
LiDAR Panoptic Segmentation for Autonomous Driving

Andres Milioto Jens Behley Chris McCool Cyrill Stachniss

Abstract— Truly autonomous driving without the need for
human intervention can only be attained when self-driving cars
fully understand their surroundings. Most of these vehicles rely
on a suite of active and passive sensors. LiDAR sensors are a
cornerstone in most of these hardware stacks, and leveraging
them as a complement to other passive sensors such as RGB
cameras is an enticing goal. Understanding the semantic class
of each point in a LiDAR sweep is important, as well as
knowing to which instance of that class it belongs to. To this
end, we present a novel, single-stage, and real-time capable
panoptic segmentation approach using a shared encoder with
a semantic and instance decoder. We leverage the geometric
information of the LiDAR scan to perform a novel, distance-
aware tri-linear upsampling, which allows our approach to use
larger output strides than using transpose convolutions leading
to substantial savings in computation time. Our experimental
evaluation and ablation studies for each module show that
combining our geometric and semantic embeddings with our
learned, variable instance thresholds, a category-specific loss,
and the novel trilinear upsampling module leads to higher
panoptic quality. We will release the code of our approach
in our LiDAR processing library LiDAR-Bonnetal [27].

I. INTRODUCTION

Perception and scene understanding are key components
for building fully autonomous cars that can drive safely even
in unknown parts of the world. A multitude of sensors such
as cameras, LiDARs, and radars offering redundant views of
the world are part of the hardware stack of these vehicles.
Image-based perception has been steadily becoming more
capable due to advances in deep learning [21] and convolu-
tional neural networks (CNN). LiDAR sensors are often used
because they produce accurate distance measurements, even
in scenarios where other sensors fail, like at night. However,
challenges caused by the characteristics of the LiDAR data,
such as its distance-dependent sparsity, consequently call for
different solutions.

Panoptic segmentation [16] is a recent task unifying se-
mantic segmentation of so-called stuff classes and instance-
specific thing classes jointly. Specifically, stuff refers to
uncountable classes, such as vegetation, or road, but also
countable classes that are not critical to distinguish indi-
vidually when performing a specific task, such as is the
case for buildings while driving. Opposite to this, things
represent interesting countable classes for the task the robot
performs, such as driving participants (i.e. cars, pedestrians,
etc). Therefore, this task provides a unified understanding of
the scene components, leading towards scene understanding
capturing the complete picture.

All authors are with the University of Bonn, Germany. This work
has partially been funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under Germanys Excellence Strategy EXC
2070 390732324, as well as grant number BE 5996/1-1.

Fig. 1: Our approach provides a panoptic segmentation for point
clouds from a rotating automotive LiDAR. Thus, we assign each
point a semantic label (right part), and instance IDs (left part).

Recently, many approaches to this task using images were
proposed [16], [22], [24], [31], [47]. In this paper, we
investigate the task of panoptic segmentation using solely
LiDAR scans and present an approach for solving this task,
as shown in Fig. 1. We propose a single-stage approach
that jointly solves semantic and instance segmentation. This
architecture learns both instance and semantic embeddings
using a shared encoder. The instance decoder provides an
offset prediction for each point that points towards the object
center, which allows us to segment individual instances. In
turn, the semantic embeddings are used to extract point-
wise semantic labels and aid the clustering of object cen-
ters. Furthermore, we propose a novel upsampling method
that allows us to use large output strides, enabling better
runtime performance. Combined with a category-based loss,
we achieve high panoptic quality for the panoptic task [2]
of SemanticKITTI [1] than an approach combining state-of-
the-art projective semantic segmentation [27] and state-of-
the-art object detection [20]. Lastly, our experiments show
that our single-stage approach runs at a fraction of the time
compared to two two-stage approaches, which is paramount
for moving vehicles. In summary, our contributions are: (i) a
single-stage approach for LiDAR panoptic segmentation that
achieves state-of-the-art performance at a fraction of the pro-
cessing time of two-stage approaches, (ii) a novel upsampling
strategy exploiting the distance information provided by the
LiDAR point clouds leading to better panoptic quality and
increased runtime efficiency, and (iii) the novel combination
of semantic and geometric embeddings with learned point-
wise radii for metric learning-based instance clustering.

II. RELATED WORK

We aim to provide a broad overview of closely related
instance and semantic segmentation approaches for point
clouds, but we also discuss closely related RGBD and image-
based approaches.
Semantic Segmentation. For semantic segmentation of point
clouds, a variety of approaches have been proposed. Voxel-
based methods transform the point cloud into a voxel-grid
and apply convolutional neural networks with 3D convolu-
tions for object classification [25] and semantic segmenta-
tion [14]. Both approaches were among the first investigating
such models and allow for directly exploiting architectures
and insights known from image-based methods.

