
Revisiting Fast and Accurate RGB-D Odometry
for Real-World Use by Embracing Simplicity

Sumanth Nagulavancha Dhagash Desai Saurabh Gupta Luca Lobefaro
Cyrill Stachniss Ignacio Vizzo Tiziano Guadagnino

Abstract— Robust and accurate pose estimation of a robot is
essential for many tasks. Over the past decades, researchers
have explored odometry estimation using various sensors,
including RGB cameras, LiDARs, and RGB-D cameras. RGB-D
cameras, mainly, are attractive sensors as they provide color
and depth. Despite the progress made in the RGB-D odometry
approaches and systems sharing code, their practical use is
often non-trivial due to technical debt in several open-source
implementations. In some cases, approaches have been tuned
to specific benchmarks, complicating the extension of imple-
mentations to different RGB-D sensors and environments. This
paper introduces an easy-to-use and easy-to-understand yet
robust RGB-D odometry pipeline adaptable across sensor plat-
forms. We focus on simplicity and contribute a non-black-box
RGB-D odometry approach and proper implementation to
the community. Our open-source system utilizes ORB features
for correspondence estimation and employs a frame-to-map
registration strategy to estimate camera poses. Our system
achieves performance on par with state-of-the-art methods
while running faster than the sensor frame rate on a single-core
CPU. Importantly, our approach does not require integrating
IMU data or additional hardware like GPUs, making it easily
deployable on various platforms.

I. INTRODUCTION

Estimating the ego-motion of a robot, known as odometry,
is essential for various robotic tasks. It is also a fundamental
component in applications like simultaneous localization and
mapping (SLAM) [14]. Recent advancements have intro-
duced diverse odometry estimation techniques using differ-
ent sensors, including RGB cameras [10], [11], [26], [34],
LiDARs [5], [15], [50], [51], RADARs [20], and RGB-D
sensors [24], [35], [36], [46]. RGB-D cameras offer the
advantage of providing both RGB and depth measurements,
effectively resolving scale ambiguities inherent in visual
odometry estimation using an RGB camera. Despite being
often less accurate, RGB-D cameras offer a cost-effective
and energy-efficient alternative to LiDARs.

While the RGB-D odometry research field has made
tremendous progress in the past decade [7], [9], [25], [35],

The authors Sumanth Nagulavancha, Dhagash Desai, Saurabh Gupta,
Luca Lobefaro, Tiziano Guadagnino and Cyrill Stachniss are with the
University of Bonn, Center for Robotics. Sumanth Nagulavancha is addition-
ally with Evitado Technologies, Germany. Cyrill Stachniss is additionally
with the Lamarr Institute for Machine Learning and Artificial Intelligence.
Ignacio Vizzo is with Dexory, UK

This work has partially been funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) under Germany’s Excellence
Strategy, EXC-2070 – 390732324 – PhenoRob, by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) under STA 1051/5-1
within the FOR 5351 (AID4Crops), and by the German Federal Ministry
of Education and Research (BMBF) in the project “Robotics Institute
Germany”, grant No. 16ME0999.

Fig. 1: Examples of reconstructions obtained from real-world data
collected with an Intel RealSense D455. We showcase the geometric
and photometric quality of the reconstruction obtained by exploiting
the poses estimated with our approach.

available research implementations of RGB-D odometry sys-
tems can present quite significant technical debt. This results
in software packages that are partially challenging to install
and run due to the high number of software dependencies and
pose a high barrier to entry for usage on real robots. More-
over, some implementations are tailored to specific bench-
marks or datasets [45]. Additionally, some approaches [9],
[25] are tightly coupled with particular software frameworks
like the robot operating system (ROS) [41], limiting their
usability to framework-specific data. Furthermore, a subset
of methods require additional sensors such as an inertial
measurement unit (IMU), demanding extra efforts for sensor
synchronization or specialized hardware acceleration like
GPUs to achieve real-time performance [8], [36], [48], thus
making it harder to adapt them to other platforms. This
highlights the necessity for a straightforward yet efficient
RGB-D odometry system capable of standalone operation
and easy generalization to other platforms without relying
on specialized hardware or additional sensors.

The main contribution of this paper is an
easy-to-understand yet efficient and effective RGB-D
odometry estimation pipeline designed to compute the

trajectory of a moving RGB-D camera at the sensor
frame rate. We give an example application of our approach
in Fig. 1. Our method does not require an IMU or specialized
hardware such as GPUs, thereby realizing simplicity and
generalizability to other platforms. We start from an initial
pose estimate computed based on the previous motion
of the camera and refine this initial pose by registering
the input RGB-D frame with a local map representation.
To this end, we extract image keypoints and descriptors
from the RGB image and associate them with the depth
information. We combine the image descriptors with the
random sample consensus scheme (RANSAC) [12] for
correspondence estimation between the frame and the local
map representation. Furthermore, we implement a reliable
registration scheme between the data associations using
the iteratively reweighed least-squares [16] algorithm to
estimate the pose of the sensor.

We make four key claims: our approach (i) performs
on par with state-of-the-art methods in terms of odometry
accuracy; (ii) computes the RGB-D odometry faster than
the sensor frame rate on a single-core CPU; (iii) is signifi-
cantly easier to understand and run compared to the existing
approaches, with a smaller codebase and fewer software
dependencies, and (iv) can operate in real-word scenarios
and not just on benchmarks. These claims are backed up by
the paper and our experimental evaluation. We provide an
open-source implementation at: https://github.com/
sumanthrao1997/simple_rgbd_odometry.git.

