
Leveraging GNSS and Onboard Visual Data from Consumer Vehicles
for Robust Road Network Estimation

Balázs Opra Betty Le Dem Jeffrey M. Walls Dimitar Lukarski Cyrill Stachniss

Abstract— Maps are essential for diverse applications, such
as vehicle navigation and autonomous robotics. Both require
spatial models for effective route planning and localization.
This paper addresses the challenge of road graph construction
for autonomous vehicles. Despite recent advances, creating a
road graph remains labor-intensive and has yet to achieve full
automation. The goal of this paper is to generate such graphs
automatically and accurately. Modern cars are equipped with
onboard sensors used for today’s advanced driver assistance
systems like lane keeping. We propose using global navigation
satellite system (GNSS) traces and basic image data acquired
from these standard sensors in consumer vehicles to estimate
road-level maps with minimal effort. We exploit the spatial
information in the data by framing the problem as a road
centerline semantic segmentation task using a convolutional
neural network. We also utilize the data’s time series nature to
refine the neural network’s output by using map matching.
We implemented and evaluated our method using a fleet
of real consumer vehicles, only using the deployed onboard
sensors. Our evaluation demonstrates that our approach not
only matches existing methods on simpler road configurations
but also significantly outperforms them on more complex road
geometries and topologies. This work received the 2023 Woven
by Toyota Invention Award.

I. INTRODUCTION

Maps are foundational for vehicle navigation systems
and indispensable for autonomous vehicles. They require
accurate road graphs for essential tasks like route planning,
navigation, and localization. Such road graphs facilitate
basic navigation and provide both geometric and semantic
priors necessary for constructing advanced lane-level High-
Definition (HD) maps. Despite progress in automated road
graph extraction, especially from GNSS traces, defined as
sequences of geographic coordinates, achieving high-quality
results remains a challenge due to frequent inaccuracies that
require substantial manual correction.

This paper addresses the problem of robust, high-quality
road graph extraction. To tackle this, we introduce a unique
approach that utilizes both, GNSS traces and basic vision-
based perception data, such as lane markings and road
boundaries, collected from consumer vehicles deployed to-
day. We aim to substantially improve the quality of automat-
ically extracted road graphs, thereby reducing the manual
workload traditionally required for their construction.

Balázs Opra, Betty Le Dem, Jeffrey M. Walls, and Dimitar Lukarski
are with Woven by Toyota, Inc. Balázs Opra is also with the University of
Bonn, Germany. Cyrill Stachniss is with the Center for Robotics, University
of Bonn and with the Lamarr Institute for Machine Learning and Artificial
Intelligence, Germany. Email: {balazs.opra, betty.le.dem,
jeff.walls, dimitar.lukarski}@woven.toyota,
cyrill.stachniss@igg.uni-bonn.de

Fig. 1: Left: Visualization of aligned fleet sensor data, red: road
boundaries, green: lane markings, blue: GNSS trace points. Right:
Inferred road network of sufficiently covered roads while ignoring
those driven only once.

Road network inference has long been a research focus,
leveraging various data sources, including but not limited to
GNSS traces and aerial imagery. Traditional methods have
employed techniques such as k-means clustering and kernel
density estimation [3], [13]. With the advent of deep learning,
new approaches have emerged that use convolutional neural
networks (CNNs) for semantic segmentation and road graph
inference [19], [44]. The challenge of accurately captur-
ing complex road structures, especially those with vertical
dimensions like overpasses, remains when interpreting 2D
input data. Our work proposes a new way to address such
complexities.

The main contribution of this paper is a novel approach
to robust and accurate road network inference. We utilize
data from vehicles equipped with standard consumer sensors.
We only rely on standard GNSS data and information that
comes from Toyota’s ADAS system which relies on a single
camera plus odometry to extract lane markings and road
boundaries. No extra data or custom sensor is used. We
furthermore employ a task-optimized deep learning frame-
work to generate accurate road graphs. We optimize the
network architecture and loss function specifically for road
graph inference. Our methodology includes novel ways to
use map matching to curate the ground truth labels and
accurately detect stacked roads in the postprocessing steps.
Besides achieving high-quality results, our methods show
strong generalization capabilities beyond the training area,
all supported by rigorous experimental evaluation. We make
three key claims about our approach, namely that it can:
(i) Infer highly accurate road graphs using a unique dataset
of GNSS traces and features extracted from visual data from
standard consumer vehicles’ sensors, all processed through
an optimized deep-learning framework; (ii) Achieve robust
generalization to unseen areas, including different countries,

despite the limited size of our dataset.; (iii) Differentiate
effectively between genuine road intersections and false
positives such as bridges or underpasses, using a novel
map-matching-based postprocessing step. The paper and our
experimental evaluation back up these three claims.

II. RELATED WORK

Road graph inference has been approached using various
data types, traditionally GNSS traces from vehicles or mobile
phones. Early approaches include k-means clustering [13],
[28], kernel density estimation [3], [10], and greedy iterative
graph construction [7], [26]. Other methods include trajec-
tory clustering [5], [6] and iterative graph construction based
on trace connectivity [18]. These statistical and algorithmic
methods often lack scalability due to limited generalizability
and sensitivity to parameter settings.

The advancement of deep learning has enabled different
input modalities to be used for road inference, the most
common one being orthographic imagery. We can categorize
image-based approaches into two main groups: semantic
segmentation and graph inference. Methods focusing on
semantic segmentation [43], [44] often use convolutional
neural networks with encoder-decoder skip connections and
dilated convolutions to extract roads from the aerial images.
Bandara et al. [2] propose SPIN Road Mapper, which uses a
spatial graph reasoning module in conjunction with CNNs.
The Transformer architecture [33], after its success in natural
language processing, has been successfully adapted to image
classification and semantic segmentation as well [9], [12],
and thus is a potential alternative to purely convolutional
networks for road segmentation.