To overcome the limitations of the voxel-based represen-
tation, such as the inherent higher memory consumption
with increasing voxel grid resolution, approaches either up-
sample voxel-predictions [39] using a conditional random
field (CRF) or use a different representation, such as more
efficient spatial subdivisions [9], [17], [37], [44], [50],
graphs [19], [40], splats [38], or points directly [7], [10],
[13], [15], [32], [34], [36], [41]. Opposite to these spatial
partition approaches, methods exploiting the organization of
the generated measurements by a rotating automotive LiDAR
sensor [45], [46] or approaches using a cylindrical or spher-
ical projection [27] of the point cloud showed promising
results on the KITTI Vision Benchmark and its extension
SemanticKITTI [1]. Compared to the aforementioned point
cloud-based approaches, these techniques can use larger
backbones [35] and realize a more efficient neighbor search
by exploiting the organization of the data from the sensor
directly [27].

We base our single-stage approach on the latter style, and
we present a novel range-image-based tri-linear upsampling
method in our decoders that exploits the image representa-
tion of neighbor information but uses the actual distances
between points from the point cloud pyramid to upsample
features spatially. Furthermore, we exploit a category loss
that exploits the knowledge of a useful dataset ontology to
improve the accuracy of the results.
Instance Segmentation. For image-based instance segmen-
tation, there are mainly two types of approaches: detection-
based [11], [12], [48] and clustering-based [5], [26], [29],
[3]. Detection-based approaches, pioneered by Mask R-
CNN [11], first locate objects using an object detector and
then segment the object inside the bounding box. Clustering-
based approaches, pioneered by Brabandere et al. [3], use
metric learning to find an embedding, which facilitates the
clustering of pixels from an instance. Often, this also involves
the prediction of a seed pixel or point, like the center of an
object [5], [26], [29], from which the clustering is seeded.

Also, point cloud instance segmentation has been ex-
plored. The approach of Wang et al. [42] extracts point-
wise features using a PointNet, which are used to generate a
similarity matrix, a confidence map, and a semantic segmen-
tation then used to cluster instances by virtue of the similarity
scores. The two-stage approach of Hou et al. [12] regresses

bounding boxes for objects and uses then information from
point clouds, but also image information to generate an
instance mask for each bounding box. In contrast, the single-
stage approach of Yang et al. [48] directly estimates a fixed
number of bounding boxes and associates each bounding
box with a point-wise mask separating the object from the
background. Yi et al. [49] use object-like proposals instead
of bounding boxes, which are then used to generate bounding
boxes, segmentation masks, and classification into object
classes.
Panoptic Segmentation. Recently, the task of panoptic
segmentation [16], i.e., jointly predicting a semantic seg-
mentation of stuff classes and instance segmentations for
things gained significant interest using images [5] or RGBD
data [12], [30], [43]. Panoptic segmentation metrics were also
adopted by several of the major image datasets [6], [23], [28].

The approach of Pham et al. [30] uses a PointNet-based
network to provide semantic class probabilities, but also
instance embeddings. These are then used by a conditional
random field [18] to predict instance labels and semantic
labels for an RGBD scan. Similarly, Wang et al. [43] use an
encoder with two decoders to generate semantic and instance
features using PointNets for RGBD data, combining these
with an associative segmentation module that uses semantics
to generate instance IDs and vice versa.

In contrast to prior work, we propose a single-stage,
end-to-end trainable, and real-time capable approach using
point clouds generated by a rotating automotive LiDAR.
Our approach combines a suite of practices that improve
panoptic quality. This includes the combination of semantics
and geometry for instance clustering, a learned point-wise
threshold for said clustering, a new trilinear upsampling for
range images in the decoders, and a joint class plus category
loss.

III. OUR APPROACH

Fig. 2 illustrates our network architecture. First, the point
cloud obtained by the LiDAR scanner is projected to a range-
image-like representation containing the range, (x, y, z) point
coordinates, and remission of each point by virtue of a
spherical projection of the de-skewed scans caused by the
ego-motion of the vehicle. Then, we extract features at
different resolutions, or output strides (OS), using a shared
backbone, which is trained with all the losses through back-
propagation. At the same time, we construct a point cloud
pyramid which samples points from the image representation
of the latter at exactly the location where the downsampling,
stride 2 convolutions are applied in the backbone. This helps
us recover the features with higher accuracy during the
upsampling process.

Following the backbone and image pyramid, we use two
separate decoders, bringing back the backbone features to the
original image resolution, which also contain convolutional
layers that learn task-specific functions. The first decoder
extracts a semantic embedding êp that allows us to predict
classes and categories, as well as an error estimate for the
embeddings, used in the clustering. The second decoder

FEATURE CONCAT.

