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Abstract—Nano-size unmanned aerial vehicles (UAVs) hold
enormous potential to perform autonomous operations in complex
environments, such as inspection, monitoring or data collection.
Moreover, their small size allows safe operation close to humans
and agile flight. An important part of autonomous flight is
localization, which is a computationally intensive task especially
on a nano-UAV that usually has strong constraints in sensing,
processing and memory. This work presents a real-time localiza-
tion approach with low element-count multizone range sensors
for resource-constrained nano-UAVs. The proposed approach is
based on a novel miniature 64-zone time-of-flight sensor from
ST Microelectronics and a RISC-V-based parallel ultra low-
power processor, to enable accurate and low latency Monte Carlo
Localization on-board. Experimental evaluation using a nano-
UAV open platform demonstrated that the proposed solution is
capable of localizing on a 31.2m2 map with 0.15m accuracy and
an above 95% success rate. The achieved accuracy is sufficient for
localization in common indoor environments. We analyze tradeoffs
in using full and half-precision floating point numbers as well as a
quantized map and evaluate the accuracy and memory footprint
across the design space. Experimental evaluation shows that
parallelizing the execution for 8 RISC-V cores brings a 7x speedup
and allows us to execute the algorithm on-board in real-time with
a latency of 0.2-30ms (depending on the number of particles),
while only increasing the overall drone power consumption by
3-7%. Finally, we provide an open-source implementation of our
approach.

Index Terms—UAV, Localization, Autonomous navigation, nano-
UAVs, Perception, ToF Array

I. INTRODUCTION

Nano-size unmanned aerial vehicles (UAVs) fit in the palm
of a hand, weight only a few tens of grams, and therefore are
agile, able to pass through narrow gaps and safe to operate
in proximity of humans [1]. Achieving autonomous flight is
one of the most promising and difficult challenges for nano-
UAVs, as they need to execute key tasks for autonomous robot
navigation such as obstacle avoidance, localization, mapping
and path planning [2]. However, the restrictions in payload
and power consumption pose severe challenges in reaching the
autonomy of standard-size drones, as sensing and processing
are strongly limited [3].

Focusing on the localization task, RTK-GPS is commonly
used for outdoor scenarios [4]. Instead, in GPS-denied envi-
ronments, such as in indoor scenarios, onboard localization
is challenging, especially on nano-UAVs, as they can only
afford to spend around 10-15% for sensing and processing [5].
Enabling indoor localization on such constrained platforms is
pushing researchers to design approaches that are lightweight
and efficient — the most common ones are radio-based lo-

Fig. 1. Top: the nano-UAV localizing in the maze. Bottom: The ground truth
pose and the predicted pose for 4096 particles. The initial prediction starts
off in the wrong maze and then converges to the correct pose when more
observations become available. The color encodes the time, purple is the start,
red the end.

calization methods (mostly ultra-wideband (UWB) [6], [7])
or approaches that require off-board processing [8]. However,
these approaches have major drawbacks, such as depending
on external infrastructure and reliable communication to other
nodes or a powerful basestation with a reliable wireless con-
nection for off-board processing [8].

A successful and popular localization methodology is map-
based, which does not rely on external infrastructure [9]–[11].
To estimate the pose in a given occupancy grid map [9],
it is necessary to have range measurements, which can be
obtained by range-sensors such as LiDARs and depth/stereo
cameras [12]. However, these sensors are large, power-hungry,
and in the case of stereo cameras, also computationally ex-
pensive to process, thus making them unsuitable for most
nano-UAVs [3]. A promising alternative is recently-emerged
multizone time-of-flight (ToF) sensors, which is also suitable
for nano-UAVs and already proved to be robust and reliable
for obstacle avoidance [13]. The drawback of this sensor is its
low element-count, which is sufficient for obstacle avoidance
but proves challenging for localization.



This paper proposes a global localization system, based on
Monte Carlo localization (MCL) and exploiting novel miniatur-
ized low-power ToF sensors, not requiring previously installed
infrastructure. The proposed algorithm is designed to run online
on nano-UAV processors. In particular, the paper proposes an
algorithm where all the computations are performed on-board
on a milliwatt power RISC-V parallel system on chip (SoC),
avoiding communication latency and potential issues such as
range limits or security risks while significantly improving the
latency. To exploit the hardware architecture of the RISC-V-
based SoC, this paper presents a parallelized and memory-
efficient implementation tailored for the system’s computational
capabilities. Finally, the proposed approach has been experi-
mentally evaluated in the field, and an open-source implemen-
tation will be available. The nano-UAV with all sensors and
processors mounted is shown in Fig. 1. In our experiments,
we show that our approach is able to (i) accurately localize a
nano-UAV in a given map, using low element-count sensors
without infrastructure, (ii) reduce memory consumption with
quantization and lower precision floats without a significant
drop in accuracy, (iii) reduce latency by a factor of 7 through
parallelized implementation and localize on-board in real-time,
and (iv) operate with low power consumption, where sensing
and processing only consume below 7% of the overall power.

