:1–102:15, 2022.

[48] R.A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A.J.
Davison, P. Kohli, J. Shotton, S. Hodges, and A. Fitzgibbon. Kinect-
Fusion: Real-Time Dense Surface Mapping and Tracking. In Proc. of
the Intl. Symposium on Mixed and Augmented Reality (ISMAR), 2011.

[49] M. Nießner, M. Zollhöfer, S. Izadi, and M. Stamminger. Real-time 3d
reconstruction at scale using voxel hashing. ACM Trans. on Graphics
(TOG), 32(6):1 – 11, 2013.

[50] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwar, and J. Nieto. Voxblox:
Incremental 3d euclidean signed distance fields for on-board mav
planning. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems (IROS), 2017.

[51] J. Ortiz, A. Clegg, J. Dong, E. Sucar, D. Novotny, M. Zollhoefer, and
M. Mukadam. isdf: Real-time neural signed distance fields for robot
perception. In Proc. of Robotics: Science and Systems (RSS), 2022.

[52] Y. Pan, P. Xiao, Y. He, Z. Shao, and Z. Li. MULLS: Versatile LiDAR
SLAM Via Multi-Metric Linear Least Square. In Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), 2021.

[53] J.J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove.
DeepSDF: Learning Continuous Signed Distance Functions for Shape
Representation. In Proc. of the IEEE/CVF Conf. on Computer Vision
and Pattern Recognition (CVPR), 2019.

[54] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. N. Gimelshein, L. Antiga, A. Desmaison,

A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala. PyTorch: An Imperative
Style, High-Performance Deep Learning Library. In Proc. of the Conf.
on Neural Information Processing Systems (NeurIPS), 2019.

[55] S. Peng, M. Niemeyer, L. Mescheder, M. Pollefeys, and A. Geiger.
Convolutional occupancy networks. In Proc. of the Europ. Conf. on
Computer Vision (ECCV), 2020.

[56] C. Qin, H. Ye, C.E. Pranata, J. Han, S. Zhang, and M. Liu. Lins:
A lidar-inertial state estimator for robust and efficient navigation. In
Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2020.

[57] M. Ramezani, Y. Wang, M. Camurri, D. Wisth, M. Mattamala, and
M. Fallon. The newer college dataset: Handheld lidar, inertial and
vision with ground truth. In Proc. of the IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS), 2020.

[58] F. Ramos and L. Ott. Hilbert maps: Scalable continuous occupancy
mapping with stochastic gradient descent. Intl. Journal of Robotics
Research (IJRR), 35(14):1717–1730, 2016.

[59] V. Reijgwart, A. Millane, H. Oleynikova, R. Siegwart, C. Cadena, and
J. Nieto. Voxgraph: Globally consistent, volumetric mapping using
signed distance function submaps. IEEE Robotics and Automation
Letters (RA-L), 5(1):227–234, 2019.

[60] A. Reinke, M. Palieri, B. Morrell, Y. Chang, K. Ebadi, L. Carlone,
and A.A. Agha-Mohammadi. Locus 2.0: Robust and computationally
efficient lidar odometry for real-time 3d mapping. IEEE Robotics and
Automation Letters (RA-L), 7(4):9043–9050, 2022.

[61] R.A. Rosu and S. Behnke. Permutosdf: Fast multi-view reconstruction
with implicit surfaces using permutohedral lattices. In Proc. of the
IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR),
2023.

[62] J. Ruan, B. Li, Y. Wang, and Y. Sun. Slamesh: Real-time lidar simul-
taneous localization and meshing. In Proc. of the IEEE Intl. Conf. on
Robotics & Automation (ICRA), 2023.

[63] J. Ruan, B. Li, Y. Wang, and Z. Fang. Gp-slam+: real-time 3d lidar slam
based on improved regionalized gaussian process map reconstruction.
In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS), 2020.

[64] S. Rusinkiewicz and M. Levoy. Efficient variants of the ICP algorithm.
In Proc. of Int. Conf. on 3-D Digital Imaging and Modeling, 2001.

[65] E. Sandström, Y. Li, L. Van Gool, and M. R. Oswald. Point-slam:
Dense neural point cloud-based slam. In Proc. of the IEEE/CVF
Intl. Conf. on Computer Vision (ICCV), 2023.

