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Robust Visual Localization Across Seasons
Tayyab Naseer, Wolfram Burgard, and Cyrill Stachniss

Abstract—Localization is an integral part of reliable robot
navigation and long-term autonomy requires robustness against
perceptional changes in the environment during localization. In
the context of vision-based localization, such changes can be
caused by illumination variations, occlusion, structural develop-
ment, different weather conditions and seasons. In this paper,
we present a novel approach for localizing a robot over longer
periods of time using only monocular image data. We propose
a novel data association approach for matching streams of
incoming images to an image sequence stored in a database. Our
method exploits network flows to leverage sequential information
to improve the localization performance and to maintain several
possible trajectories hypotheses in parallel. To compare images,
we consider a semi-dense image description based on HOG
features as well as global descriptors from Deep Convolutional
Neural Networks trained on ImageNet for robust localization.
We perform extensive evaluations on a variety of datasets and
show that our approach outperforms existing state-of-the-art
approaches.

I. INTRODUCTION

Monocular camera-based visual localization plays a vital
role for navigation of autonomous vehicles. Robustly local-
izing a robot over longer periods of time in an environment
that undergoes drastic perceptual changes due to changes in
weather conditions, time of the day, or seasons is still a
challenging problem. Various novel methods for robust place
recognition have been proposed in the past including FAB-
MAP2 [11], SeqSLAM [35], SP-ACP [39], FrameSLAM [1],
and place-dependent feature learning [32]. Some of these
approaches show impressive robustness to various changing
conditions occurring due to different illumination or varying
weather conditions. Most approaches aim to develop image
descriptions that are repeatable over longer periods of time
and enable long term visual localization.

This paper is an extension of our previous work [36] and
addresses the problem of visual localization under large per-
ceptual changes using image sequences collected along routes.
Related methods have been developed over time that exploit
sequential nature of the recorded reference image sequences
such as SeqSLAM [35], SP-ACP [39], and RTPL [3]. These
methods achieve robust localization under changing perceptual
conditions due to day-night scenarios, different illumination
and seasons. Often, trajectory-based approaches substantially
reduce the false positive matches as compared to single image-
based localization methods.

The key contribution of this work is a novel approach to
visual place recognition under a large variety of perceptual
changes. Our method successfully matches two image se-
quences without using any pose priors, for example, from
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Fig. 1: This figure shows the successful matches using our approach.
On the left, we see the live image captured from the robot and on
the right is the retrieved image from the database. It shows that our
approach is robust to challenging day and night scenarios, foliage
color changes and occlusions due to different seasons.

GPS or robot odometry to normalize the robot speed. We
do not perform explicit condition-based feature training for
learning image descriptions. Our approach does not require
any image pre-processing for exact image alignments. It can
handle variable frame rates of the camera and different vehicle
speeds in the database and localization routes. Our method
also handles intra-trajectory loop closures and visits to new
locations during the localization phase. It method achieves
global localization without any pose initialization. We present
a single framework which achieves all these objectives simul-
taneously. Fig. 1 shows successful matches of the same place
across seasons and across day and night obtained with our
approach.

In this paper, we propose an approach to robust localization
that does not rely upon either hand-crafted point features or
complex global image descriptors plus additional constraints.
Our method builds upon the semi-dense image description
with HOG [13] descriptors as used by Naseer et al. [36].
Although this image representation is somewhat viewpoint
dependent due to the tessellated gradient representation, it
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Fig. 2: Feature-based matching of the same place across seasons. In
this case, SURF keypoints and their descriptions change drastically
over seasons and lead to false correspondences.

provides better image matching performance than the point
features. Recently, deep convolutional neural networks (DC-
NNs) have shown to outperform traditional feature-based
approaches for various image recognition and classification
tasks. Along with the hand-crafted features like SIFT [29] and
HOG, we demonstrate that although the features from these
complex neural networks provide more discriminative image
matchings, it is still insufficient to achieve robust localization
based only on the global image descriptor matchings. We build
a data association graph that relates images from sequences
retrieved in different conditions. The special node-transition
connectivity enables us to compute multiple route hypotheses,
deal with occlusions over short periods of time, and handle
deviations from the previously taken route. We solve the
visual place recognition problem by computing network flows
in the association graph and generate multiple vehicle route
hypotheses. By exploiting the specific structure of our graph,
we solve this problem efficiently. We show that leveraging
the sequential information using network flow provides high
gain in the localization performance even when integrated with
more robust image descriptions from DCNNs. Our extensive
experimental evaluation suggests, that our method enables the
vehicle to robustly localize across large perceptual changes in
the environment based purely on the vision data and does not
require any prior knowledge.

II. RELATED WORK

Vision-based topometric localization has been studied ex-
tensively both in computer vision and robotics, see Garcia-
Fidalgo and Ortiz [19] for a survey. Researchers have proposed
robust feature-based approaches over the years for robot local-
ization in similar environment appearances [11, 14, 1, 6, 18].
Biber et al. [7] deal with changing indoor environments by
sampling laser maps at multiple timescales. Each sample of
the map at a particular timescale is maintained and updated
using the sensor data of the robot. This allows them to model
spatio-temporal variations in the map. Kranjik et al. [26] use
frequency spectra to model the dynamics of the object occur-
rences. The authors formulate it as a path planning algorithm
and can perform efficient search for object localization using
dynamic maps. Dymczyk et al. [17] propose an approach
to summarize and update maps for long-term navigation by
keeping a minimal number of landmarks in the memory for
localization. Stachniss et al. [48], in contrast, aim at modeling

different instances of typical states of the world using a
clustering approach.