II. RELATED WORK

Recent literature has demonstrated that sensing and process-
ing on nano-UAVs is strongly limited, therefore, many previous
works have proposed solutions for autonomous navigation that
only rely on simple state estimation techniques such as an
inertial measurement unit and odometry for localization [3],
[13]–[15]. The major drawback of these approaches is their
inability to compensate for drift and recover from accumulated
errors [13]. Most drift-correction approaches use range mea-
surements to anchors with known locations [7].

In indoor scenarios, the most commonly used technology
is UWB, but approaches with Bluetooth or WiFi are also
available. They all have disadvantages — they require line-of-
sight between nodes, depend on pre-installed infrastructure [7],
[16] or can only estimate relative position [6]. The resulting
mean localization errors are often over 20 cm (22 cm in [7],
28 cm in [6]). In contrast to previous works, this paper focuses
on an infrastructure-less approach to globally navigate indoors:
a map-based localization approach using particle filters, which
was not explored on nano-UAVs until now.

Localization in a given map is an essential capability of
most autonomous robot systems, laying the foundation for
more complex tasks such as planning and manipulation. Prob-
abilistic approaches provide robust localization and include
seminal works such as the extended Kalman filter (EKF) [17],
Markov localization [18] and particle filters often referred to
as MCL [19]. These approaches are suitable for localization
using range sensors such as 2D LiDARs and sonars, as well
as cameras. Until now, this approach was nearly infeasible
on nano-UAVs, due to bulky power hungry sensors, and high
computational demands which are hard to satisfy on embedded
systems.
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Fig. 2. System overview, showing the hardware connections and data depen-
dencies between the Crazyflie and the three mounted extension decks.

For both the sensing and the processing challenges, promis-
ing hardware recently emerged. Although introduced on the
market only recently, lightweight multizone ToF sensors are
already working well for obstacles avoidance [13]. As for
powerful and energy-efficient SoCs for processing, SoCs of the
parallel ultra-low power (PULP) family have been employed
on drones before. The GAP8 SoC is utilized for corridor [15]
or person following [14]. These approaches use deep learning
with quantized models, but they do not venture into float-heavy
tasks such as particle-filter localization. A novel SoC, GAP91,
was recently released, which with 0.33mW per giga operation
(GOP) is an order of magnitude more power efficient than
GAP8 and most importantly, features increased memory and
floating point support.

In this work we combine a miniature multizone ToF sensor
with a novel processor to enable on-board infrastructure-less
localization in indoor environments with an accuracy that
surpasses the state of the art of localization in nano-UAVs with
UWB [6], [7].

III. SYSTEM ARCHITECTURE

This section presents a complete description of the proposed
infrastructure-less localization system for nano-UAVs; from the
hardware design, to the algorithm implementation, and the in-
field evaluation. We used the commercially available Crazyflie
2.1 platform from Bitcraze, extending its functionality with
custom expansion boards featuring new sensors and processors,
namely the VL53L5CX from STMicroelectronics and GAP9
SoC from GreenWaves technologies as main processing unit.
All used components are commercially available, and our hard-
ware design as well as the proposed embedded algorithm im-
plementation will be released as open-source2. Fig. 2 presents
our design, composed of the Crazyflie’s integrated hardware
and software parts (blue for hardware, green for software) and
our own additions (red for hardware, purple for software).
A. Hardware: Crazyflie and Extension Boards

The Crazyflie 2.1 is a commercially available open soft-
ware/hardware nano-UAV. In this work, we use its inertial
measurement unit (IMU), radio communication (using an
nRF51822, solely to log data and steer the drone) and the main
processor, an STM32F405 (168MHz, 192 kBRAM), which is
responsible for sensor readout, state estimation and real-time
control.

1https://greenwaves-technologies.com
2https://github.com/ETH-PBL/Matrix ToF Drones



1) Flow-deck v2: a commercially available deck, featuring
a downward-facing optical flow sensor and 1D ToF sensor for
odometry measurements. Those sensors improve the internal
position estimate provided by the Crazyflie firmware through
an extended Kalman Filter.

