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Abstract— Creating accurate maps of complex, unknown
environments is of utmost importance for truly autonomous
navigation robot. However, building these maps online is far
from trivial, especially when dealing with large amounts of
raw sensor readings on a computation and energy constrained
mobile system, such as a small drone. While numerous ap-
proaches tackling this problem have emerged in recent years,
the mapping accuracy is often sacrificed as systematic approx-
imation errors are tolerated for efficiency’s sake. Motivated by
these challenges, we propose Voxfield, a mapping framework
that can generate maps online with higher accuracy and lower
computational burden than the state of the art. Built upon the
novel formulation of non-projective truncated signed distance
fields (TSDFs), our approach produces more accurate and com-
plete maps, suitable for surface reconstruction. Additionally,
it enables efficient generation of Euclidean signed distance
fields (ESDFs), useful e.g., for path planning, that does not
suffer from typical approximation errors. Through a series of
experiments with public datasets, both real-world and synthetic,
we demonstrate that our method beats the state of the art in
map coverage, accuracy and computational time. Moreover, we
show that Voxfield can be utilized as a back-end in recent multi-
resolution mapping frameworks, producing high quality maps
even in large-scale experiments. Finally, we validate our method
by running it onboard a quadrotor, showing it can generate
accurate ESDF maps usable for real-time path planning and
obstacle avoidance.

I. INTRODUCTION

Generating accurate maps in real-time is vital in order
to enable robots to navigate autonomously, especially in
unstructured, cluttered environments. While early approaches
addressed this problem by constructing occupancy grids [1],
where the space is discretized into voxels labeled as either
occupied or free, the emergence of trajectory optimization-
based path-planning methods [2] rendered these represen-
tations as not descriptive enough. For this type of path-
planners, getting fast access to richer information about the
environment, such as the distance between the robot and
the closest nearby obstacle becomes fundamental. However,
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Fig. 1: Real-world mapping and path planning experiment. A Micro-Aerial
Vehicle (MAV) is tasked to navigate towards a goal position, while avoiding
the obstacle visible on the right. Voxfield generates the ESDF map visible
on the left onboard the MAV in real time, which is used for planning. The
red dot and the star are the starting and goal position, respectively.

extracting this kind of information from sensor readings effi-
ciently is far from trivial and becomes even more challenging
when the mapping system runs on an embedded platform
with limited computational capabilities.

Aiming to tackle these issues, in recent years numerous
approaches offering a more comprehensive mapping of the
environment have been proposed. In particular, methods that
model the space as a discrete Euclidean signed distance
field (ESDF), i.e. a regular 3D grid where each voxel stores
the distance to the closest obstacle, have emerged as well-
suited tools for path-planning purposes. Building ESDFs
online, in real-time and in dynamically growing maps is,
however, quite challenging, as this process is computationally
intensive. Although approaches, such as Voxblox [3], FI-
ESTA [4], and EDT [5] have succeeded in meeting the real-
time requirement, their accuracy suffers from approximation
errors, which are tolerated to ensure the efficiency of the
underlying algorithms. This has crucial implications in path
planning, where wrongly or poorly estimated distances might
lead to obstacles being closer to the robot than reported by
the map. These effects are aggravated at lower map resolu-
tions, as the lack of detail can potentially lead to collisions
between the robot and finer structures not being captured by
the map. On the other hand, higher resolutions imply higher
computational and memory costs, slowing down the mapping
pipeline and rendering it unsuitable for real-time deployment.
To achieve a better balance between efficiency and accuracy,
multi-resolution panoptic mapping systems using semantic
segmentation have recently been proposed [6], opening up
exciting prospects for large-scale mapping use-cases. These
methods can represent different parts of the environment
with different voxel resolutions, capturing finer details only



where needed (e.g. relatively small objects) and reducing the
overall memory footprint. However, these multi-resolution
approaches are generally built on top of well-established,
single-resolution systems, therefore suffering from the same
limitations and approximation errors.

