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Abstract— Object reconstruction is relevant for many au-
tonomous robotic tasks that require interaction with the en-
vironment. A key challenge in such scenarios is planning
view configurations to collect informative measurements for
reconstructing an initially unknown object. One-shot view
planning enables efficient data collection by predicting view
configurations and planning the globally shortest path con-
necting all views at once. However, prior knowledge about
the object is required to conduct one-shot view planning.
In this work, we propose a novel one-shot view planning
approach that utilizes the powerful 3D generation capabilities
of diffusion models as priors. By incorporating such geometric
priors into our pipeline, we achieve effective one-shot view
planning starting with only a single RGB image of the object
to be reconstructed. Our planning experiments in simulation
and real-world setups indicate that our approach balances well
between object reconstruction quality and movement cost.

I. INTRODUCTION

Many autonomous robotic applications require 3D models
of objects to perform downstream tasks, e.g., pose esti-
mation [35], object manipulation [3], and detection [36].
When deployed in initially unknown environments, a robot
often needs to reconstruct the objects before interacting with
them. During this procedure, a challenge is planning a view
sequence to acquire the most informative measurements to be
integrated into the reconstruction system while minimizing
the robot’s travel distance or operation time.

Without any prior knowledge about the environment, a
common strategy is to plan the next-best-view (NBV) it-
eratively based on the current reconstruction state [7, 18,
19, 23, 29, 33, 37]. However, NBV planning only generates
a local path to the subsequent view and cannot effectively
distribute the mission time or movement budget, resulting
in suboptimal view planning performance. An alternative
line of work considers one-shot view planning [6, 26, 28].
Given initial measurements of an object to be reconstructed,
one-shot view planning predicts a set of views at once and
computes the globally shortest path connecting them. A
robot’s sensor then follows the planned path to collect mea-
surements, which are used for object reconstruction after the
data acquisition is completed. By decoupling data collection
and object reconstruction, these approaches do not rely on
iterative map updates for object-specific view planning online
during a mission. To perform one-shot view planning, prior
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Fig. 1: An example of our RGB-based one-shot view planning by
exploiting priors from 3D diffusion models. Our goal is to plan
a set of views (blue) at once to collect informative RGB images
for object reconstruction. The key component in our approach
is a 3D diffusion model generating the corresponding 3D mesh
of a single RGB image from the initial camera view (red). By
leveraging the mesh as geometric priors, our approach produces
view configurations specifically associated with the target object and
calculates the globally shortest path. In particular, we plan denser
views to observe more geometrically complex parts (front part of
the object in the example) to improve the reconstruction quality.

knowledge about the object is required. Previous works
consider planning priors based on multi-view images or
partial point cloud observations. However, they either only
handle a fixed view configuration [28] or rely on depth
sensors [6, 26].

To address these aforementioned limitations, we propose
integrating geometric priors from 3D diffusion models into
one-shot view planning. Recently, 3D diffusion models
emerged as a powerful tool for generating 3D content based
on text prompts or a single image. By training on large
datasets, 3D diffusion models learn prior knowledge about
objects commonly seen in real life [13, 16, 17]. Humans
similarly exploit prior knowledge to hallucinate 3D models
of an object based on semantics and appearance information
contained in RGB observations. However, recovering a 3D
representation from a single RGB image is inherently an
ill-posed problem and corresponds to multiple plausible
solutions. As a result, models generated by 3D diffusion
models do not reflect the exact representation of the object
to be reconstructed. This prohibits their direct application
as a method for accurate 3D representation, as required in
robotics tasks. Incorporating the capabilities of 3D diffusion
models to provide geometric priors in robotics remains an



unexplored area.
The main contribution of this work is a novel RGB-based

one-shot view planning approach that exploits the geometric
priors from 3D diffusion models. Our approach enables view
planning with an object-specific view configuration for object
reconstruction as shown in Fig. 1. A key component of our
pipeline is a 3D diffusion model that outputs a 3D mesh of
the object given one RGB image as input. This generated
mesh is a proxy to the inaccessible ground truth 3D model
and serves as the basis for our one-shot view planning.
Given the generated 3D mesh, we convert the one-shot
view planning into a customized set covering optimization
problem to calculate the minimum set of views that densely
covers the mesh, which we solve using linear programming.
Our approach places the object-specific views and follows
the globally shortest path for collecting informative RGB
images around the object. After the data collection, we train
a Neural Radiance Field (NeRF) using all collected images
to acquire the object’s 3D representation.