II. RELATED WORK

Since the introduction of the first consumer-grade RGB-D
camera, Microsoft Kinect, in 2011, numerous studies have
explored RGB-D odometry and SLAM. In standard formu-
lation, the RGB-D pose estimation problem is expressed
using a probabilistic model on the unknown camera motion
given noisy measurements as input. A maximum likelihood
approach is employed to find the model parameters that
maximize the probability of obtaining the measurements
given the camera pose [10], [11], [25], [28], [35], [43].
RGB-D odometry estimation can be categorized into indirect,
direct, and hybrid methods [52].

Indirect methods focus on optimizing the error between
geometric correspondences in consecutive images. Vari-
ous image descriptors, including SIFT [31], SURF [1],
BRIEF [2], and ORB [42], can be used to estimate geo-
metric correspondences [17], [18], [34], [43], [44]. RGBD-
SLAMv2 [9] is the first open-source RGB-D pose estimation
system designed to operate at sensor frame rate. It em-
ploys SIFT descriptors with RANSAC for robust geometric
matching and least-squares optimization for camera pose
estimation. ORB-SLAM3 [3] is a popular Visual SLAM
pipeline supporting RGB-D cameras. It incorporates ORB
features and operates in a frame-to-map alignment scheme
for pose estimation with RGB-D cameras. Despite its pop-
ularity, ORB-SLAM3 lacks ongoing support and presents
challenges in maintenance and comprehension due to its
complex software interfaces. KISS-ICP [50] offers a simple

open-source LiDAR odometry pipeline adaptable to RGB-D
sensor data.

In contrast to feature-based approaches, direct methods
operate on raw sensor measurements, assuming consistent
pixel intensity across images to estimate camera motion by
minimizing photometric error. KinectFusion [36] pioneered
direct RGB-D odometry but is limited to small scenes, and
operation at sensor frame rate requires a GPU. Kerl et
al. [24] introduced a probabilistic approach for frame-to-
frame motion estimation based on pixel intensity. Concha et
al. [6] improved robustness with the integration of multi-
view constraints. Fontan et al. [13] achieved comparable
accuracy using only 24 points for tracking, eliminating
the need for feature matching and enhancing robustness to
blur and texture-less scenes. However, direct methods suffer
from artifacts due to surface reflectance models and sensor
artifacts arising from rolling shutter, auto-gain, and auto-
exposure. Despite their advantages, none of these methods
offer a usable open-source implementation.

Hybrid methods merge the advantages of direct and indi-
rect approaches and are resilient to dynamic objects and low-
texture environments. CPA-SLAM [32] integrates a global
plane model with direct image alignment, while BundleFu-
sion [7] combines sparse feature matching and dense error
minimization. SDTAM [30] refines alignment with coarse-
to-fine alignment strategy and ORB features. Color-ICP [40]
optimizes jointly geometric and photometric errors in colored
point clouds, addressing instability of iterative closest point
alignment on smooth surfaces. Despite improved accuracy,
hybrid methods pose challenges like complexity and compu-
tation and have limited open-source implementations. Color-
ICP stands out for its simplicity and availability in the
Open3D [53] library.

In summary, while many odometry approaches show
promising results, their open-source versions often pose us-
ability challenges [4], [21], [45]. These issues include limited
documentation, hard-coded optimizations for specific RGB-
D sensors, or the need for additional hardware like IMUs or
GPUs. Approaches targeting simplicity exist. An example is
KISS-ICP, which is designed for LiDARs. Our approach, in-
spired by the ORB-SLAM systems [3], [34], [35], leverages
feature-based methods with ORB keypoints for efficiency
and robustness. At the same time, we draw insights from
KISS-ICP and design a straightforward RGB-D odometry
system, achieving comparable accuracy to advanced methods
while operating faster than the sensor frame rate and ensuring
simplicity and generalizability across platforms.

III. OUR APPROACH

Our method computes the trajectory of a calibrated mo-
bile RGB-D camera by incrementally aligning the captured
sensor frames. In short, we extract ORB [42] keypoints
and descriptors from the RGB frame and associate the
keypoints with corresponding depth values. We employ a
voxel hash map known for its memory efficiency and quick
correspondence search [33] as our local map. Finally, we
implement a robust frame-to-map alignment strategy.

https://github.com/sumanthrao1997/simple_rgbd_odometry.git
https://github.com/sumanthrao1997/simple_rgbd_odometry.git

A. Extraction of ORB Features

Aligning a sequence of RGB-D frames involves extract-
ing distinct features and matching them across consecutive
frames. In line with the ORB-SLAM systems [3], [34], [35],
we use the oriented FAST and rotated BRIEF (ORB) [42]
feature descriptors for their efficient performance. These
descriptors exhibit good invariance to changes in viewpoint
and illumination and work consistently in many scenarios.
Additionally, the binary nature of ORB features enhances
memory efficiency, and the descriptor matching is fast by
leveraging the Hamming distance metric.

For each input RGB-D frame we extract an intermediate
representation called a Frame F = {kfi,ofi, dfi}, where
kfi ∈ R2 denotes the ith ORB keypoint extracted from
the f th RGB image, ofi ∈ {0, 1}256 is the corresponding
binary descriptor and dfi ∈ R+ is the corresponding depth
value of the keypoint kfi extracted from the depth image.
Furthermore, we filter F based on a depth threshold rmax
to extract F∗ because the depth measurements from RGB-D
cameras are typically reliable only until a certain distance.