Graph inference approaches typically employ a CNN for
semantic segmentation or feature extraction and then infer
the road graph from the computed features. Máttyus et
al. [24] directly infer the road graph from aerial images
using deep learning for initial segmentation and an algorithm
to reason about missing connections as a shortest path
problem. Other methods use graph neural networks [1], [41]
or encoding-dependent heuristics [19], [34] to infer the road
graph from the features computed by an encoder network.
Xu et al. propose various methods for image-based map
feature extraction tasks, which aim to infer topologically
structured graphs, including road curb detection through
imitation learning [39], road network graph generation via
Transformers and imitation learning [36], [38], and city-
scale road boundary annotation with continuous graph infer-
ence [35]. They also introduce CenterLineDet [37], which
uses vehicle-mounted sensors and a Transformer for lane
centerline graph extraction.

Overall, the inference of road graphs from top-down
images still poses significant challenges, including dealing
with obstructions from buildings, vegetation, and clouds.
Additionally, the graph structure must be derived from two-
dimensional input data, and this becomes challenging for
vertically stacked roads like highway overpasses.

Some of the above-mentioned methods have been applied
to GNSS trace data as well. Sun et al. [31], [32] combine a

GNSS data-based heatmap with remote sensing imagery to
achieve better road segmentation results. Liu et al. [22] pro-
pose a dual-enhancement module that leverages the distinct
information available in GNSS traces and aerial imagery for
semantic segmentation, aiming to capitalize on the unique
contributions of each data source.

To the best of our knowledge, Ruan et al. [27] were the
first to employ deep learning using only GNSS traces. They
extract features that capture both, the spatial characteristics
and the connectivity between GNSS traces, and feed these
features into a CNN for precise road centerline inference.
From our perspective, the most advanced method for GNSS
trace data-based road graph inference to date is by Eftelioglu
et al. [14]. They employ rasterization techniques on variables
such as average speed, bearing distribution, and bearing
change, in addition to trajectory density, to improve the
quality of the resultant road graph. Our approach is similar
to the above-mentioned methods in that it uses rasterized
trace data as input to a semantic segmentation network.
However, we exploit additional visual information available
in customer vehicles today to build better maps.

Post-processing steps are often used to improve the quality
of the road graph. A commonly used technique is map match-
ing, which aligns noisy GNSS coordinates with a predefined
road network using e.g. hidden Markov models (HMM) [25]
to address the inherent inaccuracies in GNSS data. Biagioni
et al. [3] and Ruan et al. [27] employ map matching to filter
and refine road graph edges. Similarly, we use map matching
for post-processing, most notably to disambiguate stacked
roads in the road graph.

III. OUR APPROACH TO ROAD GRAPH INFERENCE

Our task is to infer the road-level street map in the form
of a graph G = (V,E), where the vertices V represent
the location of intersections or dead-ends, and the edges
E represent road centerlines. We use data retrieved from
vehicle fleets as input to our approach. This data contains
GNSS traces S = {s1, s2, . . . , sn}, each trace si compris-
ing a sequence of three-dimensional geospatial coordinates
si = (p1, p2, . . . , pk). The GNSS traces, fused from a
single-antenna receiver, inertial sensors, and odometry, are
relatively smooth and locally accurate estimates due to the
sensor fusion, and generally offer a meter-level absolute
accuracy, which, however, may degrade significantly in urban
environments.

The data associated with each trace also contains lane
markings and road boundaries, captured by the vehicle fleet’s
onboard camera-based detection system. This is Toyota’s cur-
rent consumer vehicle detection system for driver assistance.
It consists of a forward-facing monocular camera and com-
putation hardware that performs semantic segmentation and
visual odometry in real-time. The system outputs a sparse
semantic point cloud, where each point is labeled as either
a lane marking or a road boundary. The data captured from
a single vehicle is fairly sparse, e.g., a single dashed lane
marking may only be represented by 5-10 points. No further
data or sensors are used. While our method uses this specific

data, the approach can be adapted to any combination of
point clouds, GNSS trajectories, and semantic segmentation
that provides lane markings and road boundaries.

In a preprocessing step to our method, we utilize an
existing offline SLAM approach to aggregate the GNSS
traces and semantic point clouds. The SLAM system is
based on the well-known paradigm of incremental smoothing
and mapping proposed by Dellaert et al. [11]. Besides
using the GNSS measurements and odometry, it associates
features from the semantic point cloud across multiple frames
to construct a factor graph. It iteratively performs feature
association to add new measurements to the factor graph, and
least-squares optimization to refine the vehicle poses. This
process improves the estimation substantially and is essential
in ensuring strong performance.

We refer to the aligned set of features—GNSS traces and
the semantic point cloud from the vision data—as “fleet sen-
sor data”, see Fig. 1 for a visualization. We utilize this data
in two ways. We exploit the spatial information by framing
the problem as a road centerline semantic segmentation task
using a CNN, and we use the data’s time series nature to
refine the neural network’s output by map matching.

A. Road Centerline Segmentation

The first task in our road graph extraction method consists
of extracting a binary road centerline segmentation mask us-
ing a CNN. We describe the details of input data preparation,
network architecture, and loss function below.

Rasterization. The sensor data includes both, 3D driving
trajectories and a semantic point cloud featuring lane mark-
ings and road boundaries as distinct classes. To convert this
3D data into images, we project it to the ground plane and
rasterize it. For the trajectories, we begin with a 2D raster
grid initialized to zero and trace each path using Bresenham’s
algorithm [4], incrementing a counter stored in each traversed
pixel by 1. Similarly, for lane markings and road boundaries,
we start with zero-initialized rasters and increment the value
of the raster pixel corresponding to each point.