Motivated by these challenges, in this work we propose
a new mapping framework, dubbed Voxfield, that is able to
tackle all the aforementioned issues by efficiently building
accurate ESDFs from non-projective TSDFs. Given as input
point clouds from RGB-D cameras or LiDARs, as well as
the associated sensor poses, our system is able to reconstruct
large-scale scenes with high accuracy in real time. We eval-
uate our method against the state of the art in synthetic and
real-world datasets, demonstrating that, using non-projective
TSDFs, our approach reaches better scene coverage, as well
as higher ESDF accuracy with lower computational times.
Moreover, we show that our framework can be used as the
mapping back-end of an existing multi-resolution panoptic
mapping pipeline [6], producing higher quality maps than the
state of the art. Finally, in a real-world experiment (Fig. 1),
we demonstrate that Voxfield runs onboard a Micro-Aerial
Vehicle (MAV), generating ESDF maps that can be used by
a path planner to perform obstacle avoidance in real time.

In short, the main contributions of this work are:
• an accurate TSDF integration method creating improved

scene coverage based on non-projective distances,
• an ESDF update algorithm with sub-voxel accuracy and

higher efficiency than the state of the art,
• an extensive evaluation of the accuracy and efficiency,

the integration into a state-of-the-art multi-resolution
panoptic mapping framework, as well as real-world
path-planning experiments.

II. RELATED WORK

Robotic mapping, i.e. the problem of acquiring a spatial
model of a robot’s environment, has been a very active re-
search area for the past decades. While different frameworks
and underlying data structures have been proposed over the
years, few of them have been proven capable of achieving
high-fidelity 3D scene reconstructions, and at the same time
being suitable for real-time path planning.

Dense mapping approaches, which discretize the space
into a regularly sampled voxel grid that implicitly models
3D geometry, are arguably among the most mature, widely
used techniques in the field. Contrary to point cloud, surfel
or sparse feature representations traditionally employed for
localization, dense approaches have the ability to represent
continuous surfaces and distinguish between free and un-
known space, which is usually a requirement for autonomous
navigation. In this context, two of the most representative
and successful map representations to date are occupancy
grids [1] and TSDFs [7]. The former label voxels as either
occupied or free, whereas the latter store at each voxel
the signed distance to the nearest surface, up to a trun-
cation radius around the surface boundary. Although both
approaches allow for efficient 3D reconstruction into surface

meshes, e.g. using the marching cubes algorithm [8], TSDFs
can achieve sub-voxel resolutions, which makes them the
preferred choice in cases where accurate surface reconstruc-
tions are needed. Given these benefits and their efficacy in
fusing high-rate depth measurements while smoothing out
sensor noise, as first shown by KinectFusion [7], TSDFs have
increasingly become the representation of choice in several
mapping frameworks. Two relevant examples are Chisel [9]
and Voxblox [3], which are specifically designed for deploy-
ment on robots or devices with limited computing resources.
More recently, TSDFs have continued being adopted as un-
derlying representations in approaches targeting large-scale
outdoor reconstruction [10] or exploring the incorporation of
higher-level information, such as semantic or instance labels,
into purely geometric maps [6], [11]–[14].

When it comes to path planning, however, ESDF maps
are more informative than occupancy grids or TSDFs as
they allow for efficient queries of distances and gradients to
obstacles at any point in space. This is of particular interest
in trajectory optimization-based planning algorithms, such
as CHOMP [2], for which occupancy information alone is
not sufficient. The main challenge arising from maintaining
such a map representation during online operation is the need
for updating the ESDF in an efficient and accurate manner.
While different methods have been proposed to generate
ESDFs in real-time on a dynamically growing map, just a
few can run on embedded CPU-only platforms. For example,
Voxblox [3] progressively builds an ESDF map from a TSDF
that integrates the incoming sensor data. Other approaches,
such as FIESTA [4] and EDT [5] propose specialized data
structures for fast incremental ESDF updates from occupancy
maps. The main drawback of all the aforementioned methods
is that they can only achieve sub-optimal accuracy. In the
case of Voxblox, errors come from two sources: first, its un-
derlying TSDF representation employs projective distances,
i.e. the distance along sensor rays to the measured surface,
thus being prone to overestimate the actual Euclidean dis-
tance to the nearest surface; and second, it updates the ESDF
according to quasi-Euclidean distances. FIESTA and EDT,
on the other hand, compute the true Euclidean distance but
suffer from discretization errors derived from the fact that
this metric is computed between voxel centers.