B. Local Map

Similar to prior works [35], [37], [50], our RGB-D odom-
etry pipeline employs a frame-to-map alignment approach.
It aligns the current frame information with the informa-
tion accumulated so far, i.e., a local map, to incrementally
estimate the camera pose Tt by minimizing a geometrical
error function. To achieve this seamlessly, we need a data
structure that can store information from previously regis-
tered frames. Several RGB-D odometry systems [3], [13],
[35] use a keyframe-based internal map representation. A
recent study by Muglikar et al. [33] explores the voxel hash
map data structure in visual odometry, offering a memory
and computation-efficient solution while addressing the un-
bounded growth issue of keyframe-based representations.

In our implementation, we utilize a voxel grid as the local
map representation, with each voxel having a size of ν×ν×ν
and capacity for up to Nmax points per voxel. To manage map
growth, each voxel is designed as a circular buffer storing the
most recent points. After registering a frame with 3D points
in the local map, all keypoints are transformed to the camera
pose Tt and stored within the local map along with their
corresponding image descriptors. Additionally, we remove
voxels beyond the sensor depth threshold rmax and behind
the camera to prevent unbounded growth.

C. Frame to Map Alignment

To achieve reliable pose estimation Tt for a calibrated
RGB-D camera, we start with the extraction of the fea-
tures F∗. We predict the camera’s initial pose Tmotion,t
with respect to its surroundings using the constant velocity
model ∆Tpred,t. To further refine our motion prior Tmotion,t,
we register the current frame F∗ to the points in the local
map M. To this end, we first establish robust correspon-
dences between F∗ and the local map M using ORB
descriptor matching in combination with RANSAC [12].
Finally, we formulate a geometric error on the frame-to-map

correspondences and minimize the error with an iteratively
reweighted least-squares solution [16] for robust pose esti-
mation using the motion prediction Transac,t obtained from
the RANSAC step. Finally, we update our map and proceed
with the next input RGB-D frame.

1) Motion Prediction: As highlighted by Vizzo et al. [50],
odometry estimation in the context of mobile robots can be
formulated as estimating the deviation between the robot’s
expected and actual motion. Various methods exist to predict
the expected motion of a robot before proceeding with the
frame-to-map alignment. These include the constant velocity
model, spline fitting to previous camera poses, wheel odom-
etry from encoders, and motion estimation with IMUs. The
constant velocity model is the most widely applicable of
these options as it is computed solely based on the relative
motion between the previous camera poses. It also eliminates
the need for extra sensors like IMU and wheel encoders
or complex mathematical formulations like spline fitting.
Moreover, RGB-D cameras record data at 30 - 60 frames per
second, i.e., a new frame every 15 - 30ms. As a result of
the fairly high frame rate, the deviations from the constant
velocity model in such short intervals are typically minimal.

Using the constant velocity model, we can predict the
motion ∆Tpred,t ∈ SE(3) at the current time step t by us-
ing the previous pose estimates Tt−1 = [Rt−1, tt−1] and
Tt−2 = [Rt−2, tt−2], as:

∆Tpred,t =

[
R⊤

t−2 Rt−1 R⊤
t−2 (tt−1 − tt−2)

0 1

]
. (1)

This motion prediction from the constant velocity model
is then used to generate an initial guess for the remaining
parts of the pipeline as Tmotion,t = Tt−1 ∆Tpred,t .

2) Descriptor Matching and RANSAC: For correspon-
dence estimation between the keypoints in the current
frame F∗ and the 3D world points in the local map, we
first query the local map. We specifically look for voxels
inside a predefined search radius r of the current pose esti-
mate Tmotion,t. All the 3D points xmi, with their respective
feature descriptors omi, are extracted from the map. Then,
the descriptors in F∗ are matched against the descriptors omi

in the map with a brute force search using the Hamming
distance metric followed by the Lowe’s ratio test [31] to
establish bijective correspondences between F∗ and M.

To address outliers in descriptor matching arising from
sensor noise, occlusion, and tracking errors, we fil-
ter the matches with RANSAC [12]. Various techniques
such as Kabsch-Umeyama [23], [49] algorithm, P3P [27],
EPNP [29], and DLT [19] can be employed for the geo-
metric verification of descriptor matches within RANSAC.
Our RANSAC scheme specifically incorporates the Kabsch-
Umeyama algorithm due to its efficiency and minimal com-
putation using only three pairs of corresponding points.
Furthermore, the Kabsch-Umeyama algorithm also computes
a motion refinement ∆Transac,t ∈ SE(3), to increment our
motion prediction Tmotion,t towards the actual pose Tt.