To the best of our knowledge, our approach is the first to
leverage 3D diffusion models for view planning. We make
the following claims: (i) we exploit the powerful 3D diffusion
models to enable our one-shot view planning starting with
only one RGB image as input; (ii) we design the one-shot
view planning as a customized set covering optimization
problem, yielding view configurations suitable for RGB-
based object reconstruction using NeRFs. We conduct ex-
tensive experiments on publicly available object datasets
and in real world scenarios, demonstrating the applicability
and generalization ability of our approach. Our one-shot
view planning allows for object-specific view placement to
account for varying object geometries, achieving a better
trade-off between movement cost and reconstruction quality
compared to baselines. To support reproducibility and future
research, our implementation is open-sourced at: https:
//github.com/psc0628/DM-OSVP

II. RELATED WORK

In this section, we introduce relevant works on view
planning for object reconstruction and diffusion models for
3D generation.

A. View Planning for Object Reconstruction

Object reconstruction is essential in many robotic applica-
tions. One important capability in this scenario is to actively
reconstruct the object using a robot sensor. Without any
prior knowledge, a common approach is to plan the NBV
iteratively based on the current reconstruction state, thus
maximizing the information of the object in a greedy manner.
Isler et al. [7] propose selecting the NBV by calculating
the information gain based on visibility and the likelihood
of observing new parts of the object to be reconstructed.
Similarly, Pan et al. [24, 25] weight the 3D space based on
visibility and distance to observe surfaces and then employ
coverage optimization for NBV planning. In addition, Menon
et al. [19] introduce a shape completion method based on
partially observed objects and conduct NBV planning to

cover the estimated missing surfaces. PC-NBV [37] trains
a neural network to predict the utility of candidate views
given partial point cloud observations. In the context of
NBV planning for RGB-based object reconstruction, Jin
et al. [8] integrate uncertainty estimation into image-based
neural rendering to guide NBV selection in a mapless way.
Lin et al. [11] and Sünderhauf et al. [33] train an ensemble of
NeRF models, utilizing the ensemble’s variance to measure
uncertainty for NBV planning.

While showing promising object reconstruction results,
NBV planning often relies on computationally intensive
online map updates and its greedy nature leads to inefficient
paths. To address these limitations, recent works propose
one-shot view planning paradigm. Given an initial measure-
ment, one-shot view planning predicts all required views at
once and calculates the globally shortest path connecting
them, resulting in reduced movement costs. The pioneering
work SCVP [26] trains a neural network in a supervised
way to directly predict the global view configuration given
initial point cloud observations. To generate training labels,
the authors solve the set covering problem to obtain a view
configuration fully covering the ground truth 3D models. Hu
et al. [6] further reduces the required views by incorporating
a point cloud-based implicit surface reconstruction method to
complete missing surfaces before conducting one-shot view
planning. In the domain of RGB-based object reconstruction,
Pan et al. [28] propose a view prediction network to predict
the number of views to reconstruct an object using NeRFs
required to reach its performance upper bound. However,
due to the lack of geometric representations during the
view planning stage, this work only considers distributing
the views following a fixed pattern, without adapting view
configurations to account for varying object geometries.

Our work shares the same idea of using one-shot view
planning to reconstruct an unknown object. Different from
previous works that rely on depth sensors [6, 26] or fixed
view configurations [28], our novel approach only requires
RGB inputs and plans view configurations specifically asso-
ciated with the objects, leading to better object reconstruction
performance while reducing movement costs.

B. Diffusion Models for 3D Generation

Diffusion models are state-of-the-art generative models for
producing plausible high-quality images. Starting from ran-
dom Gaussian noises, diffusion models learn to subsequently
denoise the input to finally recover the true images [9, 31].
By training on large datasets, diffusion models acquire
powerful prior knowledge and show their capabilities in the
domain of 2D image generation.