Although various approaches for large scale vision-based
localization in dynamic indoor environments and similar per-
ceptual conditions have shown promising results, localization
under extreme variations in outdoor scenarios is still a hard
and an unsolved problem. It has been recognized as a major
obstacle for persistent autonomous navigation and has been
addressed by different researchers [21, 11]. Many of the
visual place recognition approaches rely on image matching
by using features such as SURF [4] and SIFT [29]. Such
feature-based algorithms work reliably for matching images
that undergo rotation and scale variations but are susceptible
to extreme perceptual changes caused by illumination changes,
different weather conditions and seasons. Illumination changes
as encountered during the period of a day degrades the
performance of feature-based localization. Paton et al. propose
an approach for learning color constant representation of RGB
images and cope with illumination changes during a day [40].
It enables a robot to navigate autonomously through out the
day. Researchers have also shown promising results for all-day
localization by converting the images to illumination invariant
color space [30, 31, 42].

Valgren et al. evaluate SIFT and SURF features in combi-
nation with geometric keypoint constraints for across-seasons
image matching [51]. For our datasets, we found that both
features do not match robustly, see Fig. 2 for an example.
As a result, methods such as FAB-MAP2 [11] that require
a reliable matching of such features tend to perform poorly.
Kranjik et al. learn a sequence of comparisons for BRIEF [8]
descriptors with evolutionary algorithms to localize a robot
across seasons [25]. McManus et al. learns stable regions
in images over days and months by leveraging big training
data [32]. The approach learns distinctive visual elements
in images and produces region detectors, which can be ro-
bustly associated across different illumination and weather
conditions. In contrast to this, Carlevaris-Bianco et al. learn
dynamics of feature point descriptions over different lighting
conditions [9]. They generate training data by tracking feature
points in time-lapse videos and use this training data to project
feature descriptors to a lower dimensional space, which pro-
vides better discriminative power between descriptors under
challenging lighting conditions.

Recently, featureless sequence-based SLAM (SeqSLAM)
has shown a great improvement over feature-based global
image localization [34, 35]. This approach achieves promising
results for localization across day and night but does not ex-
plicitly address the problem of non-linear sequential matching
and handling unseen places while revisiting the previously
taken route. SeqSLAM can be seen as a continuous version of
dynamic time warping (DTW) proposed by Sakoe and Chiba
[45]. Our proposed method is in spirit similar to DTW with
greater flexibility in non-linear transitions, non-overlapping
trajectories and multiple loop closures.

Furthermore, there has been extensive research in the area
of spatio-temporal video alignment methods [15, 16, 43]. Such
methods aim at jointly optimizing the spatial image alignment
and temporal frame correspondence of video sequences. Most
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of these methods rely on point feature-based approaches
to calculate relative homography between images. Unfortu-
nately, these keypoints often change under large environmental
changes (compare Fig. 2 for SIFT features). Diego et al. [15]
leveraged GPS information and model the sequence alignment
as a MAP inference problem. Our method does not assume any
pose priors from other sensors. Ranganathan [41] proposes
an algorithm (PLISS) to partition the image sequences for
place categorization by integrating visual cues. PLISS shows
impressive results in indoor place categorization where rooms
have different appearance types. For an outdoor urban en-
vironment, where places have generally similar appearance
types, the discriminating ability of PLISS to partition the
image sequence has not been shown yet. Liu and Siegwart [28]
propose an online inference method for topological place cat-
egorization using Dirichlet process mixture model and a light
weight image descriptor. Although the authors concentrate on
indoor scenes, such statistical models can also be investigated
for place categorization in semi-structured outdoor scenarios.
These methods mainly target indoor scene recognition or
categorization and their performance has not been quantified
for place recognition under adverse environmental conditions.
Thus, it is unclear if they can be applied to the problem
investigated in this work.

Neubert et al. propose to combine an appearance change
prediction with a vocabulary-based method to predict how
the visual word in the current scene would appear under
changes [39]. For learning the appearance changes across
seasons, an accurate image alignment is assumed. Johns et al.
learn discriminative statistics on the co-occurrence of features
over different conditions [24]. Their approach combines stable
and discriminative features into one compact model from
the data captured during different times of the day. In our
experiments, however, we were unable to obtain such stable
and discriminative features under the strong seasonal changes
that we experienced. Instead of explicitly addressing the
visual place recognition with extreme perceptual differences,
Winston et al. associate different appearances, which they
call as experiences, to the same place [10]. They localize in
previously learned experiences and associate a new experience
in case of a localization failure. At least during the setup phase,
this requires some degree of place knowledge to assign a new
experience to an existing place.

All of the aforementioned approaches use either hand-
crafted features or raw image intensities for image matching.
Recently the feature representations from large Deep Convo-
lutional Neural Networks (DCNNs) have shown to outperform
the existing features for image classification and recognition
tasks [27]. These networks are trained over millions of images
for image classification and object detection tasks. A recent
work by Sünderhauf et al. investigates the performance of DC-
NNs for the application of place recognition [49]. It evaluates
the feature descriptions from DCNNs on various datasets to
determine the impact of each layer of the place recognition
performance. In another approach, the author proposed to
combine region proposals and DCNNs to make the image
matching more robust to viewpoint differences and appearance
changes [50]. Neubert et al. proposed an approach to segment

Fig. 3: We compute the HOG descriptor on the dense grid of
32×32 pixels over the entire image. The global description is the
concatenation of all the cell descriptions which elevates the problem
of unstable keypoint representation.

Fig. 4: This figure shows an image from the Freiburg dataset fed to
the Alexnet and the corresponding feature map for one of the filters
for conv3 layer. It shows that the feature map focuses on the structural
part rather than non-salient parts like sky of the image.

patches based on multiscale superpixel grids instead of the
bounding boxes to achieve better performance than the method
of [50]. In this paper, we demonstrate that image matching
from even such complex networks is inaccurate and leveraging
non-linear sequential information can substantially boost the
performance.