[66] L. Schmid, O. Andersson, A. Sulser, P. Pfreundschuh, and R. Sieg-
wart. Dynablox: Real-time detection of diverse dynamic objects in
complex environments. IEEE Robotics and Automation Letters (RA-
L), 8(10):6259 – 6266, 2023.

[67] T. Shan, B. Englot, D. Meyers, W. Wang, C. Ratti, and D. Rus. LIO-
SAM: Tightly-coupled Lidar Inertial Odometry via Smoothing and
Mapping. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems (IROS), 2020.

[68] T. Shan and B. Englot. LeGO-LOAM: Lightweight and Ground-
Optimized Lidar Odometry and Mapping on Variable Terrain. In
Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS), 2018.

[69] C. Stachniss, G. Grisetti, and W. Burgard. Information Gain-based
Exploration Using Rao-Blackwellized Particle Filters. In Proc. of
Robotics: Science and Systems (RSS), 2005.

[70] J. Straub, T. Whelan, L. Ma, Y. Chen, E. Wijmans, S. Green, J.J. Engel,
R. Mur-Artal, C. Ren, S. Verma, et al. The replica dataset: A digital
replica of indoor spaces. arXiv preprint, arXiv:1906.05797, 2019.

[71] E. Sucar, S. Liu, J. Ortiz, and A.J. Davison. imap: Implicit mapping
and positioning in real-time. In Proc. of the IEEE/CVF Intl. Conf. on
Computer Vision (ICCV), 2021.

[72] T. Takikawa, J. Litalien, K. Yin, K. Kreis, C. Loop, D. Nowrouzezahrai,
A. Jacobson, M. McGuire, and S. Fidler. Neural geometric level of
detail: Real-time rendering with implicit 3d shapes. In Proc. of the
IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR),
2021.

[73] Y. Tang, J. Zhang, Z. Yu, H. Wang, and K. Xu. Mips-fusion:
Multi-implicit-submaps for scalable and robust online neural rgb-d
reconstruction. ACM Transactions on Graphics, 42(6), 2023.

[74] S. Thrun, D. Fox, W. Burgard, and F. Dellaert. Robust Monte Carlo
Localization for Mobile Robots. Artificial Intelligence, 128(1-2), 2001.

[75] A. Uy and G. Lee. PointNetVLAD: Deep point cloud based retrieval for
large-scale place recognition. In Proc. of the IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), 2018.

20 IEEE TRANSACTIONS ON ROBOTICS. PREPRINT VERSION. ACCEPTED JUNE, 2024

[76] I. Vizzo, X. Chen, N. Chebrolu, J. Behley, and C. Stachniss. Poisson
Surface Reconstruction for LiDAR Odometry and Mapping. In Proc. of
the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2021.

[77] I. Vizzo, T. Guadagnino, J. Behley, and C. Stachniss. VDBFusion:
Flexible and Efficient TSDF Integration of Range Sensor Data. Sensors,
22(3):1296, 2022.

[78] I. Vizzo, T. Guadagnino, B. Mersch, L. Wiesmann, J. Behley, and
C. Stachniss. KISS-ICP: In Defense of Point-to-Point ICP – Simple,
Accurate, and Robust Registration If Done the Right Way. IEEE
Robotics and Automation Letters (RA-L), 8(2):1029–1036, 2023.

[79] C. Wang, D. Gao, K. Xu, J. Geng, Y. Hu, Y. Qiu, B. Li, F. Yang,
B. Moon, A. Pandey, Aryan, J. Xu, T. Wu, H. He, D. Huang, Z. Ren,
S. Zhao, T. Fu, P. Reddy, X. Lin, W. Wang, J. Shi, R. Talak, K. Cao,
Y. Du, H. Wang, H. Yu, S. Wang, S. Chen, A. Kashyap, R. Bandaru,
K. Dantu, J. Wu, L. Xie, L. Carlone, M. Hutter, and S. Scherer.
PyPose: A library for robot learning with physics-based optimization.
In Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern
Recognition (CVPR), 2023.

[80] G. Wang, X. Wu, S. Jiang, Z. Liu, and H. Wang. Efficient 3d deep lidar
odometry. IEEE Trans. on Pattern Analysis and Machine Intelligence
(TPAMI), 45(5):5749–5765, 2022.

[81] G. Wang, X. Wu, Z. Liu, and H. Wang. PWCLO-Net: Deep LiDAR
Odometry in 3D Point Clouds Using Hierarchical Embedding Mask
Optimization. In Proc. of the IEEE/CVF Conf. on Computer Vision
and Pattern Recognition (CVPR), 2021.