Similarly to Voxblox [3], in this work we advocate for
building ESDFs from an underlying TSDF-based map repre-
sentation that is well-suited for surface reconstruction. How-
ever, we build our approach on top of a novel non-projective
TSDF formulation that reaches better scene coverage and
results in higher TSDF and ESDF accuracy when compared
to previous approaches [3]–[5], while being computationally
faster. In addition, we demonstrate that the presented frame-
work can be seamlessly integrated into recently developed
multi-resolution, panoptic mapping frameworks [6], effec-
tively contributing to increase the quality of the generated
maps. Finally, we show that Voxfield can run online onboard
an MAV, generating maps that can be used for path planning.



Fig. 2: Overview of the proposed Voxfield mapping framework. Sensor
measurements with associated poses are integrated into a TSDF map,
suitable e.g. for mesh reconstruction, and subsequently into a full ESDF
map, used for path planning.

III. METHODOLOGY

Voxfield processes incoming 3D measurements with
known associated poses, estimated e.g. by a Simultaneous
Localization And Mapping (SLAM) system, and incremen-
tally builds a dense voxel map that can be used for online
path planning and 3D reconstruction. As shown in the system
overview in Fig. 2, raw 3D measurements are first integrated
into a non-projective TSDF map (Section III-A), which
serves as a base for generating a full ESDF map (Section III-
B). The system also outputs a 3D mesh of the scanned
environment, which is generated from the TSDF using the
marching cubes algorithm [8] as in [3].

A. Non-projective TSDF Mapping

The TSDF map representation employed by Voxfield con-
sists of a set of spatially hashed voxels Vi with a common
voxel size ν ∈ R+. Every voxel Vi is identified by a global
index vi ∈ Z3, from which the coordinates of its center can
be retrieved, i.e. xi = νvi ∈ R3, and additionally stores a
truncated signed distance Di, a weight Wi representing the
confidence in Di, and the normalized gradient of the signed
distance gi ∈ R3.

At every frame k, the proposed non-projective TSDF
integration algorithm takes as input the sensor 3D point cloud
{p}k ∈ R3 with point-wise normals {n}k ∈ R3, which
can be efficiently estimated using the cross product over the
depth map as described in [7], together with the sensor’s
pose Twk ∈ SE (3) in the world frame w.

To update the volumetric TSDF map, we first cast a ray
from the sensor origin sk ∈ R3 to every point pj ∈ {p}k
and compute the projective signed distance at every voxel in
the map along this ray:

ψijk = sign ((pj − sk) · (pj − xi)) ∥pj − xi∥. (1)

The integration of a new measurement into the existing
TSDF map is governed by a weighting function that, simi-
larly to [3], we model as follows:

wijk = w
(sensor)
jk w

(dropoff)
ijk . (2)

The first term, w(sensor)
jk , depends on the sensor’s error model:

w
(sensor)
jk =

1

∥pj − sk∥m
, (3)

with the exponent m representing the noise characteristics
of the sensor. In our implementation, we use m = 2 or m =
1 for RGB-D and LiDAR input, respectively. The second
term, w(dropoff)

ijk , represents a behind-the-surface drop-off that

is used to improve the reconstruction quality of thin surfaces.
Formally, it is defined as

w
(dropoff)
ijk =


1 ψijk ≥ −ϵ
τ + ψijk

τ − ϵ − τ < ψijk < −ϵ

0 ψijk ≤ −τ

, (4)

where τ is the truncation distance and ϵ is the drop-off
distance. A common choice for these parameters is τ = 3ν
and ϵ = ν.

In order to derive the non-projective signed distance dijk
of voxel Vi from the previously computed signed distance
ψijk, we first update the voxel’s gradient gi according to the
normal vector nj at point pj :

gi ←
g̃i

∥g̃i∥
, with g̃i =

Wigi + wijknj

Wi + wijk
. (5)

This results in a precise estimate of the gradient direction
in the trivial case of reconstructing a flat surface, as seen
in Fig. 3b. In the more general case of a curved surface, as
shown in Fig. 3a, we rely on the movement of the sensor to
estimate the gradient accurately over time, even with non-
optimal normal estimations from each single measurement.