Related to our method, Vysotska et al. [55] build up a
data association graph exploiting GPS information to simplify
the process of finding a sequence of matching images in an
offline fashion. For online localization, a search technique
similar to A∗ but with a non-admissible heuristic can be
used to efficiently find the current best matching sequence
[53, 52]. This approach can operate online but will commit
in one hypotheses and will not return multiple parallel ones
as the network flow approach presented in this paper. A
further extension of these works, exploits hashing techniques
to realize efficient relocalization after the vehicle has left the
previously mapped area [54]. Robust data associations using
our approach and robot odometry can be integrated into a
visual SLAM framework to produce consistent trajectories
across seasons [37]. Our approach uses network flows to con-
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sider the sequential nature of the data in the individual routes.
In other fields, network flows have been successfully used
to address data association problems when tracking multiple
people [56, 5]. Our proposed approach does not assume pre-
processed images and does not require any sort of environment
or condition specific feature learning. Naseer et al. [38]
use a Markov localization framework with HOG descriptor-
based image matching to show that sequential filtering can be
performed online. This approach, however, might suffer from
highly ambiguous false positives as it updates the state over the
whole database instead of the constrained graph-connectivity
as in our network flow approach.

III. VISUAL ROUTE MATCHING ACROSS SEASONS

We define the set D = (d1, . . . , dD) as the temporally
ordered set of images that constitutes the visual map of places
(the database) and D = |D|. The set Q = (q1, . . . , qQ) with
Q = |Q| refers to the query sequence that was recorded in a
different season or after a substantial scene change.

A. Matching Images

Vision-based localization for long-term navigation of au-
tonomous robots is an important and challenging problem.
The perceptional changes in the environment can be caused by
different times of the day, structural changes, different weather
conditions and seasons. View-point and scale variance in most
real-world applications while revisiting the same place makes
the problem harder. Traditional approaches extract keypoints
on the images and compute a hand-crafted feature descriptor
for that keypoint [33]. This is a sparse representation of the im-
age contents and highly depends on the keypoints repeatability.
The keypoints do not remain stable over large time lags and
the description of the keypoints changes dramatically which
leads to false keypoint correspondences as show in Fig. 2.
We present a novel semi-dense image description based on
HOG descriptors and also discuss the advantages of recently
introduced global features from Deep Convolutional Neural
Networks (DCNNs).

HOG: Instead of a sparse keypoint-based image description,
we propose a semi-dense global image description. To achieve
this we compute HOG descriptors on a dense grid of 32×32
pixels over the whole image of size 1024×768 pixels. This
dense representation allows viewpoint variance over an image
patch of 32×32 pixels as HOG describes a region by accu-
mulating the gradient regardless to its location. The overall
image descriptor h is a vector composed of the concatenation
of all the histograms of gradients computed on all the cells as
shown in Fig. 3.

DCNNs: Recently, deep networks have gained great impor-
tance in the computer vision community for various object
detection, image recognition and classification tasks. DCNNs
learn neuron weights over all stages of the network when
trained on a large number of labeled images. They consist of
convolutional layers in early stages while later layers provide
generic representation of the images for classification tasks.
In our application, the task of the vehicle is to recognize

Fig. 5: Illustration of the data association graph.

Fig. 6: Illustration of the connections Ea and Eb between matching
(green) and hidden (red) nodes. The green rounded rectangles are
only used for illustration: an edge between two rounded rectangles
means that all nodes contained in the first rectangle are connected
via a directed edge to all nodes in the second rectangle.

the similarity between the places so we extract feature rep-
resentation from early stages of the network. For this, we
use the Alexnet [27] architecture pre-trained on the ImageNet
database [44] inside the Caffe framework [23]. The conv3
layer of the Alexnet architecture has been shown to be robust
against perceptual changes [49], which is why we also use it
for our application of place recognition over longer periods
of time. We crop images to the size of 256×256×3 before
feeding them to the deep network and extract features from
the 3rd convolutional layer which has 384 filters with spatial
dimension of 13× 13, resulting in a global descriptor size of
64, 896. A feature visualization in such a setting is shown in
Fig. 4. The global descriptors are normalized and matched
according to Eq. (1). The idea is to show that, although
the feature representation from the complex neural networks
boosts the localization performance, image matching is not
perfect and high gain is achieved by leveraging the sequential
information.

We compute the similarity between image qi ∈ Q and
dj ∈ D by the cosine distance of the two image descriptors,
respectively hqi and hdj

:

cij =
hdj · hqi

‖hdj
‖‖hqi‖

, (1)

where cij ∈ [0, 1] and cij = 1 indicates a perfect match.
The matching matrix C has a size of Q × D and consists
of all cij , i.e., the cosine distances between all images of
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Q and D, computed according to Eq. (1). Normalization of
these similarity scores provide more distinctive values [38].
We normalize these scores by the mean of scores over each
column according to Eq. (2).

ĉij = cij

 1

Q

∑
i=1,...,Q

cij

−1 (2)

This normalization reduces the ambiguities arising from the
confusing database images which could match against most
of the query images.

In our approach, the network is a graph G = (X , E), where
X are the nodes and E the edges. We denote the quantity of
flow generated by the source node as F ∈ N.

B. Building the Data Association Flow Network

A standard approach to image-based localization returns for
a query image in Q the best matching image in D according
to the matching matrix C. Due to the visual change across
seasons, a best-match-strategy in C typically results in a poor
localization performance. In this paper, we leverage that Q and
D consist of image sequences that are recorded on a robot or
vehicle. As a result, locations are visited progressively and
images are not in random order. The matching patterns in the
matching matrix C reflect the temporal information of both
sequences. Our approach exploits the sequential nature of data
but does not assume that every image in Q has a matching
counterpart in D. We consider sequences that can start and stop
at any position in the query and database set. Both sets might
be composed of images that have been recorded at different
framerates or while traveling at different speeds.

In this paper, we propose to solve the visual route localiza-
tion problem by building a flow network and computing its
minimum cost flow. The minimum cost flow problem consists
of determining the most cost-effective way for sending a fixed
amount of flow through a network [2]. The flow network is
a directed graph with at least one source node and one sink
node. The source node is the one that produces flow and the
sink node is the one that consumes flow. To each edge, we
associate a cost w and a capacity r. A source node is connected
by only outgoing edges, a sink node by only ingoing edges.
The capacity defines the number of units that can flow over an
edge. Our idea is to build a flow network to model the possible
matches between D and Q. A minimum cost flow algorithm
finds a set of paths that connect the source to the sink
minimizing the path cost while transporting the specified flow
to the sink. Those paths represent multiple hypotheses about
the correct image matching and the estimation of the vehicle
route. In order to match complex temporal sequences that
include loops, we introduce special nodes to allow solutions
that contain partially matched sequences.