[82] H. Wang, C. Wang, C. Chen, and L. Xie. F-LOAM: Fast LiDAR
Odometry and Mapping. In Proc. of the IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS), 2021.

[83] H. Wang, J. Wang, and L. Agapito. Co-slam: Joint coordinate and
sparse parametric encodings for neural real-time slam. In Proc. of the
IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR),
2023.

[84] Y. Wang, N. Funk, M. Ramezani, S. Papatheodorou, M. Popovic,
M. Camurri, S. Leutenegger, and M. Fallon. Elastic and Efficient
LiDAR Reconstruction for Large-Scale Exploration Tasks. In Proc. of
the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2021.

[85] T. Whelan, S. Leutenegger, R.S. Moreno, B. Glocker, and A. Davison.
ElasticFusion: Dense SLAM Without A Pose Graph. In Proc. of
Robotics: Science and Systems (RSS), 2015.

[86] L. Wiesmann, T. Guadagnino, I. Vizzo, N. Zimmerman, Y. Pan,
H. Kuang, J. Behley, and C. Stachniss. Locndf: Neural distance field
mapping for robot localization. IEEE Robotics and Automation Letters
(RA-L), 8(8):4999–5006, 2023.

[87] L. Wu, K.M.B. Lee, C. Le Gentil, and T. Vidal-Calleja. Log-gpis-mop:
A unified representation for mapping, odometry, and planning. IEEE
Trans. on Robotics (TRO), 39(5):4078–4094, 2023.

[88] Y. Wu, T. Guadagnino, L. Wiesmann, L. Klingbeil, C. Stachniss, and
H. Kuhlmann. Lio-ekf: High frequency lidar-inertial odometry using
extended kalman filters. In Proc. of the IEEE Intl. Conf. on Robotics
& Automation (ICRA), 2024.

[89] Q. Xu, Z. Xu, J. Philip, S. Bi, Z. Shu, K. Sunkavalli, and U. Neu-
mann. Point-nerf: Point-based neural radiance fields. In Proc. of the
IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR),
2022.

[90] W. Xu, Y. Cai, D. He, J. Lin, and F. Zhang. Fast-lio2: Fast direct lidar-
inertial odometry. IEEE Trans. on Robotics (TRO), 38(4):2053–2073,
2022.

[91] Z. Yan, H. Yang, and H. Zha. Active neural mapping. In Proc. of the
IEEE/CVF Intl. Conf. on Computer Vision (ICCV), 2023.

[92] X. Yang, H. Li, H. Zhai, Y. Ming, Y. Liu, and G. Zhang. Vox-fusion:
Dense tracking and mapping with voxel-based neural implicit repre-
sentation. In Proc. of the Intl. Symposium on Mixed and Augmented
Reality (ISMAR), 2022.

[93] M. Yokozuka, K. Koide, S. Oishi, and A. Banno. Litamin2: Ultra
light lidar-based slam using geometric approximation applied with kl-
divergence. In Proc. of the IEEE Intl. Conf. on Robotics & Automation
(ICRA), 2021.

[94] X. Yu, Y. Liu, S. Mao, S. Zhou, R. Xiong, Y. Liao, and Y. Wang. Nf-
atlas: Multi-volume neural feature fields for large scale lidar mapping.
IEEE Robotics and Automation Letters (RA-L), 8(9):5870–5877, 2023.

[95] Y. Yuan and A. Nüchter. An algorithm for the se(3)-transformation
on neural implicit maps for remapping functions. IEEE Robotics and
Automation Letters (RA-L), 7(3):7763–7770, 2022.

[96] J. Zhang, M. Kaess, and S. Singh. On Degeneracy of Optimization-
Based State Estimation Problems. In Proc. of the IEEE Intl. Conf. on
Robotics & Automation (ICRA), 2016.

[97] J. Zhang and S. Singh. LOAM: Lidar Odometry and Mapping in Real-
time. In Proc. of Robotics: Science and Systems (RSS), 2014.

[98] Z. Zhang and D. Scaramuzza. A tutorial on quantitative trajectory
evaluation for visual(-inertial) odometry. In Proc. of the IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), 2018.

[99] S. Zhi, T. Laidlow, S. Leutenegger, and A. Davison. In-place scene
labelling and understanding with implicit scene representation. In
Proc. of the IEEE/CVF Intl. Conf. on Computer Vision (ICCV), 2021.