This produces three grayscale density images, each repre-
senting a specific semantic category. In our implementation,
we use raster grids with a resolution of 1m per pixel
and a tile size of 1000 × 1000 pixels. We also conducted
experiments with a higher resolution of 0.2m per pixel,
however, we found that the increased resolution does not
lead to an improved road centerline inference performance
but comes at a significant increase in computational cost. It
seems that the 1m per pixel resolution is sufficient, probably
as the road centerline is difficult to define unambiguously.

Network architecture. We adopt the D-LinkNet architec-
ture [44] to infer the road centerline segmentation mask from
our unique rasterized sensor data. D-LinkNet was originally
designed for high-resolution aerial image segmentation. It
enhances the LinkNet [8] architecture by incorporating a
central block with five dilated convolution layers and skip
connections, as shown in Fig. 2. The large receptive fields
enabled by the dilated convolution layers make it well-suited
for capturing long and thin roads.

512,512,256

1024,1024,32

1024,1024,32

1024,1024,1

256,256,256

128,128,512

Raster image

ResNet Block 1

ResNet Block 2

ResNet Block 3

ResNet Block 4

D
ilated C

onvolution
3x3 rate=1

D
ilated C

onvolution
3x3 rate=2

D
ilated C

onvolution
3x3 rate=4

D
ilated C

onvolution
3x3 rate=8

D
ilated C

onvolution
3x3 rate=16

Conv 7x7, 64
Batch Norm +

ReLU
MaxPool, 3x3

256,256,64

32,32,2048
R

eL
U

R
eL

U

R
eL

U

R
eL

U

R
eL

U

32,32,2048

ConvTranspose, 4x4, 32

Decoder Block 4

Decoder Block 3

Decoder Block 2

Decoder Block 1

64,64,1024

Conv, 1x1, in_channel//4

BatchNorm + ReLU

ConvTranspose, 3x3, in_channel//4

BatchNorm + ReLU

Conv, 1x1, out_channel

BatchNorm + ReLU

ReLU

Conv, 3x3, 32

Conv, 3x3, 1
Sigmoid

Decoder block

ReLU

(A) (B) (C)

 Resnet50

Binary road centerline
segmentation

64,64,1024

128,128,512

256,256,256

Encoder 1024x1024x3

Fig. 2: The D-LinkNet [44] model architecture used for road
centerline segmentation from rasterized sensor data. Input data are
the rasterized sensor data, namely traces (A), lane markers (B), and
road boundaries (C).

The novelty in our work lies in adapting an existing net-
work architecture, D-LinkNet, to a distinct data modality—–
rasterized fleet sensor data—–which includes features such
as lane markings and road boundaries detected on board.
While the original D-LinkNet uses pre-trained ImageNet
weights for its ResNet [16] encoder, we found that this
approach resulted in poorer convergence for our data modal-
ity. Consequently, we train the entire network from scratch.
Additionally, our approach employs a different loss function
tailored to our application, which we discuss below.

Since understanding road networks intuitively requires
non-local spatial context, we experimented with incorpo-
rating Transformer-based architectures into our model. We
tried replacing the ResNet backbone with a Bottleneck
Transformer [30], and replacing the dilated convolution block
with a Vision Transformer [12], similar to methods like
TransUNet [9]. Despite the potential of Transformers for cap-
turing long-range dependencies, these modifications did not
outperform D-LinkNet, likely due to our small dataset size
and the challenge of segmenting narrow lines. This outcome
suggests that convolutional networks are more suited for this
particular task, benefiting from their inductive spatial bias
and data efficiency with small datasets.

Loss function. Our task is road centerline segmentation,
where we want to predict pixels corresponding to the road
centerline skeleton as foreground. Properly segmenting the
centerline is a challenging task as any discontinuities neg-
atively impact the quality of the resulting road graph. The
authors of D-LinkNet originally used the sum of the pixel-

wise binary cross entropy (BCE) and the soft Dice loss
as the loss function. This function is well-suited for road
segmentation where the foreground is typically thicker than a
centerline, but it often results in discontinuities when applied
to the centerline segmentation task.

Thus, we optimize our network using the connectivity pre-
serving loss (CP-loss) originally proposed by Xu et al. [40]
to improve the continuity of road curb segmentation based
on aerial images. To realize better connectivity, we adapt the
CP-loss to allow for a more flexible definition of the road
centerline. CP-loss is based on the combination of BCE and
soft Dice losses, but increases the loss in areas where the
skeletonized ground truth and predicted masks differ outside
a small buffer area around foreground pixels.

In our implementation, we approximate this buffer area
by applying a binary dilation to the skeletonized rasters
with a 2 × 2 structuring element. This effectively gives a
margin of tolerance around the ground truth and prediction
skeletons, which is desirable as it is ambiguous to specify the
semantics of the road centerline with a sub-meter accuracy.
We encourage the reader to refer to the original work by Xu
et al. [40] for a more detailed explanation of the CP-loss.

Label creation. We use manually annotated road center-
lines based on aerial images as labels for model training.
The annotations have complete road coverage in a given
area, however, we never have uniform spatial coverage in our
sensor data. Some roads have a high number of trajectories,
while others have only few to none. To address the sparsity
of sensor data coverage and be robust to potential erroneous
outputs of the SLAM system, we retain only those road edges
in the ground truth that are traversed by a minimum number
of GNSS traces. Removing roads with too few traces enables
the model to ignore areas with low data density, which
may contain noise. To determine which trace trajectories
correspond to which road edges, we use the OSRM map
matching algorithm [23], which is based on hidden Markov
models. We only keep road edges that have at least N
trajectories associated with them. We found that N = 4 gives
solid results in our experiments and eliminates most issues.