1) Nodes: The set X contains four types of nodes: the
source xs, the sink xt, the matching nodes xij , and so-called
hidden nodes x̆ij . The node xs is the node that creates all the
flow F and xt is the only sink that consumes it. A node xij

represents a match between the i-th image in Q and the j-th

image D, i.e., that both images are from the same location.
There exists a hidden node x̆ij for each matching node xij .
The hidden nodes represent "non-matches" between images
and such nodes allow for paths even though the image pairs
cannot be matched. These nodes are traversed during short
temporal occlusions or non-matching sequences that occur
when the robot deviates from the original route.

2) Edges: The edges in G define the possible ways of
traversing the graph from the source to the sink. Fig. 5
illustrates the connectivity of our graph. We define four types
of edges in E =

{
Es, Et, Ea, Eb

}
. The first set Es connects

the source to a matching node or to a hidden node:

Es = {(xs, x1j), (x
s, x̆1j)}j=1,...,D (3)

The set Es models that the first image of Q can be matched
with any image in the D via the matching nodes or that no
match is found via the hidden nodes. The second set of edges,
Et, represents all the connections that go to the sink:

Et =
{

(xQj , x
t), (x̆Qj , x

t)
}
j=1,...,D

(4)

The sink can be reached from any of the matching nodes
xQj and from the corresponding hidden nodes x̆Qj with
j = 1, . . . , D. This models the matching or non-matching of
the last query image.

The set Ea of edges establishes the connections between
the matching nodes as well as between the hidden nodes.
For clarity it has can be divided into forward edges Eaf and
horizontal edges Eah . The set Eaf connects nodes from the
current query image to the next and Eah allows the vehicle to
stop in the database for the same query image

Eaf =
{

(xij , x(i+1)k), (x̆ij , x̆(i+1)k)
}

i=1,...,Q
j=1,...,D

k=j,...,(j+K)
k≤D

(5)

Eah =
{

(xij , xi(j+1)), (x̆ij , x̆i(j+1))
}

i=1,...,Q
j=1,...,D−1

(6)

Ea = Eaf ∪ Eah , (7)

where k = j, . . . , (j + K). These edges allow for finding
sequences of matching images or sequences of unmatched
query images respectively. Finally, the last set Eb of edges
connects hidden and matching nodes:

Eb =
{

(xij , x̆(i+1)k), (x̆ij , x(i+1)k)
}

i=1,...,Q
j=1,...,D,

k=j,...,(j+K)
k≤D

(8)

The edges in Eb are the ones that are traversed when the
sequence is not continued with the children of a node. Edges
in Eb are the ones that are traversed when a matching is found
again so that the matching sequence can continue. See Fig. 6
for an illustration of the edges in Ea and Eb. As a design
decision, there are no edges connecting nodes back in time,
mainly for constraining the search space. However, this is not
a limiting factor: loops in the route can be found by solving
the flow network when F > 1.

The value of K specifies the number of considered path
hypotheses exiting from each node: the fan-out from a vertex
defines which of the subsequent images can be concatenated
to a path. Values for K > 1 allow for matching sequences
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Fig. 7: This figure shows the pipeline of our approach. We extract robust image features from image sequences to compute a similarity
matrix. We then build a data association graph over the matrix and leverage the sequential information using network flows to compute
multiple path hypothesis for vehicle localization.

recorded at different vehicle speeds or in case of different
camera framerates. An edge between nodes (i, j) and (i+1, j)
models a vehicle that does not move in Q and an edge between
(i, j) and (i, j+1) models that a vehicle does not move in D.
In our implementation, we use K = 4, which, according to our
experience in our experiments, seems to be a sufficient value
for typical city-like navigation scenarios. Edges connected to
hidden states capture the fact that the corresponding images
cannot be matched (due to strong changes, occlusions, etc.),
but allow the path to continue through some hidden nodes.
The hidden nodes can also be used to terminate a matching
sequence without terminating the overall localization process.
This is important to handle situations in which the vehicle
temporarily deviates from the route taken during mapping.
Thanks to this graph design, G is a directed acyclic graph
(DAG).

3) Edge Costs and Capacity: The cost of an edge connected
to a matching node xij is wij = 1

ĉij
, where ĉij is computed

according to Eq. (2). In the case in which the edge is
connected to an hidden node, the weight is constant, w̆ = W .
We determined W this parameter experimentally by using
a precision-recall evaluation. In addition to that, we set the
weight of the edges in Et and Eah to 0.

All edges that interconnect the hidden nodes have a capacity
r = F + 1 so that they can be considered for usage for each
unit of flow. All the other edges have a capacity of r = 1
so that they can be only used once. The path resulting from
the minimum cost flow on G corresponds to the best data
association between D and Q.

C. Minimum Cost Flow For Vehicle Localization

In this section, we provide a probabilistic interpretation
of our solution for solving this problem. Without loss of
generality, we present a formulation for F = 1. We define
the ordered set A = (xs, xa1

, . . . , xaA
, xt) where xai

is a
simplified notation indicating a vertex in X . The sequence A is
a route hypothesis, i.e., a sequence of matched images between
seasons. It contains only vertices that can be connected with
the edges presented in the previous section. Each sequence
starts at the source and ends at the sink. For finding the best

matching visual route, we find the optimal sequence A∗ with
a maximum a posteriori approach:

A∗ = argmax
A

p (A | X )

= argmax
A

p (X | A) p (A)

= argmax
A

p (A)
∏
i

p (xi | A) (9)

We consider all the xi to be conditionally independent given
A and define the prior p(A) as

p(A) = ps p(xa2 | xa1) . . . p(xaA
| xaA−1

)pt (10)

where ps and pt are the priors associated to the source and
sink. The term p(xai+1 | xai) is proportional to cai+1 . We
define the likelihood p(xi | A) of xi being part of A as

p(xi | A) =

{
1/Q if xi ∈ A
0 otherwise.