Inspired by the advances of diffusion models, recent
works investigate using diffusion models for 3D content
generation. Given a text prompt describing a desired scene,
DreamFusion [30], ProlificDreamer [34], and MVDream [32]
optimize a differentiable 3D representation, e.g., NeRF, from
scratch and leverage neural rendering to generate 2D images
at different viewpoints. These rendered images are then
fed into 2D diffusion models to calculate the similarity to
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Fig. 2: Overview of our proposed RGB-based one-shot view planning pipeline. Given a single RGB image of the object to be reconstructed,
we leverage a 3D diffusion model, One-2-3-45++ [12], to generate a 3D mesh. This mesh serves as a proxy to the ground truth geometry
and is the basis for our view planning. Based on this prior, we construct the one-shot view planning task as a customized set covering
optimization problem and solve it to obtain a minimum set of views required to densely cover the mesh surfaces. The RGB camera starts
at the initial view (shown as ⊗) and follows the generated globally shortest path to collect RGB images, which we use to train a NeRF
in Instant-NGP [21] after the data acquisition is completed.

the priors learned by the diffusion model, which guide the
3D shape optimization process. While showing impressive
results, these methods suffer from prolonged rendering and
optimization times, limiting their robotic applications.

Another line of work investigates fine-tuning pretrained
2D diffusion models for multi-view synthesis from single
image inputs [14, 15]. The follow-up work One-2-3-45 [13]
produces 3D meshes using images generated from the multi-
view diffusion models. However, its performance is limited
by the inconsistency between multi-view images. Recent 3D
diffusion model One-2-3-45++ [12] mitigates the problem of
inconsistencies by conditioning the multi-view image gen-
eration on each other. The generated multi-view consistent
images are exploited as the guidance for 3D diffusion to
directly produce high-quality meshes in a short time, i.e.,
within 60 s. In this work, we utilize geometric priors from
3D diffusion models to enable RGB-based one-shot view
planning for object reconstruction.

III. OUR APPROACH

We propose a novel RGB-based one-shot view planning
method for unknown object reconstruction. An overview
of our approach is shown in Fig. 2. Given a single RGB
measurement of the object, we leverage a 3D diffusion model
to generate its corresponding mesh. Based on rich prior
information contained in the generated mesh, we formulate
one-shot view planning as a set covering optimization prob-
lem, which we solve with linear programming to acquire
the minimum set of views densely covering mesh surfaces.
We calculate the globally shortest path connecting all views
for data collection using a robot’s RGB camera. After data
collection, we train a NeRF model using all collected RGB
images to generate a 3D representation of the object.

A. Geometric Priors from 3D Diffusion Model

A key component of our approach is a 3D diffusion
model for predicting the corresponding mesh given only one

RGB image as an initial observation. Specifically, we use
the state-of-the-art 3D diffusion model One-2-3-45++ [12]
for generating plausible meshes due to its accurate mesh
generation and efficient inference compared to other 3D
diffusion models [30, 32, 34]. One-2-3-45++ model is trained
on Objaverse [2], a large 3D model dataset, to learn the
prior knowledge of varying geometries of commonly seen
objects and shows good generalization ability on other object
datasets. Leveraging this powerful tool, we use the generated
meshes as geometric priors for one-shot view planning
introduced next.

B. One-Shot View Planning as Set Covering Optimization

One-shot view planning can be treated as a conventional
set covering optimization problem. Since solving this opti-
mization problem necessitates an explicit 3D representation
of the object to be reconstructed, previous works [6, 26] rely
on depth sensors to acquire initial 3D models of the object.
Instead, by incorporating the geometric priors of 3D diffusion
models into our planning pipeline, our approach solves the
one-shot view planning problem in an RGB camera setup.

To facilitate the efficiency of set covering optimization,
sparse surface representations are desired. To this end, we
first sample a set of surface points from the mesh produced
by the 3D diffusion model and subsequently voxelize them
using OctoMap [5] to get a sparse surface point set Psurf ,
with surface point pi ∈ Psurf . We denote v as a candidate
view within a discrete candidate view space V ⊂ R3×SO(3)
and Pv as the set of surface points observable from this
view. Each set Pv is determined via the ray-casting process
implemented in OctoMap. We define an indicator function
I(p, v) to represent whether a surface point p is observable
from view v:

I(p, v) =

{
1 if p ∈ Pv

0 otherwise
. (1)



Fig. 3: Illustration of the impact of multi-view constraints. α
denotes the minimum number of views required to observe each
surface point. Larger α values lead to optimization solutions with
more views densely covering the surfaces.

Given Psurf and each Pv , the conventional set covering
optimization problem aims to find the minimum set of views
required for completely covering the surface points. For
instance, consider Psurf = {p1, p2, p3}, Pv1 = {p1, p2},
Pv2 = {p2, p3}, and Pv3 = {p1, p3}. The union of these
three sets equals the entire surface set, i.e.,

⋃
v Pv = Psurf .