Given the estimated gradient, the non-projective signed
distance dijk for voxel Vi from the measurement pj at time
k is then computed as:

dijk =


|cos θ|ψijk if α = 0∣∣∣∣ (cosα− 1) sin θ

sinα
+ cos θ

∣∣∣∣ψijk otherwise
, (6)

where θ represents the angle between the ray and the gradient

cos θ =
pj · gi

∥pj∥
, (7)

and α represents the angle between the gradient and the
current surface normal

cosα = nj · gi. (8)

The geometric relationship between the non-projective
signed distance dijk and the projective signed distance ψijk

for flat and curved surfaces are shown in Fig. 3b and Fig. 3c,
respectively.

Finally, the non-projective truncated signed distance Di

and the weight Wi can be updated as follows:

Di ←
WiDi + wijktrunc (dijk, τ)

Wi + wijk
, and (9)

Wi ← min (Wi + wijk,Wmax) , (10)

where the weight is bounded to Wmax and the signed
distance is truncated at τ

trunc(d, τ) =
{

sign (d) τ if |d| > τ

d otherwise
. (11)

B. Voxfield ESDF Mapping

Voxfield’s ESDF map shares the general characteristics of
the TSDF map, such as the voxel size ν and the indices vi

of voxel V E
i . Every ESDF voxel V E

i stores the signed
Euclidean distance to the closest obstacle DE

i , the index of
the closest occupied voxel vco

i , as well as a set of pointers to
other voxels used for efficient map updates, explained below.



(a)

(b)
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Fig. 3: Non-projective TSDF calculations for voxel Vi: the updated voxel
is represented in grey, rays from raycasting in green, the surface normals
in blue and the field gradient in red. (a) shows the integration of voxel Vi’s
TSDF-gradient by taking a weighted average of the normals on the surface
point hit by the rays cast through Vi from different sensor positions. (b) and
(c) show the geometric relationship between the projective distance ψijk

and the non-projective distance dijk under the assumption of a flat or curved
surface, respectively. The radius of the curved surface in (c) is marked as r.

The ESDF map is updated incrementally from the TSDF
map, as listed in Algorithm 1. The core of the update step is a
Breadth-First Search (BFS), starting from all occupied voxels
and expanding into free space. This expansion continues until
we hit the map boundary or the maximum ESDF integration
distance dmax, updating the ESDF value of all voxels we
traverse. However, an exhaustive search is inefficient, and
does not exploit the incremental nature of map updates.
Under the simplifying assumption of a noiseless sensor in
a static environment, the number of updated voxels during
BFS can be drastically reduced. In this case, where we only
add obstacles and never remove them, any change to the
value of an ESDF voxel will be a decrease of the Euclidean
distance. We can exploit this fact, by only updating a voxel, if
the newly calculated Euclidean distance is in fact lower than
the currently stored distance (Line 30). By starting the BFS
at newly occupied voxels (Line 8), instead of all occupied
voxels, we effectively limit the scope of the BFS to regions
of the map with actual changes in the ESDF.

This approach, e.g. used by [3] and [4], allows for real-
time ESDF updates for sufficiently small voxel resolutions.
Nonetheless, the efficiency of this step can be further im-
proved by checking the position of the voxel subjected to
update with respect to its closest occupied voxel (Line 29).
As shown in Fig. 4b, it is sufficient to check the neighbors on
the far side of the closest occupied voxel, while the majority
of neighboring cells, lying between the current voxel and the
closest occupied position, can be safely ignored.