2) Multizone-ToF-deck: a custom deck, featuring up to two
VL53L5CX sensors (forward and backward facing), which can
provide a matrix of either 8x8 or 4x4 pixels at maximally 15Hz
or 60Hz respectively. For each zone, it provides a distance
measurement coupled with an error flag, which gets raised
when out of range measurements or interference are detected.

3) GAP9-deck: a custom deck, featuring GAP9, a RISC-V
PULP-based SoC. In our application, the multizone ToF sensor
measurements are acquired by the STM32 via an I2C bus and
then, together with the state estimation, sent on via SPI to the
GAP9 SoC.

B. Processor: GAP9

GAP9’s architecture is based on the open-source SoC
Vega [20] and features 10 RISC-V instruction set architecture-
based cores, extended with custom instructions. The compute
cluster, featuring 9 cores, one for orchestration and 8 work-
ers, delivers programmable compute power at extreme energy
efficiency. GAP9 features 128 kB of shared L1 memory. The
fabric controller (FC) has access to various peripherals and
features 64 kB RAM, 1.5MB interleaved memory (L2) and
even 2MB flash. The architecture employs adjustable dynamic
frequency and voltage domains, allowing us to tune the energy
consumption to the exact requirements at a particular point in
time. At peak performance the cores run at 400MHz on both
the cluster and the FC.

C. Algorithm: Monte Carlo Localization

This section first provides an overview of the Monte Carlo
localization algorithm and then explains our adaptions for
running it on-board and in real-time on GAP9.

1) Algorithm overview: MCL, most commonly used with
occupancy grid maps [9], [10], [19], is a particle filter-based
approach for estimating the posterior of the robot’s pose xt

given a map m, sensor readings zt and odometry inputs ut. As
the nano-UAV flies at a fixed height and localizes in a 2D grid
map, the nano-UAV’s state xt is defined by the 2D coordinates
(x, y)⊤ and the yaw-angle orientation θ ∈ [0, 2π). MCL has 3
main components: the prediction step using the motion model,
the correction step using the observation model and resampling
(Fig. 3). When odometry is available, we sample from the
proposal distribution p(xt | xt−1, ut) with odometry noise
σodom ∈ R3. The observation model describes the probability
of observing zt from pose xt given a map m, where each
observation zt is composed of K elements zkt . As we are using
a range sensor with an occupancy grid map, we chose the beam
end point model [21] as our observation model, as shown in
Eq. 1,

p(zkt | xt,m) =
1√

2πσobs
exp

(
−EDT (ẑkt )

2

2σ2
obs

)
, (1)

where ẑkt is the end point of the ToF beam in the occupancy
grid map m. We estimate the distance between each cell in the

Fig. 3. The logic flow of the Monte Carlo localization algorithm.

occupancy grid map to an obstacle (occupied cell) using the
Euclidean distance transform (EDT) [22]. The EDT is truncated
at rmax, a predefined maximal range. In addition to the three
main components (Fig. 3), we also include a fourth step, pose
computation, where the pose estimation is computed as the
weighted average over all particles.

2) Adaptions for Lightweight and Parallel Embedded Im-
plementation: The two main constraints in the nano-UAVs
hardware are memory and time - we need to use both re-
sources efficiently to enable MCL on-board in real-time. Our
implementation of MCL is asynchronous – the motion model
is sampled when odometry is available, and the particles are
re-weighted when new range measurements arrive. We only
consider new observations if the drone moves more than dxy
or rotates more than dθ. However, we configured our sampling
rates for the motion and observation update to be the same,
limited by the 15Hz maximum update rate of the ToF sensor.

The motion model, observation model and pose computation
can be parallelized exploiting the GAP9 cluster by distributing
the particles among the cores. The resampling step can also be
parallelized, however, as it depends on all weights, we can not
plan the workload distribution optimally.

The first step is weight normalization, which involves com-
puting the sum and dividing by it – we can parallelize this
step by splitting the particles evenly to all cores. We also store
the partial sums, as we can use them to parallelize the main
resampling step, drawing the new particles.

For drawing the new particles, we use a systematic resam-
pling algorithm [23], which we explain with the analogy of
a wheel, as shown in Fig. 4. We draw one random number,
corresponding to the first arrow in the wheel, with the other
N−1 arrows being fixed at regular intervals from that randomly
picked arrow. The colors show how we distribute the drawing
of the next particles to the cores. The current particle weights
are represented by the cone area they occupy. As we know the
partial sums computed by all cores, we can directly use them
to calculate which core will resample how many particles and
which. In Fig. 4 the colored arrows represent the new particles
picked by the corresponding cores.