However, we can cover all surface points with only two
sets, Pv1 and Pv2 . Vanilla set covering optimization problem
requires that each surface point should be covered by at least
one view. This definition aligns well with object reconstruc-
tion employing depth-sensing modalities [6, 26, 27], as sur-
faces can be recovered by direct depth fusion when provided
with a corresponding point cloud observation. However, for
RGB-based object reconstruction using NeRFs, map repre-
sentation learning is achieved by minimizing the photometric
loss when reprojecting hypothetical surface points back to 2D
image planes, which requires that a surface point should be
observed from different perspectives to recover its true 3D
representation. This implies that planned views covering all
surface points of the generated mesh once are not sufficient
for object reconstruction using NeRFs.

To this end, we customize the set covering optimization
problem for RGB-based object reconstruction using NeRFs.
Rather than requiring each surface point to be observed by at
least one view, we propose multi-view constraints to enforce
that a given surface point should be covered by a minimum
number α ∈ N+ of views to account for multi-view learning
in NeRFs. Larger α values require denser surface coverage
in our optimization problem, resulting in solutions with more
views required as shown in Fig. 3. Note that when α ≥ 2,
we exclude points that are visible from fewer than α views.
This mechanism ensures the optimization problem has a
feasible solution. However, our multi-view covering setup
may contain multiple feasible solutions since most of the
surface points can be observed from a large range of view
perspectives. Some of them lead to views clustered closely
together in Euclidean space. Fig. 4(a) illustrates an instance
of spatially clustered views for covering the Motorbike
object. These spatially clustered views exhibit similarity in
the collected images, thus leading to redundant information
about the object.

To alleviate this issue, we introduce a parameter β ∈ R≥0

for additional distance constraints to avoid selecting spatially
clustered views. We denote dv

′

v as the Euclidean distance
between views v and v′, while dmin

v is the Euclidean distance
from view v to its nearest neighboring view. We prevent
other views within a specific distance β dmin

v of the view

Fig. 4: Illustration of the impact of distance constraints: (a) spatially
clustered views (the orange circle showcases an example of clus-
tered views); (b) spatially more uniform views. Both view configu-
rations are feasible solutions. By incorporating distance constraints,
we express the preference for spatially uniform distribution to avoid
redundant information in clustered views.

v from being selected again in the solution. A larger β
leads to more spatially uniform views, while an excessively
large value can render the problem infeasible. For our view
planning, we try to find the maximum β value that still yields
an optimization solution. Given that different objects exhibit
diverse geometries, their respective maximum β values also
vary. Therefore, we run optimization iteratively to find the
maximum β for a specific object in an automatic manner.

Taking all these conditions into account, we formulate our
set covering optimization problem as a constrained integer
linear programming problem defined as follows:

min :
∑
v∈V

xv ,

s.t. : (a) xv ∈ {0, 1} ∀v ∈ V

(b)
∑
v∈V

I(p, v)xv ≥ α ∀p ∈ Psurf

(c) xv + xv′ ≤ 1 ∀dv
′

v ≤ β dmin
v ,

(2)

where the objective function
∑

v∈V xv is designed to min-
imize the total number of selected views, while subject to
three constraints: (a) xv is a binary variable representing
whether a view v is included in the set of selected views
or not; (b) each surface point p ∈ Psurf must be observed
by a minimum of α selected views; and (c) if a view v
is selected, any neighboring view v′, whose distance dv

′

v is
smaller than β dmin

v , must not be selected.
We employ the Gurobi optimizer, a linear programming

solver [4], to compute the solution for the problem. We
present an instance solution in Fig. 4(b) showcasing the
optimized minimum set of views required for densely cov-
ering the Motorbike object surface with α = 3 and distance
constraints.

C. Path Generation and Object Reconstruction

By planning all required views before data collection, the
one-shot view planning paradigm shows a major advantage
in reduced movement costs. Given the optimized set of
views introduced above, we plan the globally shortest path
connecting all views by solving the shortest Hamiltonian
path problem on a graph, which is similar to the traveling
salesman problem [22]. The robot’s RGB camera follows the
global path to acquire RGB measurements at planned views.
We follow the point-to-point local path planning method [27]
to avoid collisions with the object.