The second fundamental step in the ESDF update is the
removal of obstacles that are no longer present in the map,
either due to sensor noise or a non-static environment. In this
case, the affected voxels change their status from occupied
to free. In contrast to the previous case, this update increases
the value of affected voxels, as they are farther away from
occupied positions. This case breaks the BFS strategy, since
it can only decrease voxel values when updating the map
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Fig. 4: Diagram of Voxfield’s ESDF algorithm simplified in 2D: (a) the black
line represents the surface, the saturated voxels (C, G, K, L) are occupied
while the other voxels are free or behind the surface. Each of the doubly-
linked lists has an occupied voxel as the head node. The other nodes in the
list are the voxels where the head node is the closest occupied voxel. (b)
the voxels in grey are occupied. We are querying the neighbouring voxels
N of the voxel V . The subset of neighbouring voxels affected by a change
of V , namely voxels Ng , can be identified from the neighbourhood based
on the direction of the closest occupied voxel CO of V .

incrementally. A simple solution is to reset all affected voxel
values to dmax (Line 13). Naı̈vely, this can be done in an
exhaustive manner as in [3]. Instead, we use an efficient
bookkeeping strategy using Doubly-Linked Lists (DLLs) to
deal with increased voxel values, similar to [4]. Every voxel
in the list stores pointers to the previous and next element in
the DLL, and every occupied voxel is the head of one DLL.
As shown in Fig. 4a, the DLL stores all voxels that are to be
increased when the head is no longer occupied. Using this
data structure, we can efficiently traverse all voxels affected
by a newly free voxel (Line 14), and reset their ESDF value
to dmax. Following this strategy, the BFS step (Line 26)
can properly update these voxels to their new, higher ESDF
value.

Finally, when calculating a new ESDF value during the
BFS update, we either copy the non-projective TSDF value
from the source map, or we calculate the true Euclidean
distance DE

i from the voxel to the closest surface

DE
i =

{
sign(Di)∥xi − (xco

i −Dco
i gco

i )∥ if |Di| > τ

Di otherwise
,

(12)
where Di is the truncated signed distance, and the super-
script co refers to the closest occupied voxel. Voxfield makes
use of the TSDF gradient and distance value to calculate the
true distance from the voxel’s center to the actual surface
(Fig. 5a). Therefore, the distance values computed are more
accurate than in other state-of-the-art approaches. In fact,
while Voxblox approximates the ESDF value by a broken-
line quasi-Euclidean sum of distances (Fig. 5c), FIESTA
calculates the true Euclidean distance between the voxel and
its closest occupied voxel’s center (Fig. 5b).

IV. EXPERIMENTS

The proposed Voxfield mapping framework is evaluated
qualitatively and quantitatively on four publicly available
datasets featuring synthetic and real-world scans of in-
door and outdoor scenes. The main characteristics of these
datasets, collected by either RGB-D cameras or LiDAR
sensors, are summarized in Table I.

To further demonstrate its potential, we integrate Voxfield
into a multi-resolution panoptic mapping system [6] and
show its applicability in a large-scale mapping scenario,



Algorithm 1 Voxfield ESDF map update
Input: Updated TSDF map MT (k) with voxels {VT }, previous ESDF map

ME(k − 1) and doubly-linked lists {dll(v)}
Output: Updated ESDF map ME(k) with voxels {VE}
1: for each v in GETUPDATEDVOXELINDICES(MT )
2: if not VE (v).occupied and ISOCCUPIED(VT (v))
3: insertList.push(v)
4: if VE (v).occupied and not ISOCCUPIED(VT (v))
5: deleteList.push(v)
6: VE (v).occupied ← ISOCCUPIED(VT (v))
7: VE (v).fixed ← (VT (v).d ≤ τ )
8: for each v in insertList
9: VE (v).d ← 0

10: VE (v).co ← v
11: dll(v).insert(v)
12: updateQueue.push(v, 0)
13: for each v in deleteList
14: for each u in dll(v)
15: dll(v).delete(u)
16: VE (u).d ← dmax