B. Road Centerline Refinement

The segmentation network generates a binary mask for
each tile, with foreground pixels representing the predicted
road centerline. Our subsequent goal is to transform this
binary mask into a road network graph, followed by the
removal of any spurious artifacts using a sequence of rule-
based steps described below.

Tile merging. To create a single road graph for a large
area, we perform inference on tiles that overlap by 50% and
merge the resulting segmentation masks using a weighted
average. The weight values are 1.0 in the center of the tile
and decrease linearly to 0.5 at the edges. This selection
of weights is based on the observation that due to the
convolutional nature of the network, the center of the tile
has the most accurate predictions.

Skeletonization. We use the thinning algorithm by Guo
and Hall [15] to produce a single pixel-wide skeleton of the

binary mask. The skeletonization tends to produce artifacts at
intersections as it generally fails to collapse them into a sin-
gle node and may create a fake edge instead. In comparison
to other skeletonization methods such as Zhang-Suen [42],
we found the Guo-Hall algorithm produces a skeleton where
the fake intersection edges are typically shorter. This makes
it more suitable for our task.

Vectorization. We extract lines from the skeleton and turn
them into a geospatial graph. We create a node at each
intersection of the line geometries. Some of these intersec-
tions may not correspond to actual intersections in the road
network but are instead representations of multiple vertically
stacked roads, e.g., bridges and underpasses. This is caused
by the 2D segmentation mask that cannot represent the
vertical dimension. We address this issue in the intersection
disambiguation step.

Gap filling. We fill discontinuities in the skeleton by
adding connecting edges opportunistically, utilizing the gap-
filling algorithm proposed by Ruan et al. [27]. In short,
we iterate over all dead-end nodes in the graph and try
connecting them with either the closest nearby dead-end
node or with edges that intersect the straight extension line
starting from the dead-end node. We only add a new edge if
it is shorter than a specific threshold, and for node-to-node
connections we also require that the new edge does not result
in a turn sharper than 90 degrees.

Since the gap-filling process connects the road extremities
to each other, it may produce false positive edges. To remove
these, we match the sensor data trajectories to the proposed
graph using the map-matching algorithm proposed by Bia-
gioni et al. [3]. In contrast to Biagioni et al., we assign edge-
to-edge transition probabilities based on whether an edge is
from the gap-filling process or the semantic segmentation
network. Formally, the probability Pe,v of transitioning onto
edge e at node v is calculated as:

Pe,v =
α(e)∑

e′∈Γ(v) α(e
′)
, (1)

where α(e) is the edge weight factor for edge e, which can
be either αg for gap-filling edges or αs for segmentation-
based edges, and Γ(v) is the set of all edges connected
to node n. We use weights αg < αs in our experiments
to give segmentation-based edges a higher transition prob-
ability. Intuitively, this means that we prefer to stay on the
segmentation-based edges, but we are willing to transition to
gap-filling edges if there is no other option. We remove all
gap-filling edges that do not have at least a certain number of
trajectories associated with them. We use the same threshold
value here as in the label creation step of the segmentation
network.

Graph cleaning. We collapse intersection nodes that are
connected by a single short edge to remove the false positive
intersections created by the skeletonization. Furthermore, we
remove dead ends shorter than 15m from the graph as they
typically correspond to noise in the segmentation output.

Intersection disambiguation. Since the segmentation
mask cannot represent the vertical dimension of the road

network, we have to determine which of the intersections
in the graph correspond to actual intersections in the road
network, as opposed to bridges or underpasses without an
actual connection.

To accurately represent intersections in a road network,
we exploit the time series nature of the sensor data. Our
algorithm first map-matches GNSS trajectories to the graph
and identifies allowed transitions between edges at each
node based on a minimum number of supporting traces.
By grouping edges according to these allowed transitions
and splitting nodes when multiple groups exist, the algo-
rithm refines the graph topology to include only valid road
connections, filtering out false intersections like bridges and
overpasses.

We start by matching the sensor data trajectories to the out-
put graph from the previous step to determine the sequence
of edges they travel through. We use the matching algorithm
proposed by Biagioni et al. [3] in this stage, setting uniform
edge-to-edge transition probabilities. After matching, each
coordinate of a trajectory is either associated with an edge
of the graph or is unmatched. Formally, for each sequence of
trace coordinates si = (p1, p2, . . . , pk), map matching gives
us the result τi:

τi = (ϕ1, ϕ2, . . . , ϕk), ϕi ∈ E ∪ {Null}, (2)

where E is the set of all edges in the graph.
Utilizing the map-matching results, we ascertain the fre-

quently traversed edge-to-edge transitions at each intersec-
tion node, as well as identify those transitions that are
notably absent in the observed trace trajectories. Formally,
for each τi, we determine the pairs of adjacent edges (ei, ej),
which the trajectory traverses. For each edge pair, we accu-
mulate the number of occurrences across all traces and only
consider those edge pairs valid, which occur at least N times.
We use the same threshold value N = 4 here as in the label
creation step.

Upon identifying the edge-to-edge transitions supported by
the trace data, we categorize the commonly traversed edges
into disjoint sets for each intersection node. In other words,
for each intersection node v, we group the incident edges
Γ(v) into n disjoint sets {Ev,i}ni=1 so that all edges in a
set Ev,i are indirectly connected through one or more valid
transition pairs, and

⋃n
i Ev,i = Γ(v), Ev,i ∩ Ev,j = ∅ for

i ̸= j.
Should multiple disjoint edge sets exist for a given in-

tersection node, this indicates that the location should not
be represented as a single intersection within the graph, but
rather as distinct nodes. Thus, if there are multiple disjoint
sets for a node v, we replace that node with multiple nodes
v′1, . . . , v

′
n; n = |Ev|, and connect the edges in each Ev,i

to the corresponding v′i. This splits the intersection into
multiple intersections, each corresponding to a set of edges
that are connected by allowable transitions. As the last step,
we remove all nodes that have only two incident edges by
merging them into a single edge.