α Planned Views PSNR ↑ SSIM ↑ Movement Cost (m) ↓ Inference Time (s) ↓
1 6.8 ± 1.5 30.167 ± 0.810 0.9365 ± 0.0121 1.754 ± 0.258 140.4 ± 26.9
2 12.8 ± 1.7 31.436 ± 0.622 0.9530 ± 0.0049 2.629 ± 0.224 145.9 ± 29.3
3 17.8 ± 2.4 31.853 ± 0.615 0.9599 ± 0.0038 2.998 ± 0.225 147.9 ± 31.8
4 22.5 ± 3.8 31.995 ± 0.684 0.9633 ± 0.0035 3.214 ± 0.372 148.2 ± 33.1
5 28.7 ± 3.8 32.120 ± 0.786 0.9663 ± 0.0034 3.725 ± 0.312 150.0 ± 40.6
6 34.1 ± 5.1 ⋆32.243 ± 0.779 ⋆0.9684 ± 0.0042 4.093 ± 0.441 147.6 ± 34.1
7 38.8 ± 3.8 †32.248 ± 0.807 †0.9694 ± 0.0041 4.190 ± 0.247 147.3 ± 38.2

TABLE I: Analysis on multi-view constraints. α denotes the minimum number of views required to observe each surface point. Planned
views indicate the number of optimized views under different α values. PSNR and SSIM are averaged over 100 novel views. Each value
reports the average mean and standard deviation on 10 test objects. The star symbol (⋆) indicates statistically significant results for α = 6
compared to α = 5 based on the paired t-test with a p-value of 0.05. Conversely, the dagger symbol (†) indicates non-significant results
for α = 7 compared to α = 6 based on the paired t-test with a p-value of 0.05. Results show that our optimizer plans more views with
increasing α values and achieves peak performance at the α = 6. It is worth mentioning that increasing α from 1 to 2 leads to the highest
performance gain, indicating that our formulation of set covering benefits NeRF-based reconstruction.

Fig. 5: Ten test objects used in our simulation experiments.

After data collection, we use NeRFs to acquire the fi-
nal 3D representation of the object. Specifically, we adopt
Instant-NGP [21] to train our NeRF, due to its efficient
training performance and common usage in baseline ap-
proaches [11, 28, 33].

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

In our simulation experiments, we consider an object-
centric hemispherical view space with 144 uniformly dis-
tributed view candidates for view planning [28]. We set the
view space radius to 0.3 m. We test our approach on 10
geometrically complex 3D object models from the Home-
brewedDB dataset [10]. The test objects are shown in Fig. 5.
We normalize all objects to fit into a bounding sphere with
a radius of 0.1 m. All RGB measurements are at 640 px ×
480 px resolution. We adopt a grid size of 50 × 50 × 50
in OctoMap for voxelizing the mesh surface points. The set
covering optimization for view planning runs on an Intel
i7-12700H CPU, while NeRFs training is conducted on an
NVIDIA RTX3060 laptop GPU.

To evaluate NeRF reconstruction quality, we report the
peak signal-to-noise ratio (PSNR) and the structural similar-
ity index (SSIM) [20] on 100 uniformly distributed novel
views [28]. Additionally, we evaluate reconstruction effi-
ciency by inference time for view planning and accumulated
movement cost for data collection in Euclidean distance.

B. Analysis on Multi-View Constraints

In this section, we explore the influence of multi-view
constraints introduced in Sec. III-B. We test our methods
across varying α values from 1 to 7, as detailed in TABLE I.
The outcomes reveal that: (1) with increasing α values, our
optimizer outputs on average more views for covering the

Fig. 6: Ablation study on distance constraints. PSNR and SSIM
averaged over 100 novel views. Each value is reported as the
averaged mean on 10 test objects. We observed statistically signif-
icant results for our method when compared to the version without
distance constraints across all α values, as determined through
paired t-tests with a p-value of 0.05. This suggests that the set
covering optimization with the distance constraints finds better view
configurations, leading to superior NeRF training results.

mesh surfaces; (2) both PSNR and SSIM metrics exhibit a
consistent improvement with increasing α. Specifically, we
achieve the highest performance gain by changing α = 1
to α = 2, justifying our modification of the set cover-
ing optimization problem to account for RGB-based object
reconstruction using NeRFs; (3) our method reaches its
peak performance at the α value of 6, while increasing α
to a higher value does not yield a statistically significant
performance improvement.