17: VE (u).co ← null
18: for each n in GETALLNEIGHBOURS(u)
19: m ← VE (n).co
20: if VE (m).occupied and DISTANCE(m, u) <VE (u).d
21: VE (u).d ← DISTANCE(m, u)
22: VE (u).co ← m
23: if VE (u).co ̸= null
24: dll(VE (u).co).insert(u)
25: updateQueue.push(u, VE (u).d)
26: while updateQueue ̸= ∅
27: v ← updateQueue.front()
28: updateQueue.pop()
29: for each n in GETAFFECTEDNEIGHBOURS(v, VE (v).co)
30: if DISTANCE(VE (v).co, n) <VE (n).d
31: dll(VE (n).co).delete(n)
32: VE (n).d ← DISTANCE(VE (v).co, n)
33: VE (n).co ← VE (v).co
34: dll(VE (n).co).insert(n)
35: updateQueue.push(n, VE (n).d)
36: if VE (v).fixed
37: VE (v).d̃ ← VT (v).d
38: else
39: VE (v).d̃ ← EXACTESDFVALUE(v, VE (v).co)

(a) Voxfield (b) FIESTA (c) Voxblox

Fig. 5: ESDF calculation of different methods in the 2D case. The black
line represents the surface, the voxels in grey are occupied, while those in
white are free or behind the surface. The Euclidean distance is calculated
for the voxel in green. The darker grey voxel is the green voxel’s closest
occupied voxel. The red arrow represents the gradient of the closest occupied
voxel scaled by the TSDF value of the voxel. The ESDF is calculated as
(a) the true Euclidean distance (in blue) between the voxel center and the
surface point (in blue), (b) the true Euclidean distance (in blue) between
voxel centers, (c) the quasi-Euclidean sum of broken lines (in blue) and the
over-estimated projective TSDF value (in purple).

where the accuracy-efficiency trade-off plays a major role.
Finally, we conduct a real-world experiment, where an MAV
is tasked to perform online obstacle avoidance, proving the
usefulness of the ESDF map produced by Voxfield on-the-fly.

A. TSDF Mapping Evaluation

We evaluate the quality of the proposed non-projective
TSDF mapping approach based on three metrics that are
calculated with respect to the ground-truth point cloud: the
TSDF error, the reconstruction Chamfer distance, and the
reconstruction coverage.

1) TSDF Error: For each point in the ground-truth point
cloud, the TSDF error is regarded as the distance that results
from projecting the point into the TSDF using trilinear
interpolation. The overall TSDF error is, therefore, defined
as the average error over the ground-truth point cloud.

2) Chamfer Distance: As a common metric for recon-
struction quality, the Chamfer-L1 distance [17] is calculated
between the vertices of the reconstructed mesh M and the
ground-truth point cloud G as:

dCD (M,G) =
1

2 |M|
∑

m∈M
min
g∈G
∥m−g∥+

1

2 |G|
∑
g∈G

min
m∈M

∥g−m∥ .

(13)

3) Reconstruction Coverage: The reconstruction coverage
is defined as the ratio between the number of ground-truth
points that do have a mesh vertex nearby (≤ 2ν) and the
total number of ground-truth points.

The evaluation results on all four datasets with different
voxel size settings are shown in Fig. 6. We also report
the performance scores obtained by running the same ex-
periments with the projective-TSDF integrator proposed in
Voxblox [3], which is regarded as the baseline for compar-
ison. Our non-projective TSDF map representation achieves
a lower TSDF error for all tested voxel sizes, with a
more notable difference on the LiDAR datasets, where large
incidence angles are more common. The mesh reconstruction
quality, as indicated by the Chamfer distance, is on par with
Voxblox. The reason behind this is that the marching cubes
algorithm used for mesh reconstruction mainly depends on
the ratio of TSDF values of neighboring voxels at zero-
crossings of the field, which hardly changes between the
compared TSDF integration approaches. Nonetheless, our
method achieves higher coverage on all four datasets, as
is also visible in the qualitative results shown in Fig. 7.
This effect is especially noticeable at the boundaries of the
scans and results from the fact that the projective TSDF
mapping from [3] generally overestimates the signed distance
value, leading to more truncated voxels than under the non-
projective TSDF map built by Voxfield.

B. ESDF Mapping Evaluation

The proposed ESDF mapping algorithm is evaluated in
terms of both accuracy and efficiency using the ESDF error
and ESDF update time, respectively.