[100] X. Zhong, Y. Pan, J. Behley, and C. Stachniss. SHINE-Mapping:
Large-Scale 3D Mapping Using Sparse Hierarchical Implicit Neural
Representations. In Proc. of the IEEE Intl. Conf. on Robotics &
Automation (ICRA), 2023.

[101] Z. Zhu, S. Peng, V. Larsson, W. Xu, H. Bao, Z. Cui, M.R. Oswald,
and M. Pollefeys. Nice-slam: Neural implicit scalable encoding for
slam. In Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern
Recognition (CVPR), 2022.

Yue Pan is a Ph.D. student in Engineering at the
Photogrammetry & Robotics Lab headed by Prof.
Cyrill Stachniss at the University of Bonn, Germany.
He obtained his B.Sc. degree in Geomatics Engi-
neering from Wuhan University, China in 2019 and
received his MSc degree in Geomatics Engineering
from ETH Zurich, Switzerland in 2022. His research
focuses on SLAM, 3D reconstruction and naviga-
tion.
Xingguang Zhong is a Ph.D. student in Engi-
neering at the Photogrammetry & Robotics Lab
at the University of Bonn, Germany headed by
Prof. Cyrill Stachniss. He obtained his B.Sc. degree
in Mechanical Engineering in 2017 and his M.Sc.
degree in Mechatronic Engineering in 2019 from
Harbin Institute of Technology, China. His research
interests include large-scale 3D reconstruction and
autonomous navigation.

Louis Wiesmann is a Ph.D. student at the Pho-
togrammetry & Robotics Lab headed by Prof. Cyrill
Stachniss at the University of Bonn, Germany. He
obtained his B.Sc. degree in 2017 and his M.Sc.
degree in 2019 in Geodetic Engineering from the
University of Bonn. His research focuses on local-
ization and mapping in large-scale environments.

Thorbjörn Posewsky is a Ph.D. student in En-
gineering at the Photogrammetry & Robotics Lab
headed by Prof. Cyrill Stachniss at the University of
Bonn, Germany and additionally software engineer
at MicroVision GmbH, Hamburg, Germany. He ob-
tained his B. Sc. degree in computer science in 2012
and his M. Sc. also in computer science in 2015,
both from the University of Paderborn, Germany. His
research focuses on Mapping and SLAM.

Jens Behley received his Dipl.-Inform. in computer
science in 2009 and his Ph.D. in computer science
in 2014, both from the Dept. of Computer Science at
the University of Bonn, Germany. Since 2016, he is
a postdoctoral researcher at the Photogrammetry &
Robotics Lab at the University of Bonn, Germany.
He finished his habilitation at the University of Bonn
in 2023. His area of interest lies in the area of per-
ception for autonomous vehicles, deep learning for
semantic interpretation, and LiDAR-based SLAM.
Cyrill Stachniss is a full professor at the University
of Bonn, Germany, with the University of Oxford,
UK, as well as with the Lamarr Institute for Machine
Learning and AI, Germany. He is the Spokesperson
of the DFG Cluster of Excellence PhenoRob at
the University of Bonn. His research focuses on
probabilistic techniques and learning approaches for
mobile robotics, perception, and navigation. The
main application areas of his research are agricul-
tural robotics, service robotics, and self-driving cars.

PAN et al.: PIN-SLAM: LIDAR SLAM USING A POINT-BASED IMPLICIT NEURAL REPRESENTATION FOR ACHIEVING GLOBAL MAP CONSISTENCY 21

CERTIFICATE OF REPRODUCIBILITY

The authors of this publication declare that:

1) The software related to this publication is distributed in the hope that it will be useful,
support open research, and simplify the reproducibility of the results but it comes
without any warranty and without even the implied warranty of merchantability or
fitness for a particular purpose.

2) Yue Pan primarily developed the implementation related to this paper. This was done on
Ubuntu 20.04.

3) Xingguang Zhong verified that the code can be executed on a machine that follows the
software specification given in the Git repository available at:

https://github.com/PRBonn/PIN SLAM

4) Jens Behley verified that the experimental results presented in this publication can be
reproduced using the implementation used at submission, which is labeled with a tag in
the Git repository and can be retrieved using the command:

git checkout v1.0.0

https://github.com/PRBonn/PIN_SLAM