(11)

To search for the best solution of Eq. (9), we use a minimum
cost flow solver. An efficient implementation for minimum
cost flow is the one of Goldberg and Kennedy [22], which
has complexity O

(
|X |2|E| log |X |

)
. In our context, this is

expensive as typical problems consist of hundreds or thousands
of images. Note that in the special case of F = 1, finding a
minimal cost flow is equivalent to find the shortest path.

To solve this problem efficiently, we exploit the specific
structure of the graph. Our graph G is a DAG with non-
negative edges and each edge has either a capacity r = 1
or r = F + 1. This means that all paths through the matching
nodes found by the minimum cost network flow consist in
different paths. Given these restrictions, we formulate an
equivalent solution with a substantially smaller computational
complexity. Computing a shortest path in a DAG with a single
source can be done by topological sorting in O(|X | + |E|),
which is even more efficient than Dijkstra’s or the Bellman-
Ford algorithm. Note that, in our case, |E| depends linearly
with respect to |X |. For depleting all flow of the source node,
we repeat this procedure F times. This leads to an overall
complexity of O(F |X |) = O(F ·Q ·D).

Each execution of the solver leads to a loop-free path of the
vehicle, as a consequence of our graph connectivity. The flow
F controls the maximum number of vehicle path hypotheses
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Fig. 8: The trajectories of all the sequences of FAS dataset are visualized in a satellite image. The vehicle route is shown in yellow.
Left: The first sequence recorded in May 2012 with the trajectory length of 10 km. Middle: The trajectory traversed in December 2012.
Right: The trajectory traversed in May 2015, which includes different routes because of road construction and traffic jams.

Fig. 9: The Freiburg dataset captures significant perceptual and structural changes over the span of 3 years. This figure shows one such
scenario (left) where a new building was constructed within the period of five months between the visits.
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Fig. 10: Sequential information using our non-linear network flow
approach boosts the localization performance outperforms the best
match strategy for all the feature descriptors.

that are found in the graph. As there are at most F iterations,
the system returns the F best paths. In this way, we are able to
report sequences that include up to F traversals of the same
loop. The parameter F is either set beforehand by limiting
the search to F possible solutions or by repeating the search
until the computed path is dominated by hidden nodes (non-
matching events).

IV. EXPERIMENTAL EVALUATION

We evaluated our approach on a variety of datasets which
manifests the generalization of our approach over various
perceptual conditions. We furthermore illustrate that it out-
performs two state-of-the-art methods, namely FABMAP2 and
SeqSLAM. For the evaluation, we recorded datasets by driving

through a city with a camera-equipped car during different
seasons including summer and winter. We collected image data
while driving a distance of ∼ 55 km in Freiburg city, Germany,
overlayed on Google Maps Fig. 8. The Freiburg sequences
contain between 5, 392 and 30, 790 images. No rectification,
cropping, or other preprocessing has been applied to the
images. In the following subsection, we discuss in detail the
introduced dataset defined as Freiburg Across Seasons (FAS).
Furthermore, we evaluated our approach on several publicly
available datasets such as the VPRiCE-dataset1, the Nordland
dataset2, the NewCollege Dataset[47] and the Gardenspoint-
Walking dataset 3. The datasets include, viewpoint variances,
illumination changes and extreme seasonal variations. The
datasets also exhibit visits to new places, overlapping routes,
different camera frame rates and typical real world driving
maneuvers affecting the speed of the vehicle.

A. Dataset: Freiburg Across Seasons (FAS)

In this subsection, we discuss the introduced dataset which
captures the longterm perceptual changes across a span of
3 years. We recorded the image sequences with a forward
facing bumblebee stereo camera mounted on a car. During
summer, the camera was mounted outside the car where as
during winters the camera was inside the car as it can be
observed in Fig. 1. The image sequences are recorded at
relatively low frame rates of 1 Hz and 4 Hz. All the images
have a resolution of 1024 × 768 (width×height) and are
JPEG compressed. We do not perform any preprocessing on

1 https://goo.gl/R0QYU2 2 https://nrkbeta.no/2013/01/15/
3 https://goo.gl/tqmWyq
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Fig. 11: Top: Our approach achieves higher average precision and
outperforms best-match strategy and OpenSeqSLAM. The network
flow solution with horizontal edges achieves better precision but
suffers from a lower recall than the solution with two flows without
horizontal edges (NF2). Bottom: Our approach successfully estimates
route of the vehicle, even though it takes different routes in both the
sequences with overlapping places. We take advantage of multiple
flows in this example to estimate the complete route as single flow
does not retrieve the whole path because of the constrained transition
model.

the recorded images. We provide stereo images for the all
the recorded sequences which can be further used to extract
the depth information of the scene. All the images are geo-
tagged with the corresponding GPS positions (which have been
recorded with an inexpensive GPS sensor). We recorded the
first sequence in May 20124 covering a distance of 10 km. It
contains 6915 images recorded at 1 Hz. While driving through
the city, we encountered all the natural driving maneuvers.
The next sequence was recorded in Winter 20125 during the
month of December to capture the large perceptual changes
over these months. This sequence covers a distance of 50 km.
It contains 30, 790 images recorded at 4 Hz. The routes were
obstructed by road constructions, hence the exact overlap
between the trajectories was not possible. Fig. 9 shows the
snow covered roads, bare trees, strong sun glare and wet
roads. Fig. 9 also shows an example of structural change
that is captured during the recording of these sequences.
All such perceptual variations are captured in our datasets
making it valuable for the evaluation of vision-based methods
for longterm localization. We recorded the third sequence in