TABLE I: Four public datasets used for the experiments

Dataset Type Sensor Pose Ground truth Point Cloud
Flat [6] synthetic RGB-D Ground Truth CAD model sampling

Cow&Lady [3] real-world RGB-D Vicon TPS-MS50 laser scan
MaiCity [15] synthetic LiDAR Ground Truth CAD model sampling
KITTI [16] real-world LiDAR GNSS-INS Scan accumulation by pose



Flat synthetic RGB-D dataset Cow&Lady real-world RGB-D dataset MaiCity synthetic LiDAR dataset KITTI real-world LiDAR dataset
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Fig. 6: A comparison of methods for TSDF mapping on each dataset from Table I with different voxel sizes. The proposed Voxfield is compared against
Voxblox on the TSDF error, reconstruction Chamfer distance and the reconstruction coverage.

(a) Voxblox on the Flat dataset (b) Voxfield on the Flat dataset

(c) Voxblox on the MaiCity dataset (d) Voxfield on the MaiCity dataset

Fig. 7: Qualitative comparison of the 3D reconstruction on the Flat RGB-
D dataset and the MaiCity LiDAR dataset. Voxfield has a more complete
reconstruction, especially in the regions highlighted by the ellipsoids.

1) ESDF Error: For each voxel in the ESDF map, the
ground-truth signed distance is calculated as the Euclidean
distance from the voxel’s center to the nearest point in the
ground-truth point cloud. The voxel’s ESDF error is then
defined as the difference between the ground-truth value
and the mapped ESDF value, and the overall ESDF error is
computed as the average of all ESDF voxel errors. Compared
with the ESDF error metric in [4], which is defined with
respect to the centers of the occupied voxels, the ESDF error

metric used here is not affected by the grid discretization and
is, therefore, more accurate.

2) ESDF Update Time: The ESDF update time is the
average time used for one incremental update of the ESDF
map, excluding any time for TSDF or occupancy mapping.

The proposed ESDF update algorithm is evaluated against
Voxblox [3], FIESTA [4] and EDT [5] on all four datasets
under various voxel size settings. To establish a fair compar-
ison, we adapt these three state-of-the-art methods with the
same TSDF integration front-end as Voxblox. In the cases
of FIESTA and EDT, where the ESDF is built from an
occupancy map, the occupancy status is inferred from the
projective TSDF map.

As shown in Fig. 8, our approach outperforms the state-
of-the-art methods on both ESDF accuracy and computation
time. Results demonstrate that, by calculating the true Eu-
clidean distance based on a non-projective TSDF, Voxfield’s
ESDF error is almost cut in half compared to Voxblox. In
addition, Voxfield also improves the ESDF accuracy by more
than 15% on average when compared to FIESTA and EDT,
which are based on an occupancy map with true Euclidean
distance calculations between voxel centers. A qualitative
comparison of the ESDF mapping error obtained with the
four evaluated methods is shown in Fig. 9.

Regarding the ESDF update efficiency, Voxfield runs about
three times faster than Voxblox due to the usage of DLLs
and is about 15% faster than FIESTA and EDT because of
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Fig. 8: A comparison of methods for ESDF mapping on each dataset from Table I with different voxel sizes. The proposed Voxfield is compared against
Voxblox, FIESTA and EDT on the ESDF error and the ESDF update time.

(a) Voxfield ESDF map (b) Voxfield ESDF error (c) Voxblox ESDF error (d) FIESTA ESDF error (e) EDT ESDF error

Fig. 9: Qualitative results of ESDF mapping on the synthetic Flat dataset with a voxel size of 5 cm. Voxfield achieves the most accurate ESDF map.

the proposed directional neighbor search.

C. Multi-resolution Mapping Evaluation

Aiming at further exploiting the benefits of the pro-
posed approach, we integrate Voxfield into a multi-resolution
panoptic (i.e. containing instance- and semantic-level in-
formation) mapping framework [6], which we refer to as
Panmap in this work. The system builds a global map com-
posed of multiple TSDF submaps, each representing a single
object instance with the voxel size determined by its semantic
class. This allows certain object classes to be reconstructed
at a small voxel size and with high accuracy, while using
larger voxel sizes to efficiently map the background or less
relevant classes. We replace the mapping back-end of [6]
with Voxfield and complement the TSDF submaps with a
free-space ESDF map for path planning. In addition, we
extend the data pre-processing step, originally developed for
RGB-D sensors, to enable the panoptic mapping pipeline to
process LiDAR input.