Fig. 3: Dataset coverage used for the experiments. Top left: San
Jose, top right: San Francisco, bottom: Tokyo. Aggregated GNSS
traces are shown in yellow. Purple, green, and orange tiles represent
training, validation, and test tiles respectively.

IV. EXPERIMENTAL EVALUATION

The main focus of this work is to extract the road graph
from aggregated sensor data comprising GNSS traces and a
semantic point cloud collected from a consumer vehicle fleet
without any further sensor or customization.

Our experiments demonstrate our method’s capabilities,
supporting the following claims: Our approach can (i) Infer
highly accurate road graphs using a unique dataset of GNSS
traces and visual data from vehicles equipped with stan-
dard consumer sensors, all processed through an optimized
deep-learning framework; (ii) Achieve robust generalization
to unseen areas, including different countries, despite the
limited size of our dataset; (iii) Differentiate effectively
between true intersections and false positives such as bridges
or underpasses, using a novel map-matching-based post-
processing step.

A. Experimental Setup

Dataset. The proposed approach has been developed and
validated on three datasets created from our vehicle fleet
equipped with the standard customer vehicle sensors. To train
the machine learning model and fine-tune the post-processing
parameters, we use a dataset collected from highways in
San Jose, California, which is composed of 236 km of
trajectories. We split this dataset into training/validation/test
with 110/16/12 tiles of 1 km × 1 km each. We validate
our approach on two test datasets from San Francisco,
California, and Tokyo, Japan, covering 78 km and 47 km
of highways, respectively. The San Francisco test set has
complex road topologies, while the Tokyo dataset presents a
simpler setting, see Fig. 3 for an overview.

Implementation Details. We train the D-LinkNet-50 ar-
chitecture from scratch for 500 epochs on a single NVIDIA
Tesla V100 GPU, using the Adam optimizer [20] and a
constant learning rate of 2 × 10−4. We found that more

sophisticated learning rate schedules such as cosine anneal-
ing [29] lead to overfitting and worse generalization, likely
due to the limited size of our dataset. A batch size of 2
yields the best results. We only use random rotation for
data augmentation. To normalize the input data, we apply
a logarithmic transformation of log10(x + 1) to all pixels
of all channels. For the CP-loss, we set the value of the σ
scaling parameter to 100.

Metrics. We use the following metrics to evaluate the
performance of our approach and compare it with baseline
methods. When evaluating the segmentation model, to ac-
count for the semantic flexibility of the road centerline—–
which does not need to be strictly aligned to the geometric
center of the road—–we introduce what we call a ”Soft F1
score.” Specifically, we apply binary dilation to both the
ground truth and prediction masks using a 2× 2 structuring
element before calculating precision and recall. This dilation
introduces a one-pixel margin around the masks, allowing for
a slightly more tolerant evaluation of model performance.

We adopt the GEO metric proposed by He et al. [17] to
evaluate the geometric accuracy of the road centerline. We
add a vertex every 11m in both graphs and set the search
radius to 6m. GEO evaluates local geometric accuracy but
does not penalize topological errors such as small discontinu-
ities or false positive intersections. To address this limitation,
we propose the intersection topology (iTOPO) metric, a
modification of Junction TOPO metric of Liao et al. [21].
This metric computes GEO scores for all subgraphs around
all nodes of both the proposal graph and ground truth graph.
The computation begins by finding connected subgraphs
around all nodes of both the proposal graph G = (V,E) and
ground truth graph Ĝ = (V̂ , Ê). Specifically for each v ∈ V ,
we find the closest edge ê ∈ Ê within a given distance (of
6m), if any. If an edge is found we then consider the pair
of subgraphs (Hv, Ĥê) on G and Ĝ, respectively, where all
geometries in Hv and Ĥê can be reached from v and ê by
traversing the graph for a maximum of 30m. If no edge is
found, we set Ĥê = ∅. We repeat the same process for all
v̂ ∈ V̂ , creating subgraph pairs (He, Ĥv̂) for each node in the
ground truth graph. After having created all subgraph pairs,
{(Hv, Ĥê) | v ∈ V } ∪ {(He, Ĥv̂) | v̂ ∈ V̂ } , we invoke the
GEO metric on them to compute the aggregate precision,
recall, and F1-score. This metric penalizes discontinuities
and incorrect intersections in the proposal graph.

B. Performance of Our Approach

Comparison to other methods. The first experiment
evaluates the graph inference performance of our approach,
labeled as Probe2Road, and benchmarks it against three
GNSS-based methods: a popular and frequently used algo-
rithm by Biagioni et al. [3], a more recent, learning-based
method by Ruan et al. [27] called ”DeepMG”, and a Woven-
developed method that uses kernel density estimation, pre-
viously used before our method. These methods do not use
data from the ADAS camera. To the best of our knowledge,
no other method exists that uses a combination of GNSS and
semantic point cloud data to infer road graphs.

The kernel density estimation algorithm voxelizes the
GNSS traces into a 3D grid, uses Gaussian smoothing to
approximate the kernel density estimate, and thresholds it to
produce a binary grid. Finally, it skeletonizes the 3D binary
grid to create a graph. For evaluation, we use a grid search
over the algorithm’s parameters to maximize the GEO-F1
score on the San Jose training dataset. We train DeepMG on
the same training set as Probe2Road using the settings in the
source code published by the authors. In Tab. I we report the
GEO and iTOPO metrics for all methods on US datasets.

As shown in the table, Probe2Road clearly outperforms the
other methods on the complex San Francisco test dataset,
which contains intersections and overpasses. This supports
the claim that our approach infers highly accurate road
geometries with high topological correctness.