W

SPHERICAL PROJE
CTIO

N
INPUT

OS1

SEMANTIC EMBEDDINGS STUFF +
THINGS CLASSES

`

H

RESIDUAL BLOCK - 2 x (CONV + BN + ReLU)
DOWNSAMPLE BLOCK (STRIDE 2 IN WIDTH) TRILINEAR UPSAMPLING

OS2 OS4 OS8 OS16 OS32

POINTCLOUD SAMPLE

OS1

OS16 OS32

OS2
OS8

OS4

[1X1 CONVOLUTION]

CENTER O
FFSETS

INSTANCE EXTRACTOR EMBEDDING ERROR

STUFF IN
STA

NCESOUTPUTS

OS16 OS8
OS4 OS2

OS16 OS8
OS4 OS2

CENTER O
FFSET ERROR

OS16

OS8
OS16

OS4OS8

OS2OS4

OS1OS2

POINT CLOUD PYRAMID

2D BACKBONE

INSTANCE DECODER

SEMANTIC DECODER

STUFF +
THINGS CATEGORIES

Fig. 2: Architecture layout for the single-stage, projective panoptic segmentation approach. For detailed samples of inputs, intermediate
representations, and outputs see Fig. 3

extracts, for each point, an offset to the center of the instance.
It also predicts an error estimate for the offsets, used later in
the clustering (Sec. III-D). Both decoders use a novel range-
image-based trilinear upsampling, which we explain in detail
in Sec. III-C. Finally, the instance extractor uses the center
offsets and the semantic embeddings to assign an instance
id to each point in the thing classes and categories, before
unprojecting the points to 3D. Fig. 3 shows an example of the
input range image, the semantic embedding êp as a random
projection from 32 dimensions to 3 displayed as RGB, the
center offsets ôp showing each one of the offsets in x, y, and
z as RGB colors, and the final outputs based on semantic and
geometric embeddings.

A. Projection

The first step in the projective panoptic segmentation
pipeline is to project the points using a spherical projec-
tion (Fig. 3, top). To this end, we transform all (x, y, z) 3D
points into a set of (u, v) 2D image coordinates using the
formula:(

u
v

)
=

(
1
2

[
1− arctan(y, x)π−1

]
W[

1−
(
arcsin(z r−1) + fup

)
f−1
]
H

)
(1)

where r =
√
x2 + y2 + z2 is the distance from the point

to the sensor, and f = fup + fdown is the vertical
sensor field of view. This generates a (5, H,W) volume
which represents the point cloud as an image with channels
(range, x, y, z, remission). For a point cloud of size N , we
generate an index matrix of size (N, 2) containing all the
(u, v) image coordinate pairs, which we use later when
transferring back the predictions to 3D (see Sec. III-E).

B. Backbone and Point Cloud Pyramid

Relevant works for projection-based LiDAR semantic seg-
mentation are SqueezeSeg [45], [46] and RangeNet++ [27],
which is the first approach of this type for SemanticKITTI.
These approaches exploit the way the sensor acquires the
points using a rotating array of laser beams and use a 2D
segmentation CNN on a spherical projection of the input
point cloud.

Input: Spherical Projection

Intermediate: Semantic Embeddings (êp)

Intermediate: Center Offsets (ôp)

Output: Stuff + Things Classes

Output: Stuff + Things Categories

Output: Thing Instances

Fig. 3: Example input, intermediate results, and outputs of our
panoptic segmentation.

Both of these approaches downsample periodically on the
width dimension by using strided convolutions. This gener-
ates feature volumes of OS 1, 2, 4, 8, 16, and 32, which are
later skipped to the decoder to recover high-frequency signals
lost in downsampling, aiding the upsampling process, which
uses either bilinear upsampling or transposed convolutions.
However, neither of these approaches exploit the fact that the
inputs contain useful metric information as they downsample,
to aid the upsampling. In our work, each time we apply
strided convolutions, we store a downsampled version of the
point cloud which contains the points at the centers of the
locations where the kernels were applied. This can be used to
recover useful geometric information during the upsampling
in the decoder that allows us to improve the accuracy of the
final output. The foundation of our architecture and shared
feature extractor for both the instance head and the semantic
head branch is DarkNet53 [27], [35].

C. Decoders

After the point cloud range image is processed by the
backbone and the sampled pyramid is generated, we pass
the features through two different decoders that complement
each other to solve the task of panoptic segmentation. One
decoder predicts the instance centers, and the other one
the semantics of the scene. Both decoders follow the same
structure, which is illustrated in Fig. 2.