In our RANSAC scheme, given the correspondence
set C= {(kfi, dfi,xmi) | kfi ∈ R2, dfi ∈ R,xmi ∈ R3},

Algorithm 1: Robust non-linear least-squares
Input: Inlier correspondences C∗ (2D-3D) from RANSAC,

camera intrinsic matrix K, maximum iterations N ,
updated pose estimate after RANSAC step Transac,t,
and convergence threshold ϵ

Output: Rigid transformation matrix Tt ∈ SE(3)
1 n← 0,Tt ← Transac,t
2 repeat
3 H ← 0 and b← 0
4 foreach {kfi, Xmi} ∈ C∗ do
5 J [i] ← J [i]

π K J [i]
T

6 e[i] ← π
(
K
(
T−1
t ⊕ xmi

))
− kfi

7 ω[i]← kernel-weight (∥e[i]∥2)
8 H ← H + J [i]ω[i]J [i]

9 b ← b + J [i]ω[i]e[i]

10 end
11 ∆x← H−1 b
12 Tt ← exp (∆x)Tt

13 n ← n+ 1

14 until n ≥ N or ∥∆x∥ < ϵ

15 Function kernel-weight(e):
16 ω ← 1

|e|
17 return ω

we first unproject the frame keypoints kfi using the
provided camera calibration matrix K and the current
motion prediction Tmotion,t using:

xfi = Tmotion,t ⊕

(
dfi K−1

[
kfi

1

])
, (2)

where, dfi is the depth value, xfi is the 3D point in world
frame corresponding to keypoint kfi, and

T ⊕ p = T
[

p
1

]
with T =

[
R t
0⊤ 1

]
. (3)

In each iteration of the RANSAC scheme, we randomly
sample 3 correspondences from C to compute ∆Transac,t.
We apply the transformation ∆Transac,t to the 3D frame
points xfi to verify inlier matches within RANSAC. Then,
we compute the Euclidean distance to the corresponding map
points xmi. Matches with distances larger than a predefined
inlier correspondence threshold γ are considered outliers.
The RANSAC scheme terminates after a fixed number of
iterations or if a solution of high enough quality is found,
i.e., we obtain more than 50% inliers. The RANSAC algo-
rithm outputs the inlier correspondences C∗ and the motion
update ∆Transac,t. Finally, we update our motion prediction
to Transac,t = ∆Transac,tTmotion,t.

D. Robust Optimization

To achieve robust incremental global pose estimation Tt,
we formulate a projective frame-to-map geometric error
between the frame and map points within the inlier set C∗.
Then, we minimize this geometric error by employing
an iteratively reweighted least-squares algorithm [16]. The
choice of minimizing the projective error instead of the
point-to-point distance arises due to inconsistencies in the

depth measurements of RGB-D cameras. Given the uncertain
depth measurements, we incorporate the L1-norm [22] robust
kernel to reject outliers.

We formulate the projective error function in Eq. (4) and
compute the refined pose estimate Tt by minimizing this
error. ∑

(kfi,xmi)∈C∗

ρ
(∥∥∥π (K

(
T−1
t ⊕ xmi

))
− kfi

∥∥∥
2

)
. (4)

Here, π(·) is a projection function as given by Eq. (5),
and ρ(·) is the L1-norm robust kernel given by Eq. (6). We
use the motion prediction Transac,t as the initial guess for Tt.

π(x) =

[
x1

x3

x2

x3

]⊤
where x = [x1 x2 x3]

⊤ (5)

ρ(e) = |e| (6)

To solve the non-linear error function using the least-
squares algorithm, we compute the Jacobian J for each
correspondence set as given by Eq. (7), (8) and (9) as follows:

J [i] = J [i]
π K J [i]

T , (7)

J [i]
T =

[
I3×3 [−xmi]×

]
, (8)

J [i]
π =

[
1/x3 0 −x1/x

2
3

0 1/x3 −x2/x
2
3

]
, (9)

where [·]× transforms a vector to a skew symmetric ma-
trix. Eq. (9) is computed as the Jacobian of Eq. (5).

Then, we update the pose as described in Algorithm 1.
The termination criterion for the least-squares algorithm is
based on a threshold ϵ over the magnitude of the correction
applied to the pose in each iteration without explicitly setting
a maximum number of iterations. As a result, we obtain
the pose estimate Tt of each consecutive RGB-D sensor
frame. Finally, the keypoints in the current frame F∗ are
transformed to the world frame using the estimated pose Tt

and then are integrated into the local map using a first in,
first out approach.

IV. EXPERIMENTAL EVALUATION

The main focus of this work is to present a simple yet
effective RGB-D odometry pipeline that we implement as
described in this paper. We present our experiments that
support our key claims: our approach (i) performs on par
with state-of-the-art methods in terms of odometry accuracy;
(ii) computes the RGB-D odometry faster than sensor frame
rate on a single-core CPU, (iii) is significantly easier to
understand and run than existing approaches, with a smaller
codebase and less software dependencies, and (iv) can oper-
ate in real-word scenarios and not just on benchmarks.

Translation (m) Rotation (rad)

Dataset Sequence Color-ICP KISS-ICP ORB-SLAM3 RTAB-Map Ours Color-ICP KISS-ICP ORB-SLAM3 RTAB-Map Ours

TUM

fr1 xyz 0.025 0.011 0.007 0.007 0.006 0.037 0.012 0.007 0.011 0.013
fr1 rpy 0.063 0.027 0.014 0.012 0.011 0.281 0.029 0.014 0.033 0.033
fr1 desk 0.180 0.017 0.012 0.068 0.039 2.372 0.018 0.012 0.075 0.024
fr1 desk2 0.180 0.022 0.013 0.011 0.041 2.335 0.036 0.010 0.015 0.057
fr2 xyz 0.078 0.007 0.002 0.004 0.003 0.048 0.006 0.004 0.006 0.004
fr2 rpy 0.025 0.008 0.003 0.004 0.008 0.117 0.006 0.003 0.005 0.004
fr2 desk 0.213 0.033 0.004 0.006 0.032 0.113 0.020 0.005 0.007 0.020
fr2 desk with person 0.242 0.014 0.005 0.006 0.010 0.105 0.010 0.006 0.008 0.009
fr3 nostructure 0.061 0.018 0.010 0.011 0.013 0.026 0.013 0.010 0.014 0.014
fr3 structure 0.050 0.010 0.009 0.010 0.011 0.020 0.012 0.008 0.012 0.014
fr3 walking static 0.091 0.014 0.022 0.017 0.017 0.032 0.007 0.007 0.008 0.008