Generalization Study. The second experiment assesses
the generalization capabilities of our approach Probe2Road,
demonstrating its robustness in adapting to previously unseen
geographical regions. The quantitative results from the US
datasets, as presented in Tab. I and Tab. III, highlight the
method’s strong generalization performance. It demonstrates
robust geometric and topological correctness on the San
Francisco test dataset, matching the performance on the San
Jose training dataset and demonstrating excellent generaliza-
tion to unseen areas within the same region.

When subjected to the significantly different highway
structures of the Tokyo test dataset, Probe2Road performs
very similarly to the US datasets, as shown in Tab. II,
showing that our method can successfully generalize to road
networks in different countries. The Woven baseline kernel
density estimation-based algorithm fails at generalizing to
the different GNSS trace distribution observed in the Tokyo
dataset, achieving very low F1 scores. The learning-based
baseline method, DeepMG, also fails to generalize to the
Tokyo dataset, achieving lower scores than Probe2Road on
both metrics. The Biagioni et al. [3] algorithm, while doing
worse than the other methods on the San Francisco test
dataset, performs well on the Tokyo test set. On simpler roads
like those in the Tokyo dataset, the vision-based point cloud
data is not strictly required for high performance. In these
rather simple settings, with few intersections, our method is
performing similarly to the method of Biagioni et al., which
is the best performer on this dataset. See Fig. 4 for visual
comparisons of the results on the San Francisco and Tokyo
test sets. We provide more high-resolution visualizations that
are hard to display in a paper on an accompanying website:
https://bazs.github.io/probe2road

Ablation study on vision data. To confirm that incor-
porating the information extracted from the camera into
Probe2Road, as we propose, leads to better performance, we
train our machine learning model using single-channel input
data containing rasterized GNSS traces only, denoted as (A)
in Figure Fig. 2, and compare its performance against the
model trained on all sensor data, with three channels (A),
(B), and (C) as shown in the same figure.

Tab. IV indicates the scores for the GNSS-only and the
GNSS + vision data models on the San Francisco test dataset.

TABLE I: Comparison of graph inference metrics across US datasets and methods. The best and second-best results on the San Francisco
test dataset only are highlighted in bold and italics, respectively. For all metrics, higher is better.

GEO iTOPO
Dataset Method Prec. Rec. F1 Prec. Rec. F1

San Jose - Train 0.991 0.968 0.980 0.906 0.794 0.847
San Jose - Validation Probe2Road (ours) 0.959 0.941 0.950 0.787 0.778 0.783

San Jose - Test 0.949 0.938 0.943 0.7592 0.734 0.746

Woven baseline 0.698 0.692 0.695 0.641 0.584 0.611

San Francisco - Test Biagioni et al. 0.464 0.828 0.595 0.388 0.799 0.5219
DeepMG 0.648 0.67 0.673 0.567 0.883 0.691

Probe2Road (ours) 0.962 0.935 0.948 0.844 0.729 0.783

Ground Truth

S
an

F
ra

n
ci

sc
o

T
es

t

Input Data (only
GNSS traces visualized)

Woven Baseline Biagioni et al. DeepMG Probe2Road (ours)

T
ok

yo
T

es
t

Fig. 4: Results from all methods on selected areas of the San Francisco and Tokyo test sets. OpenStreetMap backdrop provided for context.

TABLE II: Inference performance on the Tokyo test dataset, a
simple dataset where geometric methods tend to perform well.

GEO iTOPO
Method Prec. Rec. F1 Prec. Rec. F1

Woven baseline 0.928 0.050 0.094 0.968 0.158 0.271
Biagioni et al. 0.971 0.968 0.970 0.877 0.778 0.825

DeepMG 0.625 0.569 0.596 0.652 0.822 0.727
Probe2Road 0.979 0.950 0.964 0.925 0.654 0.767

TABLE III: Soft F1 semantic segmentation metrics on all datasets.

Dataset Prec. Rec. F1

San Jose - Train 0.992 0.999 0.995
San Jose - Val 0.870 0.968 0.916
San Jose - Test 0.789 0.931 0.854

San Francisco - Test 0.721 0.901 0.801

Tokyo - Test 0.862 0.975 0.915

The results support our claim that the camera-based semantic
point cloud data enhances Probe2Road’s performance.

Effectiveness of the post-processing. Our final exper-
iment evaluates the effectiveness of the gap-filling and
intersection disambiguation post-processing steps described
in Sec. III-B. We perform three evaluations to show the
effectiveness gap-filling, and the combination of gap-filling
and intersection disambiguation.

Gap-filling boosts GEO-F1 by 0.34% and iTOPO-F1 by

TABLE IV: GNSS-only and GNSS + vision data model
performance on the San Francisco test dataset.

GEO iTOPO
Model Prec. Rec. F1 Prec. Rec. F1

GNSS only 0.880 0.920 0.900 0.483 0.776 0.596
GNSS+Vision 0.962 0.935 0.948 0.844 0.729 0.783

TABLE V: Performance on the San Francisco test dataset with
no postprocessing, gap-filling only, and gap-filling + intersection
disambiguation.

GEO iTOPO
Prec. Rec. F1 Prec. Rec. F1

No postproc. 0.9607 0.9297 0.9449 0.8859 0.6839 0.7719
Gap filling 0.9618 0.9348 0.9481 0.8426 0.7285 0.7814
Full postproc. 0.9618 0.9348 0.9481 0.8445 0.7293 0.7826

1.23%, affirming its geometric correctness, but slightly di-
minishes iTOPO precision. Notably, intersection disambigua-
tion universally improves all iTOPO scores, even if slightly,
confirming its effectiveness in enhancing graph topology.