4 goo.gl/1Jf3kI 5 goo.gl/AvZvjc

Summer 20156 during the month of May. The trajectory of
the sequence is shown in Fig. 8 (Right) and it contains 5, 392
images. We recorded two sequences that captured summer
season in May 2012 and May 2015, therefore we define
them as Localization-1 and Localization-2 respectively. The
sequence recorded in Winter 2012 is defined as the Mapping
sequence. We provide ground truth for all the localization
sequences with reference to the Mapping sequence. All the
images have been hand-labeled after manual visual inspection
for the ground truth matching. We rank the images based on
their GPS positions and then manually select all the images
from the mapping sequence which correspond to the same
place as from the localization sequence. Localization-2 has
4, 477 images that correspond to the same place as in the
Mapping sequence. This sequence provides a denser ground
truth than Localization-1 which has 3, 656 images representing
same places. In total, we provide ground truth matchings for
8, 133 images7. This makes it one of the largest datasets that
capture large perceptual changes in urban driving scenarios
over multiple years.

B. Variable Vehicle Speeds

The first experiment is designed to show the effectiveness
of our approach under different vehicle speeds. It consists of
676 summer images and 322 winter images from the Freiburg
dataset. We furthermore demonstrate that our approach gener-
alizes to different speeds of the vehicle while recording both
database and query sequences. The vehicle traveled the same
route with no visits to new places and no intra-trajectory loops.
Our approach matches the image sequences from both the runs
at a higher precision and recall. It successfully estimates the
route of the vehicle although it had different speeds while
recording the datasets and stopped couple of times at traffic
signals. In this experiment HOG features combined with the
sequential information performs the best. The Alexnet-bm do
not achieve higher recall than HOG features, which in turn
leads to lower performance even when integrated with the
sequential information as shown in Fig. 10. We provide
an extensive quantitative evaluation, further addressing the
performance of DCNN features from different architectures
and handcrafted features in IV-K.

C. Visits to New Places

The second experiment is designed to show that our ap-
proach is also robust to new visits of the vehicle while
recording the localization sequence i.e there does not exist a
match for every query image in the database. In this case,
our network flow approach uses the special hidden nodes
to continue the sequence while traversing the new places.
The dataset consists of a subset of the Freiburg dataset and
comprises of 781 summer images and 1, 328 winter images. In
this experiment we also highlight the effect of using multiple
flows and horizontal edges in the data association graph. In this
example, the path can be retrieved either by adding horizontal
edges or by multiple flows. Fig. 11 shows that the solution

6 goo.gl/Y2I6CI 7 goo.gl/PIZIvz, goo.gl/GDkmMq
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Fig. 12: Top: Our approach successfully estimates the path on the
Freiburg dataset. It shows that our approach generalizes to matching
large trajectories across seasons. The estimated path shows that our
approach handles multiple stoppages both in query and the database,
new traversals along with non-linear vehicle speeds. Bottom: The
performance curve clearly shows that the non-linear sequential infor-
mation adds significant gain over the best match using deep networks
as well.

with multiple flows achieve higher recall but lower precision.
It is because in the second flow the solution picks up more
false positives which are avoided by introducing the horizontal
edges. Horizontal edges in the graph enable to estimate the
path of the vehicle in a single flow at the cost of missing some
true matches. The horizontal edges can only help to reduce the
number of flows in the case of a loop-less trajectory.

D. Scalability
The third experiment is designed to emphasize the scala-

bility of our approach. In this experiment, we match the full
trajectories from summer and winter season recorded in May
2015 and December 2012 respectively. We recorded the dataset
while driving a 50 km long trajectory in Freiburg, Germany. It
consists of 30, 790 winter images and 5,392 summer images.
The results of our approach are shown in Fig. 12. For such
large trajectories we achieve high gain in the localization
performance by leveraging the sequential information using
our network flow approach. The best-match strategy with the
CNN features achieve 28% recall at 60% precision while with
network flow we achieve 59% recall at 60% precision which
is an improvement of 110%.

E. Generalization to Day-Night Scenarios
The next experiment is designed to show that we can

also address changes that result from operating during day
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Fig. 13: Top: The precision recall curve exhibits the advantage of
leveraging sequential information even with weaker hand-crafted
descriptors like HOG. Although the best-match strategy using DCNN
descriptors outperform HOG, with the sequential information both
the descriptors achieve a precision and recall. Bottom: It shows pair
of images successfully matched using our approach. It can be seen
that our approach is robust to challenging conditions like noisy night
images.

vs. night time and we used the GardenspointWalking dataset
for this purpose. The dataset comprises of low resolutions
and noisy images. It highlights the fact that our approach
does not depend on high resolution images and results in
robust localization not only across seasons but also across day
and night. It also shows the effectiveness of the sequential
gain along with the choice of hand-crafted features and the
features from CNN. This sequence neither contains visits to
new locations nor loops so all the images have one-to-one
correspondence. We achieve 70% precision at 60% recall for
HOG descriptors and 91% precision at 60% recall for CNN
features as shown in Fig. 13. Interestingly, in this case most of
the gain comes from adding the sequential constraints, where
both HOG and CNN achieve 94% recall at 95% and 96%
precision respectively. This experiment shows that in particular
scenarios our network flow approach can even boost the
performance of hand-crafted features by a great deal even if the
descriptor-based best matches are not highly discriminative.

F. Non-Urban Environments

The next experiment is designed to exhibit the generaliza-
tion of our approach to localize in non-structural environ-
ments under extreme seasonal variations. We evaluated our
approach on the Nordland dataset to support the claim. This
dataset contains sequence of images captured from a camera
mounted on a train and covers a 728 km long trajectory of
the mountainous areas through Norway. The images in top
row of Fig. 14 shows the extreme seasonal changes across
the two trajectories along the mountains. For descriptor-based
best matches the CNN features outperform HOG features by
117% but this gain is reduced drastically when sequential
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Fig. 14: Top: Our approach successfully matches this image pair
from the Nordland dataset captured in two different seasons which
demonstrates that the proposed approach generalizes to non-urban
environments as well. Bottom: The Nordland dataset is a special
case where the images are captured with a camera mounted on a
train which follows exactly the same route every time. Although,
the image description from DCNNs outperform the semi-dense HOG
based matchings, the large performance boost comes from leveraging
the sequential constraints. This dataset is a special case of a linear
trajectory so even the HOG based image matchings when combined
with the sequential information provide robust localization in this
particular case.

information as added. Both the feature descriptions with
sequential constraints achieve 95% recall at 96% precision in
this case. The sequential gain is dramatically high because of
the linear nature of the train trajectories which is a special
case.