Bonn

balloon 0.020 0.018 0.021 0.0431 0.017 0.019 0.016 0.020 0.0566 0.018
crowd3 0.133 0.021 0.050 0.068 0.024 0.029 0.013 0.018 0.0719 0.016
person tracking 0.054 0.027 0.021 0.0809 0.033 0.022 0.025 0.027 0.1695 0.028
removing obstructing box 0.045 0.011 0.046 0.0271 0.010 0.026 0.011 0.034 0.0591 0.011

TABLE I: Comparison of the relative pose error in translation and rotation for the TUM and Bonn RGB-D Dynamic datasets. The values
highlighted with red in each row show the best-performing method on the sequence, and the blue color indicates the second-best method.

A. Datasets and Metrics

We evaluate our approach using data from the TUM
RGB-D Benchmark [47] and the Bonn RGB-D Dynamic
Dataset [39]. To evaluate the performance of odometry,
we compute the root mean square of the relative pose
error (RPE) in translation and rotation. The ground truth
poses are provided with the datasets for evaluation.

We compare our approach with the well-known RGB-D
SLAM approach, ORB-SLAM3 [3], by turning off the loop
closure module in the pipeline. Similarly, we also com-
pare against the popular open-source SLAM framework,
RTAB-Map [28], using its RGB-D odometry component.
Furthermore, we compare our approach with recently pub-
lished approaches, KISS-ICP [50] and Color-ICP [40].

Throughout the experimental evaluation, our approach
uses a consistent set of parameters. We start with the sensor
depth set to rmax = 5.0m and a camera calibration matrix K
specific to the sensor in use. We set the maximum number
of ORB keypoints detected in each frame to 1000. For the
local map, we set the voxel size to ν = 0.5m, and the
maximum number of points in each voxel Nmax = 50. For
geometric verification of correspondences in RANSAC, the
distance threshold is γ = 0.2m. In the optimization loop,
the convergence criterion is ϵ = 0.001.

B. Odometry Performance

The results of our first experiment support our first
claim, namely that our proposed RGB-D odometry pipeline
performs on par with existing state-of-the-art systems. To
illustrate this, we evaluate the performance of our ap-
proach in terms of relative pose error (RPE) on the TUM-
RGBD Benchmark (TUM) and Bonn RGB-D Dynamic
Dataset (Bonn). Tab. I offer a comparative analysis in terms
of relative pose error in translation and rotation, considering
consecutive poses. It is important to note that we disable the
loop closure module in ORB-SLAM3 and RTAB-Map for a
fair evaluation of odometry systems.

In Tab. I, we observe that our method performs on par with
state-of-the-art RGB-D odometry systems. Regarding RPE
in translation, our approach performs better than all other
baselines in 4 out of 15 sequences, and we are second-best
performing in 4 out of 15 sequences. However, the accuracy
between the two best-performing methods is usually close.

In both experiments, ORB-SLAM3 exhibits better results
than our method due to its local bundle adjustment module.
We omit a bundle adjustment step in our implementation
for simplicity and yet perform comparably to ORB-SLAM3.
Our approach closely parallels or surpasses the performance
of ORB-SLAM3 and RTAB-Map in most sequences, show-
casing its precision and reliability in minimizing drift. We
explicitly highlight the performance of our approach in the
presence of dynamic obstacles in the challenging Bonn
RGB-D Dynamic dataset, where we are better than RTAB-
Map and ORB-SLAM3. KISS-ICP shows competitive results
in specific sequences in Tab. I because it uses the entire
3D pointcloud information to perform a dense alignment,
although at the expense of processing time. Color-ICP’s
performance is inferior due to its frame-to-frame alignment.

C. Computational Performance

Our next experiment evaluates the processing speed of our
pipeline, supporting our second claim that our approach can
perform RGB-D odometry faster than the sensor frame rate.
In the context of RGB-D odometry, a pipeline is considered
to operate at the sensor frame rate when it can provide a pose
estimate at 15 Hz or every 66 milliseconds. To evaluate the
processing time, we run all the sequences 10 times each for
every method, capturing the time taken to process each frame
and averaging it over all the sequences for both the TUM
and the Bonn RGB-D Dynamic datasets. We benchmarked
the pipeline on an Intel NUC equipped with an Intel(R)
Core(TM) i7-1270P CPU with 16 cores clocked at 4.8GHz
and 16GB of RAM, running Ubuntu 22.04. Note that our
approach uses only one core and a single thread.

Processing Time
Dataset Approach Average (ms) Standard Deviation (ms)

TUM

Color-ICP 322 62
KISS-ICP 60 26
ORB-SLAM3 14 1
RTAB-Map 36 5
Ours 25 8

Bonn

Color-ICP 322 62
KISS-ICP 160 42
ORB-SLAM3 11 1
RTAB-Map 35 3
Ours 36 12

TABLE II: Analysis of average processing time over 10 runs.