The main components of MCL using memory space are the
particles and the map. The occupancy map requires 2 bits
per cell (to represent the 3 possible states), to simplify the
memory access we store it as 1 byte per cell. However, we
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Fig. 5. Left: The drone maze. Right: The occupancy grid map used for the
localization task, where the highlighted part corresponds to the drone maze

also precompute the EDT values for each cell, leading to an
additional floating point number being saved for every cell. To
decrease the memory usage, we compare three possibilities: 32-
bit floating point numbers, 16-bit floating point numbers and
quantized 8-bit unsigned integer values. For the particles, we
need four numbers each – one for x position, y position, yaw
angle and weight. With a 32-bit floating point representation,
this leads to 16 bytes per particle. However, as we are double-
buffering the particles for executing the resampling step, we
need 32 bytes per particle for the 32-bit representation, 16 bytes
for more memory-efficient 16-bit representations.

IV. EXPERIMENTAL EVALUATION

This section present our experiments to demonstrate the
effective capabilities of our framework. The results of our
experiments also support our key claims, our system can:
(i) accurately localize a nano-UAV in a given map, using
low element-count sensors without infrastructure, (ii) reduce
memory consumption with quantization and lower precision
floats without a significant drop in accuracy, (iii) reduce latency
by a factor of 7 through parallelized implementation and
localize on-board in real-time, and (iv) operate with low power
consumption, where sensing and processing only consume
below 7% of the overall power.
A. Experimental Setup

To evaluate the performance of our approach, we recorded
a dataset, including 6 sequences, while flying the drone in our
“drone maze”(Fig. 5). The recordings include ToF measure-
ments from two sensors, internal state estimation based on the
FlowDeck’s optical flow and ground truth pose. The ground
truth is extracted using a motion capture system, Vicon Vero
2.2, with six cameras positioned around the maze, covering

an area of 16m2. The map acquisition is done by manually
measuring the maze objects, which introduces some inaccuracy
and increases the localization challenge. For all experiments,
we use a map resolution of 0.05m by 0.05m per cell. The
algorithm parameters are σodom = (0.1 m, 0.1 m, 0.1 rad),
σobs = 2.0, rmax = 1.5 m, dxy = 0.1 m and dθ =0.1 rad,. To
challenge localization even further, we extended the map with
three artificial mazes, to a total of 31.2m2 of structured area.

Three aspects were considered — the localization accuracy,
the runtime performance and the system power consumption.
To evaluate the accuracy, we take into account 3 metrics - the
success rate, the time to convergence and absolute trajectory
error (ATE) after convergence. We define convergence to occur
when the estimated pose is close to the ground truth pose,
within a distance of (36°/0.2m). The localization is counted
as successful if the pose tracking remains reliable from con-
vergence until the end of the sequence, meaning that the ATE
does not exceed 1m.

B. Robust Localization with Sparse ToF

To support the claim that we are able to accurately localize
with low element-count sensors, we evaluated our approach on
six sequences. For each sequence, we repeated the localization
experiments with six different random seeds to verify robust-
ness. All of our experiments were executed using data from
both, front and rear, ToF sensors, unless explicitly mentioned.

Infrastructure-dependent localization approaches [6], [7] for
nano-UAVs, which were evaluated in similar environments to
ours, have achieved mean localization errors of 0.22m and
0.28m. As can be seen in Fig. 6 and Fig. 7, our approach can
localize with 0.15m accuracy and achieves above 95% success
rate with sufficient number of particles, outperforming the
existing approaches. An illustration of successful localization
can be seen in Fig. 1. Our experiments show that our approach
is robust with respect to the number of particles, providing ATE
of less than 0.2m for a large range of particle numbers.

We perform additional experiments to confirm the con-
tribution of the second (rear) ToF sensor. We compare the
performance with a pair of ToF sensors, refer to as fp32, to
that of a single ToF sensor which we refer to as fp321tof.
For both configurations, the accuracy is calculated for a 32bit
representation of the floats in the EDT and a particle’s weight
and pose. As shown in Fig. 7, the success rate when using
two ToF sensors is significantly higher, and the accuracy is
also improved sightly (Fig. 6). The convergence is slower when
using only 1 ToF sensor, as illustrated in Fig. 8.
C. Memory Usage

To support our claim, that we can reduce memory con-
sumption with quantization and lower precision floats without
significant loss of accuracy, we compare our optimized imple-
mentation against a full-precision implementation. We compare
the localization performance for three implementations of our
approach. The first implementation uses a 32-bit representation
for the floats in the EDT and particles (fp32). The second
implementation, (fp32qm) is using a quantized EDT whose
values are 8-bit unsigned integers. The third implementation
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(fp16qm) is a quantized EDT and an 16-bit float representation
for a particle’s weight and pose. As shown in Fig. 6 and
Fig. 7, the quantized implementations maintain high success
rate and provide accuracy that surpasses the full precision
implementation. As reported in Fig. 8, the convergence time is
improved for the optimized implementations. We speculate that
the quantization accelerates the rate in which weak particles are
eliminated in the resampling step, leading to faster convergence
and overall better performance.