G. Heterogeneous Trajectories

The next experiment is designed to show the performance
of our approach on a benchmark dataset to allow for better
comparisons. Thus, we used the publicly available VPRiCE
dataset using within the past years for benchmarking purposes.
This dataset is challenging as it comprises of sequences with
different season appearances, extreme view point variations
(images captured from a bike and a bus of the same place),
noisy low resolution images captured from a bike across day
and night. It also includes images for bidirectional loop closure
which have been ignored for precision recall calculation in
our current setup as it is not the scope of our paper. The
results on this challenging dataset are shown in Fig. 15. The
performance of OpenSeqSLAM on this dataset is relatively
better than the other datasets because half of the dataset
consists of the images from Nordland dataset. As these images
are pixel aligned without any viewpoint variance and linear
trajectory, OpenSeqSLAM performs relatively better. Whereas,
our approach retrieves matches from other sub-sequences as

well which increases the recall and we achieve 74% recall
with 81% precision and outperforms existing methods in this
case which illustrates that our approach is robust to multiple
perceptual changes and not tuned for a single condition
change.
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Fig. 15: Top: Leveraging the sequential information boosts the local-
ization accuracy on the VPRiCE-dataset. Even the complex feature
descriptions from deep nets do not provide exact image similarities
and the temporal information helps in eliminating false positives
which leads to better precision. Bottom: This pair of images show
a successful match using our approach in one of the challenging
scenarios where the two images are captured in different seasons and
from different lanes of the road.

H. Intra-Trajectory Loops

This experiment is designed to illustrate the advantage of
using multiple flows in our network flow approach. For this
experiment we use the NewCollege [47] dataset. This dataset
contains multiple loop closures in the same trajectory, which
are not retrievable with a single flow. We show that using
multiple flows increases the recall in this case as shown in
Fig. 16. Using two and three flows the maximum recall is
increased from 51% to 61% and 79% respectively.

I. Feature-based Localization

We also compare our method to FABMAP [12], a successful
state-of-the-art approach for feature-based visual localization.
For this experiment, we evaluated both OpenFABMAP2 and
our approach on a sub-sequence of the Freiburg dataset.
It consists of 1, 213 summer images and 596 images from
the winter dataset. It has variable vehicle speeds and vis-
its to new places. For the comparison to FABMAP2, we
used the OpenFABMAP2 implementation by [20] with its
default parameter settings. The original binary version of
FABMAP2 [11] provided by the Oxford Mobile Robotics
Group performs similar to OpenFABMAP2 . OpenFABMAP2
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Fig. 16: Top: Leveraging multiple flows in our data association graph
increases the recall and precision in the case of various loops in a
trajectory. Bottom: It highlights the advantage of using multiple flows
for various path hypothesis, involving intra-season loop closures. The
first flow retrieves the diagonal of the trajectory where as adding more
flows retrieve true matches from the loop closures which increases
the recall.

does not retrieve meaningful matches, whereas our approach
retrieves 60% matches with 93% precision for the chosen
threshold value as shown in Fig. 20. This is due to the
keypoint-based feature descriptors used for feature matching
in FABMAP2. As explained earlier, those may be suboptimal
for matching across seasons, e.g., see Fig. 2. Please note that
FABMAP2 uses single image for matching places whereas our
method uses sequential information together with robust image
features.

J. Evaluation of the Influence of Different Parameters

The next evaluation is designed to illustrate the change in
performance when varying different parameters used in our
approach. We start with discussing the impact of different
patch sizes for HOG descriptor on the localization accuracy
of the approach. We evaluated patch sizes of 32×32, 64×64,
and 128×128. We discuss the effect of varying the value of K
in the data association graph on the accuracy of our approach.
We provide quantitative evaluations for both these parameters.

HOG Cell Size: In this experiment, we evaluate the effect
of the cell size for computing HOG descriptors on the place
recognition performance. The GardenspointWalking dataset
has images captured with a hand held camera from left and
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Fig. 17: Top: It shows the effect of cell size to compute HOG descrip-
tors on image matching subjected to viewpoint variations. The cell
size of 32× 32 used in our approach outperforms smaller and larger
cell sizes. Bottom: This figure shows the image pair successfully
matched with HOG-32 and without the sequential information.

right orientations to exhibit viewpoint differences as shown in
Fig. 17. We evaluated four cell sizes with the side length of
(16, 32, 64, 128) in this experiment. Fig. 17 shows that the
cell size of 32 × 32 outperforms the other configurations.
The possible explanation for this is that the smaller cell size
does not provide enough freedom for viewpoint variations,
whereas the descriptions with the higher cell sizes are not
discriminative enough and lead to inferior performance. This
supports our choice of the cell size with the side length of 32
for a discriminative image description. The dimension of the
descriptor D depends on the cell size C as,

D =
W
C
× H
C
× B (12)

where W,H is the width and the height of the image cor-
respondingly, and B = 128 is the number of Bins for the
orientation of a particular cell. This configuration leads to the
descriptor size of 98304 in our case.