We demonstrate the advantages of using Voxfield as a
mapping back-end by conducting experiments on the KITTI
dataset, where ground-truth 3D panoptic labels are avail-
able [18]. To test the system under a more realistic setup,
we also take as input labels predicted by a neural network.
For this purpose, we use RangeNet++ [19] combined with a
depth-based clustering [20], which is light enough for real-
time performance e.g. on a mobile GPU.

We compare against the original multi-resolution Pan-
map [6], as well as the single-resolution mapping sys-
tems C-blox [21] and Voxblox [3]. Fig. 10 shows the
reconstruction Chamfer distance versus integration time per

frame, excluding ESDF mapping, under varying voxel sizes.
Our multi-resolution Panmap with Voxfield as the back-
end, even with non-optimal neural network predictions, can
achieve better accuracy using less computational time than
the single-resolution mapping systems Voxblox and C-blox.
The original Panmap implementation is slightly faster for a
given set of voxel sizes, since it does not calculate normals
nor performs the non-projective distance correction, but our
implementation achieves better reconstruction accuracy and
coverage, as shown in Fig. 11.
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Fig. 10: Reconstruction error (Chamfer distance) versus update time for
different voxel sizes on the KITTI dataset. Each marker represents the result
of one run. For the single-resolution mapping systems Voxblox and C-blox,
we test voxel sizes ranging from 5 cm to 40 cm with an interval of 5 cm.
For the multi-resolution Panmap with ground-truth labels or neural network
label predictions, with or without Voxfield as its back-end, we test the same
six sets of voxel sizes from 3 cm–12 cm up to 10 cm–40 cm. The bottom
left corner on the plot means an overall better performance.



(a) Large-scale reconstruc-
tion by Voxfield Panmap

(b) A close-up of Voxfield
Panmap’s reconstruction

(c) A close-up of Panmap’s
reconstruction

Fig. 11: Qualitative results of the multi-resolution panoptic mapping recon-
struction on the KITTI dataset. Ground-truth semantic labels and voxel sizes
in the range of 5 cm–25 cm are used.

D. Real-world Path-Planning Experiment

To verify Voxfield’s usefulness as a mapping module
for real-world path-planning applications, we conduct an
experiment with an MAV equipped with an Intel Core
i5-1145G7 CPU and a RealSense D455 depth sensor. State
estimation [22], TSDF and ESDF mapping with Voxfield and
path planning [23] all run onboard the MAV. As shown in
Fig. 1, the robot is able to plan a path and safely navigate to a
goal position inside a previously unknown environment, with
the ESDF mapping conducted on-the-fly. Voxfield spends
1.9ms and 22.7ms on average for each ESDF map update
with a 20 cm and 10 cm voxel size, respectively, indicating
that it can achieve real-time performance onboard the MAV.

V. CONCLUSION

In this work, we present Voxfield, a fast and accurate
mapping framework for online 3D reconstruction and path
planning. Thanks to the use of non-projective TSDFs, the
proposed approach can create accurate reconstructions with
higher scene coverage than state-of-the-art methods. Our
efficient, gradient-guided ESDF update method allows robots
to calculate ESDF values with sub-voxel accuracy, while
reducing the overall computational burden. In our evaluation,
we show that Voxfield’s non-projective TSDF can reduce
the average error by 32% compared to the state of the
art, while at the same time increasing coverage by 1%
on average. Similarly, the ESDF accuracy is improved on
average by 24% while reducing the integration time by 42%
on average. Furthermore, we incorporate Voxfield into a
multi-resolution panoptic mapping framework, improving
coverage and reconstruction quality over the state of the art
in large-scale scenes. Finally, in a real-world experiment, we
demonstrate that Voxfield can create accurate maps in real
time when running onboard an MAV, enabling the platform
to perform online obstacle avoidance.

Future work will explore extending Voxfield with a pose-
graph optimization back-end to be resilient to noisy input
poses and to improve the fidelity of the mapping process.
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