V. CONCLUSION

In this paper, we presented a novel approach to road
graph extraction. Our approach operates on data composed
of GNSS traces and semantic point clouds collected with
the consumer vehicle fleet’s sensors, which are available
on modern cars today and are used for advanced driver
assistance functions such as lane keeping. We utilize deep
learning and rule-based steps to infer accurate road graphs
where enough data is available, enabling robust inference on
highways. We evaluated our approach on multiple datasets,
providing comparisons to other existing techniques. Our
method demonstrates high geometric and topological accu-
racy, robust generalization, and our post-processing steps im-
prove the quality for complex road structures. The approach
described in this paper won the 2023 Woven by Toyota
Invention Award.

ACKNOWLEDGMENTS

We thank Louis Wiesmann for fruitful discussions and
James Biagioni for providing code and assistance for [3].

REFERENCES

[1] G. Bahl, M. Bahri, and F. Lafarge. Single-Shot End-to-end Road Graph
Extraction. In Proc. of the IEEE/CVF Conf. on Computer Vision and
Pattern Recognition Workshops, 2022.

[2] W.G.C. Bandara, J.M.J. Valanarasu, and V.M. Patel. SPIN Road Map-
per: Extracting Roads from Aerial Images via Spatial and Interaction
Space Graph Reasoning for Autonomous Driving. In Proc. of the
IEEE Intl. Conf. on Robotics & Automation (ICRA), 2021.

[3] J. Biagioni and J. Eriksson. Map inference in the face of noise and
disparity. In Proc. of the Intl. Conf. on Advances in Geographic
Information Systems (SIGSPATIAL), 2012.

[4] J.E. Bresenham. Algorithm for computer control of a digital plotter.
IBM Systems Journal, 4(1):25–30, 1965.

[5] K. Buchin, M. Buchin, D. Duran, B.T. Fasy, R. Jacobs, V. Sacristán,
R.I. Silveira, F. Staals, and C. Wenk. Clustering Trajectories for Map
Construction. In Proc. of the Intl. Conf. on Advances in Geographic
Information Systems (SIGSPATIAL), 2017.

[6] K. Buchin, M. Buchin, J. Gudmundsson, J. Hendriks, E.H. Sereshgi,
V. Sacristán, R.I. Silveira, J. Sleijster, F. Staals, and C. Wenk. Im-
proved Map Construction Using Subtrajectory Clustering. In Proc. of
the Intl. Conf. on Advances in Geographic Information Systems
(SIGSPATIAL), 2020.

[7] L. Cao and J. Krumm. From GPS Traces to a Routable Road Map.
In Proc. of the Intl. Conf. on Advances in Geographic Information
Systems (SIGSPATIAL), 2009.

[8] A. Chaurasia and E. Culurciello. LinkNet: Exploiting encoder repre-
sentations for efficient semantic segmentation. In Proc. of the IEEE
Conf. on Visual Communications and Image Processing (VCIP), 2017.

[9] J. Chen, Y. Lu, Q. Yu, X. Luo, E. Adeli, Y. Wang, L. Lu, A.L. Yuille,
and Y. Zhou. TransUNet: Transformers Make Strong Encoders for
Medical Image Segmentation. arXiv preprint, arXiv:2102.04306, 2021.

[10] J. Davies, A. Beresford, and A. Hopper. Scalable, Distributed, Real-
Time Map Generation. IEEE Pervasive Computing, 5(4):47–54, 2006.

[11] F. Dellaert and M. Kaess. Square root sam: Simultaneous localization
and mapping via square root information smoothing. Intl. Journal of
Robotics Research (IJRR), 25(12):1181–1203, 2006.

[12] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby. An Image is Worth 16x16 Words:
Transformers for Image Recognition at Scale. In Proc. of the
Int. Conf. on Learning Representations (ICLR), 2021.

[13] S. Edelkamp and S. Schrödl. Route Planning and Map Inference
with Global Positioning Traces. Computer Science in Perspective,
2598:128–151, 2003.

[14] E. Eftelioglu, R. Garg, V. Kango, C. Gohil, and A.R. Chowdhury.
RING-Net: Road inference from GPS trajectories using a deep seg-
mentation network. In ACM SIGSPATIAL Workshop on Analytics for
Big Geospatial Data, 2022.

[15] Z. Guo and R.W. Hall. Parallel Thinning with Two-Subiteration
Algorithms. Communications of the ACM, 32(3):359–373, 1989.

[16] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for
Image Recognition. In Proc. of the IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), 2016.

[17] S. He and H. Balakrishnan. Lane-level street map extraction from
aerial imagery. In Proc. of the IEEE Winter Conf. on Applications of
Computer Vision (WACV), 2022.

[18] S. He, F. Bastani, S. Abbar, M. Alizadeh, H. Balakrishnan, S. Chawla,
and S. Madden. RoadRunner: Improving the Precision of Road
Network Inference from GPS Trajectories. In Proc. of the Intl. Conf.
on Advances in Geographic Information Systems (SIGSPATIAL), 2018.

[19] S. He, F. Bastani, S. Jagwani, M. Alizadeh, H. Balakrishnan,
S. Chawla, M.M. Elshrif, S. Madden, and M.A. Sadeghi. Sat2Graph:
Road Graph Extraction Through Graph-Tensor Encoding. In Proc. of
the Europ. Conf. on Computer Vision (ECCV), 2020.

[20] D. Kingma and J. Ba. Adam: A Method for Stochastic Optimization.
In Proc. of the Int. Conf. on Learning Representations (ICLR), 2015.

[21] B. Liao, S. Chen, B. Jiang, T. Cheng, Q. Zhang, W. Liu, C. Huang,
and X. Wang. Lane Graph as Path: Continuity-preserving Path-
wise Modeling for Online Lane Graph Construction. arXiv preprint,
arXiv:2303.08815, 2023.