Codebase Code-lines Dependencies Last commit

ORB-SLAM3 23041 8 3 years ago
Color-ICP 3095 2 2 years ago
KISS-ICP 759 3 2 weeks ago
RTAB-Map 6932 13 1 week ago

rgbdslam v2 8399 7 6 years ago
ElasticFusion 5882 8 2 years ago
VINS-RGBD-FAST 16070 8 1 year ago
proSLAM 5509 10 6 years ago
dvo 3654 7 11 years ago

Ours 475 2 –

TABLE III: Comparison between the number of lines and manda-
tory software dependencies, evaluated in September 2024.

We report in Tab. II the mean and standard deviation of
the processing time of each approach. Our method performs
faster than the sensor frame rate on a single-core CPU,
with an average processing time of 25ms and 36ms for
the TUM and Bonn sequences, respectively. ORB-SLAM3
performs faster than our method, with a mean processing
time of 14 and 11 milliseconds. However, ORB-SLAM3
and RTAB-Map use a multithreaded implementation instead
of our single-threaded pipeline. Furthermore, our approach,
RTAB-Map, and ORB-SLAM3, are the only methods that
can process the frames faster than the sensor frame rate.

D. Software Comparison

In the third experiment, we aim to hint at the software
implementation to support our claim that the proposed sys-
tem is simple and easy to use from the software perspective
compared to existing methods. To this end, we evaluate the
code complexity of existing RGB-D odometry modules. A
well-known evaluation criterion in this context is the number
of code lines in a software package [38]. For the evaluation,
we decided to include just the main library of each software
package, as client code might differ in code lines depending
on the specific task at hand. In Tab. III, we report the number
of code lines for publicly available RGB-D odometry and
SLAM systems. To make the evaluation fair, we exclude the
loop closure and factor graph optimization modules from the
line count when they are present. Furthermore, we report
the number of mandatory software dependencies needed to
compile the different pipelines as a proxy measurement of
how the installation for each package is non-trivial. As we

Fig. 2: 3D reconstructions of our custom dataset recorded in the
robot lab of Institute of Photogrammetry, Bonn. The reconstruction
was performed offline by using the poses estimated by our approach.

can see from Tab. III, our approach has the least software
dependencies and the least code lines. Though we acknowl-
edge that this evaluation is a proxy measurement of code
complexity, assessing the complexity a user can face when
trying to use a software package is still significant.

E. Offline 3D Reconstruction on Custom Dataset

We also evaluate our approach on a custom dataset,
recorded using an Intel RealSense D455 camera on a
Clearpath Husky robot. The dataset includes changing il-
lumination, varying textures, and dynamic obstacles. This
scenario helps demonstrate the capabilities of our approach
to data collected by an actual robot rather than just on a
benchmark. As we lack the ground truth poses, we perform a
qualitative evaluation by reconstructing maps of the recorded
environments. We use the poses obtained from our pipeline
without any post-processing for noise or drift to generate a
dense 3D Map of the environment. Despite the sensor noise
in the RGB-D camera, it can be noted in Fig. 2 that the shape
of the objects in the reconstructions is still consistent. This
result demonstrates that the pose estimation was successful
without needing extra parameter tuning in our approach.

V. CONCLUSION

This paper presents an easy-to-use and understandable yet
effective and efficient approach for estimating RGB-D odom-
etry. Our method relies on a few core components to realize
the odometry pipeline, embracing simplicity and efficiency.
Furthermore, it does not require specialized hardware such
as GPUs, simplifying the deployment on real-world robotic
platforms. We evaluate our approach on different datasets
and provide comparisons to other existing techniques. The
experiments suggest that our RGB-D odometry pipeline is on
par with state-of-the-art odometry systems and performs well
on benchmark datasets as well as real-world data with the
same parameter set. Furthermore, our system operates faster

than the sensor frame rate in all presented datasets. Finally,
our open-source code is less complex than other baselines,
with fewer lines of code and software dependencies. We
believe that the proposed system will constitute a new
baseline for RGB-D odometry systems, not only in terms
of performance but also in software design.

REFERENCES

[1] H. Bay, A. Ess, T. Tuytelaars, and L.V. Gool. Speeded-up robust fea-
tures (SURF). Journal of Computer Vision and Image Understanding
(CVIU), 110(3):346–359, 2008.

[2] M. Calonder, V. Lepetit, C. Strecha, and P. Fua. BRIEF: Binary Robust
IndependentElementary Features. In Proc. of the Europ. Conf. on
Computer Vision (ECCV), 2010.

[3] C. Campos, R. Elvira, J.J.G. Rodrı́guez, J.M. Montiel, and J.D. Tardós.
Orb-slam3: An accurate open-source library for visual, visual–inertial,
and multimap slam. IEEE Trans. on Robotics (TRO), 37(6):1874–
1890, 2021.

[4] E. Cervera. Try to Start It! The Challenge of Reusing Code in Robotics
Research. IEEE Robotics and Automation Letters (RA-L), 4(1):49–56,
2019.

[5] X. Chen, A. Milioto, E. Palazzolo, P. Giguère, J. Behley, and C. Stach-
niss. SuMa++: Efficient LiDAR-based Semantic SLAM. In Proc. of
the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS),
2019.