C. Ablation Study on Distance Constraints

In this ablation study, we investigate the impact of the
distance constraints introduced in Sec. III-B. To prevent the
optimizer from finding a view configuration that leads to
clustered views, we introduce the parameter β as the distance
constraints into our optimization formulation. We adopt
binary search in our implementation to find out the object-
specific maximum β that still yields a feasible optimization
solution. The search step is set to 0.1 for all experiments.

We evaluate the influence of our distance constraints by
performing an ablation study over different α values. Fig. 6
shows the differences between optimization with and without
the proposed constraints. In all circumstances, optimization
without considering the distance constraints (β = 0) outputs
clustered views with redundant information about the object,



Fig. 7: Comparison to baselines on view planning performance under different α values corresponding to the number of optimized views.
PSNR and SSIM are averaged over 100 novel views. Each value reports the mean on 10 test objects. PRV is not associated with α
values and is represented by a dashed line. As can be seen, (1) our method achieves higher PSNR/SSIM values against Random and NBV
methods, indicating that leveraging geometric priors from diffusion models leads to more informative views; (2) compared to PRV using
fixed view configuration, our object-specific view configuration is more suitable for view planning, achieving either a lower movement
cost with an on-par performance (α = 5) or a higher performance with a slightly lower movement cost of 0.09 m (α = 6).

leading to inferior NeRF training performance in terms of
PSNR and SSIM. This justifies our design choice of introduc-
ing the distance constraints to find better view configurations.

D. Evaluation of View Planning for Object Reconstruction

Baselines. We compare our novel one-shot view planning
with the following baselines:

• Random selects a certain number of views randomly
and subsequently plans a global path to connect them.

• EnsembleRGB [11] leverages RGB variance of the
NeRF ensemble as uncertainty quantification to plan the
NBV that maximize the information gain.

• EnsembleRGBD [33] extends EnsembleRGB by incor-
porating a density-aware epistemic uncertainty com-
puted on ray termination probabilities in unobserved
object areas.

• PRV [28] uses a network to predict the required number
of views that achieves the peak performance of NeRF
training. A fixed hemispherical view configuration is
then generated according to the predicted number of
views.

For a fair comparison, we use Instant-NGP [21] with
the same configuration for the training and testing in all
experiments. Therefore, the performance differs purely as a
consequence of collected RGB images using different plan-
ning strategies. As depicted in TABLE I, varying α values
result in different numbers of planned views. Therefore, to
comprehensively assess the performance of our planner, we
evaluate all baselines using an equivalent number of views
corresponding to each α value in our approach (excluding
PRV, which predicts its own required number of views).

Comparison to Random Selection. As shown in Fig. 7,
our RGB-based one-shot view planning approach surpasses
the one-shot Random baseline across all α values in terms
of PSNR and SSIM. This is because the heuristic Random
method does not utilize any available information about the
objects, in contrast to our approach. The Random method
exhibits a slightly lower movement cost. We believe that this
occurs since it can produce spatially clustered views, yielding
poorer reconstruction quality. These findings confirm that

leveraging powerful geometric priors from 3D diffusion
models significantly benefits one-shot view planning for
RGB-based object reconstruction.

Comparison to NBV Methods. Compared to two NBV
baselines, our method achieves higher PSNR and SSIM
values across all α values with much less movement costs
and inference time, as shown in Fig. 7. Specifically, our
method excels under various resource constraints, e.g., dif-
ferent planned views according to different α values. This
implies that using diffusion models for priors leads to more
informative views for unknown object reconstruction com-
pared to NBV methods considering the ensemble’s variance
for uncertainty measurements. We attribute the significant
reductions in movement cost and inference time to global
path planning and the one-shot non-iterative paradigm, which
avoids iterative map updates and uncertainty computation.

Comparison to PRV. Since the PRV method obtains the
number of views by predicting the upper limits of NeRF
representations, it is not associated with α values and is
represented by a dashed line in Fig. 7. The results indi-
cate that the proposed RGB-based one-shot view planning
approach, with an α = 5 setting, delivers nearly identical
quality metrics in PSNR and SSIM when compared to PRV,
yet it benefits from reduced movement cost. Moreover, when
α is adjusted to 6, our method surpasses PRV in terms of
PSNR and SSIM quality while still maintaining a slightly
lower movement cost. This confirms that our object-specific
view configuration is superior to fixed view configurations
in PRV for handling varying geometries of objects.