[22] L. Liu, Z. Yang, G. Li, K. Wang, T. Chen, and L. Lin. Aerial Images
Meet Crowdsourced Trajectories: A New Approach to Robust Road
Extraction. arXiv preprint, arXiv:2111.15119v3, 2022.

[23] D. Luxen and C. Vetter. Real-time routing with OpenStreetMap data.
In Proc. of the Intl. Conf. on Advances in Geographic Information
Systems (SIGSPATIAL), 2011.

[24] G. Mattyus, W. Luo, and R. Urtasun. DeepRoadMapper: Extracting
Road Topology from Aerial Images. In Proc. of the IEEE/CVF
Intl. Conf. on Computer Vision (ICCV), 2017.

[25] P. Newson and J. Krumm. Hidden Markov Map Matching through
Noise and Sparseness. In Proc. of the Intl. Conf. on Advances in
Geographic Information Systems (SIGSPATIAL), 2009.

[26] B. Niehoefer, R. Burda, C. Wietfeld, F. Bauer, and O. Lueert. GPS
Community Map Generation for Enhanced Routing Methods Based
on Trace-Collection by Mobile Phones. In Advances in Satellite and
Space Communications, 2009.

[27] S. Ruan, C. Long, J. Bao, C. Li, Z. Yu, R. Li, Y. Liang, T. He, and
Y. Zheng. Learning to Generate Maps from Trajectories. In Proc. of
the Conf. on Advancements of Artificial Intelligence (AAAI), 2020.

[28] S. Schroedl, K. Wagstaff, S. Rogers, P. Langley, and C. Wilson.
Mining GPS Traces for Map Refinement. Data Mining and Knowledge
Discovery, 9(1):59–87, 2004.

[29] L.N. Smith and N. Topin. Super-convergence: Very fast training of
neural networks using large learning rates. Artificial Intelligence
and Machine Learning for Multi-Domain Operations Applications,
11006:369–386, 2019.

[30] A. Srinivas, T. Lin, N. Parmar, J. Shlens, P. Abbeel, and A. Vaswani.
Bottleneck Transformers for Visual Recognition. arXiv preprint,
arXiv:2101.11605v2, 2021.

[31] T. Sun, Z. Di, P. Che, C. Liu, and Y. Wang. Leveraging Crowdsourced
GPS Data for Road Extraction From Aerial Imagery. In Proc. of
the IEEE/CVF Conf. on Computer Vision and Pattern Recognition
(CVPR), 2019.

[32] T. Sun, Z. Di, and Y. Wang. Combining Satellite Imagery and GPS
Data for Road Extraction. In Proc. of the Intl. Conf. on Advances in
Geographic Information Systems (SIGSPATIAL), 2018.

[33] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N.
Gomez, L. Kaiser, and I. Polosukhin. Attention Is All You Need.
In Proc. of the Conf. on Neural Information Processing Systems
(NeurIPS), 2017.

[34] S. Xie, W. Zheng, Z. Xian, J. Yang, C. Zhang, and M. Wu. PaRK-
Detect: Towards Efficient Multi-Task Satellite Imagery Road Extrac-
tion via Patch-Wise Keypoints Detection. In Proc. of the British
Machine Vision Conf. (BMVC), 2022.

[35] Z. Xu, Y. Liu, L. Gan, X. Hu, Y. Sun, M. Liu, and L. Wang.
csBoundary: City-Scale Road-Boundary Detection in Aerial Images
for High-Definition Maps. IEEE Robotics and Automation Letters
(RA-L), 7(2):5063–5070, 2022.

[36] Z. Xu, Y. Liu, L. Gan, Y. Sun, X. Wu, M. Liu, and L. Wang. RNGDet:
Road Network Graph Detection by Transformer in Aerial Images.
IEEE Transactions on Geoscience and Remote Sensing, 60:1–12, 2022.

[37] Z. Xu, Y. Liu, Y. Sun, M. Liu, and L. Wang. CenterLineDet:
CenterLine Graph Detection for Road Lanes with Vehicle-mounted
Sensors by Transformer for HD Map Generation. In Proc. of the
IEEE Intl. Conf. on Robotics & Automation (ICRA), 2022.

[38] Z. Xu, Y. Liu, Y. Sun, M. Liu, and L. Wang. RNGDet++: Road
Network Graph Detection by Transformer With Instance Segmentation
and Multi-Scale Features Enhancement. In IEEE Robotics and
Automation Letters (RA-L), 2023.

[39] Z. Xu, Y. Sun, and M. Liu. iCurb: Imitation Learning-Based Detection
of Road Curbs Using Aerial Images for Autonomous Driving. IEEE
Robotics and Automation Letters (RA-L), 6:1097–1104, 2021.

[40] Z. Xu, Y. Sun, L. Wang, and M. Liu. CP-loss: Connectivity-preserving
Loss for Road Curb Detection in Autonomous Driving with Aerial
Images. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems (IROS), 2021.

[41] C. Yang, I.G. Todoran, and C. Saravia. End-to-end road graph
extraction based on graph neural network. In Proc. of the IEEE Intl.
Geoscience and Remote Sensing Symp. (IGARSS), 2023.

[42] T.Y. Zhang and C.Y. Suen. A fast parallel algorithm for thinning
digital patterns. Communications of the ACM, 27(3):236–239, 1984.

[43] Z. Zhang, Q. Liu, and Y. Wang. Road Extraction by Deep Residual
U-Net. IEEE Geoscience and Remote Sensing Letters, 15(5):749–753,
2018.

[44] L. Zhou, C. Zhang, and M. Wu. D-LinkNet: LinkNet with Pretrained
Encoder and Dilated Convolution for High Resolution Satellite Im-
agery Road Extraction. In Proc. of the IEEE/CVF Conf. on Computer
Vision and Pattern Recognition Workshops, 2018.