[6] A. Concha and J. Civera. RGBDTAM: A cost-effective and accurate
RGB-D tracking and mapping system. In Proc. of the IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), 2017.

[7] A. Dai, M. Nießner, M. Zollhöfer, S. Izadi, and C. Theobalt. Bundle-
Fusion: Real-time Globally Consistent 3D Reconstruction using On-
line Surface Re-integration. ACM Trans. on Graphics (TOG), 36(3):1–
18, 2017.

[8] K. Eckenhoff, Y. Yang, P. Geneva, and G. Huang. Tightly-Coupled
Visual-Inertial Localization and 3D Rigid-Body Target Tracking. IEEE
Robotics and Automation Letters (RA-L), 4(2):1541–1548, 2019.

[9] F. Endres, J. Hess, J. Sturm, D. Cremers, and W. Burgard. 3D Mapping
with an RGB-D Camera. IEEE Trans. on Robotics (TRO), 30(1):177–
187, 2014.

[10] J. Engel, V. Koltun, and D. Cremers. Direct Sparse Odometry.
IEEE Trans. on Pattern Analysis and Machine Intelligence (TPAMI),
40(3):611–625, 2018.

[11] J. Engel, T. Schöps, and D. Cremers. LSD-SLAM: Large-scale direct
monocular SLAM. In Proc. of the Europ. Conf. on Computer Vision
(ECCV), 2014.

[12] M. Fischler and R. Bolles. Random Sample Consensus: A Paradigm
for Model Fitting with Applications to Image Analysis and Automated
Cartography. Communications of the ACM, 24(6):381–395, 1981.

[13] A. Fontán, J. Civera, and R. Triebel. Information-Driven Direct RGB-
D Odometry. In Proc. of the IEEE/CVF Conf. on Computer Vision
and Pattern Recognition (CVPR), 2020.

[14] G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard. A tutorial
on graph-based SLAM. IEEE Trans. on Intelligent Transportation
Systems Magazine, 2(4):31–43, 2010.

[15] G. Grisetti, C. Stachniss, and W. Burgard. Improved Techniques for
Grid Mapping with Rao-Blackwellized Particle Filters. IEEE Trans. on
Robotics (TRO), 23(1):34–46, 2007.

[16] G. Grisetti, T. Guadagnino, I. Aloise, M. Colosi, B. Della Corte, and
D. Schlegel. Least Squares Optimization: From Theory to Practice.
Robotics, 9(3), 2020.

[17] T. Guadagnino, X. Chen, M. Sodano, J. Behley, G. Grisetti, and
C. Stachniss. Fast Sparse LiDAR Odometry Using Self-Supervised
Feature Selection on Intensity Images. IEEE Robotics and Automation
Letters (RA-L), 7(3):7597–7604, 2022.

[18] S. Gupta, T. Guadagnino, B. Mersch, I. Vizzo, and C. Stachniss.
Effectively Detecting Loop Closures using Point Cloud Density Maps.
In Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA),
2024.

[19] R. Hartley and A. Zisserman. Multiple View Geometry in Computer
Vision. Cambridge University Press, second edition, 2004.

[20] D. Herraez, M. Zeller, L. Chang, I. Vizzo, M. Heidingsfeld, and
C. Stachniss. Radar-Only Odometry and Mapping for Autonomous
Vehicles. In Proc. of the IEEE Intl. Conf. on Robotics & Automation
(ICRA), 2024.

[21] C. Hertzberg, R. Wagner, O. Birbach, T. Hammer, and U. Frese.
Experiences in Building a Visual SLAM System from Open Source
Components. In Proc. of the IEEE Intl. Conf. on Robotics &
Automation (ICRA), 2011.

[22] P.J. Huber. Robust Statistics. Wiley, 1981.
[23] W. Kabsch. A solution for the best rotation to relate two sets of vec-

tors. Acta Crystallographica Section A: Crystal Physics, Diffraction,
Theoretical and General Crystallography, 32(5):922–923, 1976.

[24] C. Kerl, J. Sturm, and D. Cremers. Robust Odometry Estimation for
RGB-D Cameras. In Proc. of the IEEE Intl. Conf. on Robotics &
Automation (ICRA), 2013.

[25] C. Kerl, J. Sturm, and D. Cremers. Dense visual slam for rgb-d
cameras. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems (IROS), 2013.

[26] G. Klein and D. Murray. Parallel Tracking and Mapping for Small
AR Workspaces. In Proc. of the Intl. Symp. on Mixed and Augmented
Reality (ISMAR), 2007.

[27] L. Kneip, D. Scaramuzza, and R. Siegwart. A Novel Parametrization
of the Perspective-Three-Point Problem for a Direct Computation of
Absolute Camera Position and Orientation. In Proc. of the IEEE/CVF
Conf. on Computer Vision and Pattern Recognition (CVPR), 2011.

[28] M. Labbé and F. Michaud. RTAB-Map as an Open-Source Lidar
and Visual Simultaneous Localization and Mapping Library for Large-
Scale and Long-Term Online Operation. Journal of Field Robotics
(JFR), 36:416–446, 2018.

[29] V. Lepetit, F. Moreno-Noguer, and P. Fua. EPnP: An Accurate O(n)
Solution to the PnP Problem. Intl. Journal of Computer Vision (IJCV),
81:155–166, 2009.

[30] K. Liu, X. Gu, M. Yang, Y. Zhang, and S. Guan. Semi-Direct
Tracking and Mapping with RGB-D Camera. In Intelligent Robotics
and Applications, 2019.