In conclusion, our RGB-based one-shot view planning
method demonstrates several advantages over the baselines.
By integrating powerful geometric priors from 3D diffusion
models, our method effectively leverages available object
information, resulting in more informative and better dis-
tributed views. Moreover, our approach showcases superior
adaptability through its object-specific view configuration
mechanism. Unlike the fixed view configuration in PRV,
our method dynamically adjusts the view configurations for
different objects based on their varying geometries. However,
we observe a longer inference time of our method compared



Fig. 8: Analysis of a failure case. Top: Input image to the diffusion
model and the generated mesh observed from different perspectives.
Red circles indicate the missing parts of the generated mesh
compared to the ground truth model. Bottom: We compare the
reconstruction results using our one-shot view planning based on the
ground truth mesh and the generated mesh, showing that wrongly
generated geometry leads to reduced performance.

to the PRV and Random methods, primarily due to the con-
straints imposed by the generation process of the diffusion
model (about 60 s) and the online optimization process (about
80 s). We plan to improve this in the future.

E. Analysis of Failure Case

Although our approach successfully performs one-shot
view planning from a single RGB image and achieves
promising unknown object reconstruction performance, we
observe performance inadequacies in a test case. Specifically,
the generated mesh from the 3D diffusion model of the Drill
object, as depicted in Fig. 8(a), demonstrates geometrical
discrepancies compared to the ground truth. These disparities
might stem from the limited information available due to
occlusion in a single input image and the insufficient rep-
resentation of this type of object in the training dataset. To
further validate the impact of this issue on the reconstruction,
we conducted experiments by replacing the generated mesh
with the ground truth mesh. Fig. 8(b-c) reveals that our
method using the ground truth mesh achieves higher PSNR
and SSIM compared to input with the diffusion-generated
mesh. The results indicate that the quality of geometric
priors, i.e., the mesh generated from diffusion models, is
crucial for our one-shot view planning performance.

F. Real-World Experiments

We deploy our approach in a real world tabletop environ-
ment using a UR5 robot arm with an Intel Realsense D435
camera mounted on its end-effector (only the RGB optical

Fig. 9: Real-world experiment showing the test object. We run two
test trials with different initial views. PSNR is averaged over 100
novel views. Each value is reported as the averaged mean and with
standard deviation (the error bar) on two test trials. By adapting
views based on the object geometries, our method achieves a higher
performance with lower movement costs.

camera is activated). MoveIt [1] is employed for robotic
motion planning. The accompanying video1 illustrates the
online reconstruction process where α = 7.

To validate our findings in Sec. IV-D, we compare our
method against baselines in the real world. It is worth
noting that due to imperfect camera poses and noise in
real world experiments, the pose optimization functionality
implemented in Instant-NGP is enabled during our NeRF
training. The experimental environment and comparisons are
shown in Fig. 9. From the results, we confirm that (1) our
method generalizes to real world environments; and (2) our
method plans object-specific view configurations according
to object geometries to achieve higher PSNR with lower
movement costs compared to the PRV and NBV methods.
Our method achieves peak performance at α = 7, which
is larger than the value of 6 determined in Sec. IV-B. This
might be caused by the noise in the camera pose and images,
making it challenging for view planning tasks. We observe a
similar slight performance reduction for the NBV methods.

Nevertheless, when deployed in real-world environments,
an estimate of the actual object size is necessary to scale the
diffusion-generated models, given that the generated mesh
lacks scale information.

V. CONCLUSIONS

In this paper, we present a novel one-shot view planning
method starting with only a single RGB image of the
unknown object to be reconstructed. The proposed method
exploits priors from 3D diffusion models as a proxy to the
inaccessible ground truth 3D model as the basis for one-
shot view planning. We develop a customized variant of

1https://youtu.be/EKZPHb5-UZk

https://youtu.be/EKZPHb5-UZk


the set covering optimization problem tailored for NeRF-
based reconstruction, which aims to compute an object-
specific view configuration that densely covers the generated
mesh from 3D diffusion models. We compute a globally
shortest path on this view configuration, corresponding to
the minimum travel distance. Our experiments validate that
utilizing geometric priors from 3D diffusion models yields
more informative views compared to Random and next-best-
view methods. When compared to the state-of-the-art RGB-
based one-shot baseline, our view planning based on varying
object geometries demonstrates better performance compared
to a fixed view configuration. The real world experiment
suggests the applicability of our method.
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