As we do not observe a significant accuracy loss when
going down to 8-bit quantized EDT values, we can reduce
our memory requirements for the map from 5 bytes per cell
to 2 bytes per cell. For the particles, we saw that using half
precision instead of full precision representation does not result
in a significant accuracy drop, meaning we can reduce the
needed memory by a factor of 2. We visualize the memory
savings in Fig. 9, where we show how many particles and
square meters can be stored on the GAP9 in L1 (blue full
precision, yellow quantized/FP16) respectively L2 (red full
precision, green quantized/FP16) memory.

D. Real-time Performance

In support of our third claim, that we can reduce latency
through parallelized implementation and accurately localize on-
board in real-time, we compared our optimized implementation
against a naive implementation, and measured the latency
improvement achieved by parallelization.

In Tab. I we report the execution times per particle for the
four previously described steps executed sequentially on one
core and executed in parallel on 8 cores (while using the ninth
core of the cluster for orchestration). In Fig. 10 we show
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the achieved speedup for different numbers of particles. As
expected, the resample step scales the worst - however, for
high numbers of particles we can reach more than 5x speedup
even for this step. We also report the total speedup achieved
in orange - we can observe it improving until a factor of 7 at
high numbers of particles. Note that the total execution time is
around 40 µs higher than the sum of the four tasks, independent
of the numbers of particles and multicore usage, which are used
for preprocessing the sensor data and transferring information
to the tasks.

E. Power Consumption

In support of our fourth claim, that our approach can
operate with low power consumption, we performed power
measurements. Firstly, we analyzed the power consumption for
processing on GAP9. We analyze two working points, 1,024
particles, which can still fit in L1, and 16,384 particles, the
maximum number of particles we considered. We measured
the power consumption at the maximum possible frequency
and at the minimal frequency at which we can still operate in
real-time, meaning processing in less than 67ms. In Tab. II, we
report our results, consisting of the average power consumption
and the execution times at the respective frequencies.

Combined with the power needed for the sensors, 320mW
each, and the remaining Crazyflie electronics (besides motors),
280mW, all sensing and processing power sums to 981mW,
i.e., around 7% of the overall power consumption of the drone.



TABLE I
EXECUTION TIMES BY COMPONENTS FOR DIFFERENT NUMBERS OF

PARTICLES

execution time per particle 1 core / 8 cores in ns, GAP9@400MHz

Particles 64 256 1,024 4,096a 16,384a

Observation 8531/1412 8484/1313 8518/1283 8649/1294 8704/1295
Motion 2828/500 2715/391 2689/357 3002/390 2985/386

Resampling 313/250 191/121 161/84 558/108 556/104
Pose Comp. 750/234 633/117 604/86 777/101 775/99

aParticles stored in L2.
TABLE II

AVERAGE POWER CONSUMPTION OF THE MCL ALGORITHM ON GAP9 AT
DIFFERENT OPERATING POINTS.

Avg. power consumption Execution time

GAP9@400MHz/1,024 particles 61mW 1.901ms
GAP9@12MHz/1,024 particles 13mW 59.898ms
GAP9@400MHz/16,384 particlesa 61mW 30.880ms
GAP9@200MHz/16,384particlesa 38mW 61.524ms

aParticles stored in L2.

V. CONCLUSION

This paper presents a system which includes a nano-UAV,
a low-power multi-core processor, low element-count sensors,
and a hardware-specific highly-optimized MCL implementation
for indoor localization. Our experiments show that this system
enables nano-UAVs to accurately localize in a given map
despite the sparsity of the sensors. The paper also demonstrates
the benefit of the proposed parallelized and memory-efficient
MCL, which runs at 15Hz, efficiently using the available
compute resources to operate onboard, in real-time, without
significant loss of accuracy. Sensing and processing, even in the
most powerful configuration, increases the drone’s power con-
sumption only by 7%. Future works will extend the proposed
system to applications such as path planning and exploration.
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