[31] D. Lowe. Object recognition from local scale-invariant features. In
Proc. of the IEEE Intl. Conf. on Computer Vision (ICCV), 1999.

[32] L. Ma, C. Kerl, J. Stückler, and D. Cremers. CPA SLAM: Consistent
Plane-Model Alignment for Direct RGB-D SLAM. In Proc. of the
IEEE Intl. Conf. on Robotics & Automation (ICRA), 2016.

[33] M. Muglikar, A. Zhang, and D. Scaramuzza. Voxel Map for Visual
SLAM. In Proc. of the IEEE Intl. Conf. on Robotics & Automation
(ICRA), 2020.

[34] R. Mur-Artal, J. Montiel, and J.D. Tardos. ORB-SLAM: a versatile and
accurate monocular SLAM system. IEEE Trans. on Robotics (TRO),
31(5):1147–1163, 2015.

[35] R. Mur-Artal and J. Tardós. ORB-SLAM2: An Open-Source SLAM
System for Monocular, Stereo, and RGB-D Cameras. IEEE Trans. on
Robotics (TRO), 33(5):1255–1262, 2017.

[36] R.A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim,
A.J. Davison, P. Kohli, J. Shotton, S. Hodges, and A. Fitzgibbon.
KinectFusion: Real-Time Dense Surface Mapping and Tracking. In
Proc. of the Intl. Symp. on Mixed and Augmented Reality (ISMAR),
2011.

[37] R. Newcombe, S. Lovegrove, and A. Davison. DTAM: Dense tracking
and mapping in real-time. In Proc. of the IEEE Intl. Conf. on Computer
Vision (ICCV), 2011.

[38] A. Oram and G. Wilson. Making Software: What Really Works, and
Why We Believe It. O’Reilly Media, Inc., 1st edition, 2010.

[39] E. Palazzolo, J. Behley, P. Lottes, P. Giguere, and C. Stachniss.
ReFusion: 3D Reconstruction in Dynamic Environments for RGB-D
Cameras Exploiting Residuals. In Proc. of the IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS), 2019.

[40] J. Park, Q. Zhou, and V. Koltun. Colored Point Cloud Registration
Revisited. In Proc. of the IEEE Intl. Conf. on Computer Vision (ICCV),
2017.

[41] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Ng. Ros: an open-source robot operating system.
In Proc. of the ICRA Workshop on Open Source Software, 2009.

[42] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. Orb: an efficient
alternative to sift or surf. In Proc. of the IEEE Intl. Conf. on Computer
Vision (ICCV), 2011.

[43] D. Schlegel, M. Colosi, and G. Grisetti. ProSLAM: Graph SLAM
from a Programmer’s Perspective. In Proc. of the IEEE Intl. Conf. on
Robotics & Automation (ICRA), 2018.

[44] D. Schlegel and G. Grisetti. Visual Localization and Loop Closing
Using Decision Trees and Binary Features. In Proc. of the IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), 2016.

[45] D. Sharafutdinov, M. Griguletskii, P. Kopanev, M. Kurenkov, G. Ferrer,
A. Burkov, A. Gonnochenko, and D. Tsetserukou. Comparison of
Modern Open-source Visual SLAM Approaches. Journal of Intelligent
and Robotic Systems (JIRS), 107(3):43, 2023.

[46] F. Steinbrücker, J. Sturm, and D. Cremers. Real-Time Visual Odometry
from Dense RGB-D Images. In Proc. of the IEEE Intl. Conf. on
Computer Vision (ICCV), 2011.

[47] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. A
Benchmark for the Evaluation of RGB-D SLAM Systems. In Proc. of
the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS),
2012.

[48] Z. Teed and J. Deng. DROID-SLAM: Deep Visual SLAM for
Monocular, Stereo, and RGB-D Cameras. In Proc. of the Conf. Neural
Information Processing Systems (NIPS), 2021.

[49] S. Umeyama. Least-squares estimation of transformation parameters
between two point patterns. IEEE Trans. on Pattern Analysis and
Machine Intelligence (TPAMI), 13(4):376–380, 1991.

[50] I. Vizzo, T. Guadagnino, B. Mersch, L. Wiesmann, J. Behley, and
C. Stachniss. KISS-ICP: In Defense of Point-to-Point ICP – Simple,
Accurate, and Robust Registration If Done the Right Way. IEEE
Robotics and Automation Letters (RA-L), 8(2):1029–1036, 2023.

[51] J. Zhang and S. Singh. LOAM: Lidar Odometry and Mapping in
Real-time. In Proc. of Robotics: Science and Systems (RSS), 2014.

[52] S. Zhang, L. Zheng, and W. Tao. Survey and Evaluation of RGB-D
SLAM. IEEE Access, 9:21367–21387, 2021.

[53] Q. Zhou, J. Park, and V. Koltun. Open3D: A modern library for 3D
data processing. arXiv preprint, arXiv:1801.09847, 2018.

	Introduction
	Related Work
	Our Approach
	Extraction of ORB Features
	Local Map
	Frame to Map Alignment
	Motion Prediction
	Descriptor Matching and RANSAC

	Robust Optimization

	Experimental Evaluation
	Datasets and Metrics
	Odometry Performance
	Computational Performance
	Software Comparison
	Offline 3D Reconstruction on Custom Dataset

	Conclusion
	References