Reachability of the Data Association Graph: The number
of outgoing edges from a node in our data association graph
(parameter K) affects the reachability of nodes from the
current query to the next one. Thus, we evaluate the effect
of this parameter on the localization accuracy of our approach
and provide an intuition about our choice. In this experiment,
we consider the same sequence as in IV-I. This sequence
contains a split trajectory (unreachable with a single flow) as
shown in Fig. 20. We evaluated our algorithm’s performance
by varying the fanout for each node between 2 ≤ K ≤ 6,
furthermore, we show the effect of including horizontal edges
introduced in this paper and multiple flows to cope with such
split trajectories. Fig. 18 shows that we gain performance
boost with the fanout higher than 2, where K = 2 implies
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Fig. 18: This figure shows the impact of increasing the fanout (K) of
each node in our data association graph. Higher values of (K ≤ 4)
provide more flexible solutions to non-linear trajectories and resulted
in better performance. Increasing K>4, did not result in further gain
in the accuracy. Adding horizontal edges in the graph increases the
accuracy for lower values of K. Kxh implies fanout x with horizontal
links and NFy implies number of flows (y) in this case.

a linear trajectory with query stoppages. We achieve the
best F1 score of 0.73 and 0.77 with K = 2 and K = 4
respectively. Increasing the fanout provides more flexibility for
matching non-linear trajectories. With K > 4, we do not gain
any performance boost in this case, the performance rather
drops a little for higher values supporting the choice of our
fanout parameter. Furthermore, we evaluate the advantage of
including horizontal links between nodes, the best F1-score
with K = 2 and horizontal links increased from 0.73 to 0.76.

The whole set of query images cannot be matched to
the database using a single flow in the localization run.
Therefore, we evaluate the performance using two flows in
this experiment. Fig. 18 shows that we retrieve higher number
of matches at the cost of more false positives. Hence, our
maximum recall increases from 81% to 93% but the overall
best F1-score does not show an improvement in this case.
Thus, we can state that increasing the fanout in our data
association graph provides more flexibility, multiple flows
enable to retrieve more matches, and the horizontal edges can
improve the performance for lower values of outgoing edges.

K. Comparing Handcrafted and Deep Features

The next experiment is designed to illustrate the effect of
deep features. We discuss the significance of image feature
description for robust localization. We have shown that fea-
tures extracted from Alexnet outperformed the handcrafted
features except in the experiment IV-B. There has been a great
deal of research in improving these architectures for improved
image recognition and classification tasks. Here, we show
that improved feature architectures can lead to further perfor-
mance gains and illustrate that using the localization results
on three datasets (Variable Speeds, VPRiCE, Freiburg City).
Simonyan and Zisserman [46] introduce a novel deep archi-
tecture (VGG) that has shown state-of-the-art performance for
image classification tasks outperforming Alexnet. Therefore,
we evaluate VGG on the experiment in IV-B to emphasize that
features extracted from these convolutional neural networks
are more robust than handcrafted features and can lead to
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Fig. 19: This figure signifies the importance of improved convolu-
tional architectures for robust image descriptions. VGG outperforms
Alexnet architecture and handcrafted HOG features in all the cases.
We achieve further gain in the performance by leveraging our graph-
based sequential information.

great advancements in place recognition and visual localization
under adverse environmental conditions. Second, evaluation
of VGG quantifies its performance on the VPRiCE dataset,
as it consists of multiple scenarios like GardensPointWalking,
Nordland and other sub-sequences. Therefore this experiment
signifies its performance on most of the datasets discussed in
this paper. Furthermore, we also evaluate VGG on the full
city-scale dataset to provide a fair comparison under almost
all the scenarios discussed in this paper. The quantified results
based on the best F1-scores are shown in Fig. 19. The features
from VGG provides an average of 14.3% performance boost
compared to Alexnet. The localization accuracy is further im-
proved by leveraging our graph-based sequential information
by 10.3% on average compared to image-matching only based
on VGG-based feature representation.

L. Runtime Evaluation

The next evaluation is designed to show the runtime re-
quirements of our approach. Feature matching and feature
extraction are generally the most time consuming operations
and thus we provide only these timings here. We implemented
feature matching on a GPU to cope with large databases
effectively. We report timings for feature extraction of a single
image and feature matching of single image-pair in Tab. I. For
the Freiburg City dataset, it takes 120 ms to match a query
image to the entire database of 30, 790 images. Thus, our
feature extraction and matching runs at 7.5 hz for the largest
dataset discussed in our experiments.

To summarize, we designed various experiments to show
that our approach provides robust localization under large
perceptual changes due to seasonal variations, different times
of the day, and in different outdoor environment types. It
performs well in large scale outdoor spaces. Our method
handles natural driving maneuvers such as multiple revisits
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Fig. 20: We used the OpenFABMAP2 implementation in the localiza-
tion -only mode i.e without creating new places. We match the query
images with the database images with the default parameter settings
of the implementation. Only few correct matches are found by
OpenFABMAP2. This is due to the keypoint-based feature descriptors
like SIFT and SURF which are not repeatable over seasons. Whereas
our approach retrieves most of the matches with high precision.

Operation GPU (ms) CPU (ms)
Feature Extraction(DCNN) 8.0 31.0
Feature Extraction (HOG) - 20.0
Feature Matching (HOG & DCNN) 0.004 0.1

TABLE I: GPU provides a speedup of factor 25 in feature matching
and performs approximately 4 times faster than CPU-based imple-
mentation for feature extraction.

of the same place, visits to unseen areas and different driving
speeds of the vehicle.

V. CONCLUSIONS

In this paper, we addressed the problem of visual localiza-
tion using image sequences. We proposed a novel approach
that is designed to perform localization even under substantial
seasonal changes, e.g., summer vs. winter. We evaluated semi-
dense image descriptions using HOG and global features
from deep CNNs combined with a directed acyclic data
association graph. We formulated the problem of matching
image sequences over seasons as a minimum cost network
flow problem and also solved the issue of dealing with non-
matching image sequences that may result from collecting
data at new places. Our experimental results suggest that
our approach allows for accurate and robust matching across
seasons and that it outperforms existing methods based on
keypoint-based descriptors, descriptors from deep CNNs and
also methods like OpenSeqSLAM, which also use sequence
information with intensity-based image matchings.
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