In contrast to prior works [27], [45], [46], which upsam-
ple the backbone features using transposed convolutions or
bilinear upsampling, exploiting closeness in the image, we
implement a differentiable trilinear upsampling layer, which
exploits the fact that our inputs are 3D point clouds and
not camera images. As in bilinear upsampling, for each
point in the resolution that is currently upsampled, we find
the 4 corresponding points in the coarser grid using the
point cloud pyramid. However, since the real information
of vicinity between the points and its coarser corresponding
points is known to us through their real (x, y, z) coordinates,
besides their image (u, v) coordinate. This allows us to
approximate a trilinear upsampling by using the real 3D
Euclidean distances rather than the 2D image ones. Even
though this is technically not a strict trilinear upsampling due
to the absence of a cubic lattice, our approach uses the real
3D distances. Thus, it more closely resembles the trilinear
upsampling than bilinear interpolation, as shown in Fig. 4.
After upsampling the feature volume, we concatenate the
upsampled features with the matching resolution from the
backbone as a skip connection followed by a convolutional
block. These blocks also learn the task-dependent weights
that separate the tasks. This is done recursively until the
input resolution is met, and the task-dependent heads are
applied. In the remainder, we describe each decoder head
individually.

1) Instance decoder: This decoder has the responsibility
to predict a 3D offset ôp = [∆x,∆y,∆z]T for each
point xp = [xp, yp, zp]

T on the range image belonging to
one of the things, from its center c = [xc, yc, zc]

T . This is
similar to [29], which predicts a 2D offset to the center for
instance segmentation, and [33], which predicts 3D offsets
for point cloud object detection. Since we are using range
image representations of 3D point clouds, our approach
sits in the middle, predicting 3D offsets given an image
representation. After the offsets are predicted, each point in
the thing mask (from the semantic segmentation) predicts a
center coordinate, which is used to cluster the instances. This
is done using the region-based clustering method described
in Sec. III-D.

The offsets ôp are learnt through an L2 loss of the form:

LCENTER =
1

I

I∑
i=1

1

Pi

Pi∑
p=1

[ôp − (xp − ci)]
2, (2)

where I is the number of instances in the batch, and Pi is
the number of points in the instance i. During inference,
the predicted center for each point can then be calculated as
ĉp = x̂p − ôp.

Fig. 4: Upsampling methods graphically. The black dot corresponds
to the desired interpolated feature value, while the colored dots
represent the values to interpolate from. Top: Bilinear upsampling.
Center: Trilinear Interpolation. Bottom: Ours. The vertex values
are obtained in the range image domain, but their distances to the
query point are calculated in 3D as their real euclidean distance.
Then the interpolated feature value is a linear combination of four
the closest feature values in the lower resolution grid (which define
the frustum), with the coefficients calculated as an inverse of the
distance to the point, normalized by the total distance.

To use a region-based clustering method, an intra-cluster
radius needs to be defined. For the center embedding ĉp, the
radius is the maximum Euclidean distance that we allow two
points in the same instance to predict. In theory, this radius
could be fixed, and chosen by cross-validation, but research
shows that different points have different levels of accu-
racy [29], resulting in either over- or under-segmentation.
Using a learned, adaptive radius for each point instead can
help solve this problem, as shown in Fig. 5. Therefore, we
add three convolutional blocks on top of the offset encoder
that predict this radius ε̂p for each point, estimating the radius
as the Euclidean distance between the offset prediction and
its ground truth, for each point, during the training, i.e,

LCENT ERR =
1

I

I∑
i=1

1

Pi

Pi∑
p=1

[
ε̂p – ‖ôp – (xp – ci)‖

]2
(3)

The intuition behind using the training offset error as the
ground truth for this variable radii is not to estimate the
uncertainty of each prediction, which would not be possible,
since the training error is usually significantly lower than
the test time error. Instead, we are interested in learning
the relative difficulty of different points belonging to the
same instance. Fig. 5 shows an example where the point
in the fender is significantly more inaccurate than the point
in the center of the car, requiring a larger radius to be
properly assigned to this car’s cluster. This is fixable by
simply using a larger radius for all points, but this leads to
under-segmentation in many cases in our dataset, preventing
us from a proper understanding of the scene. Therefore,
at inference time we use this learned tolerances as relative
thresholds for each point, but adjust the overall scale by a
constant factor to account for the difference between training
and validation error. This factor is the ratio between the latter.

2) Semantic decoder: This decoder predicts a 32-
dimensional semantic embedding for each point in the range
image representation. From this embedding, two [1×1] con-
volutional heads are used to predict classes and categories.
In order to train the network to predict both, we use a cross-
entropy loss for the classes and an analogous one for the
categories, of the form:

LSEM = −
C∑
c=1

wc yc log
(
ŷc
)
, (4)

where wc = 1
log (fc+ε)

is a class-wise weight calculated as a
function of the inverse class-frequency fc, and ε limits the
largest possible weight for a class. In practice, the category
prediction does not need its own head or loss. However,
our experiments show that adding a separate head, along
with a category loss, improves the category segmentation,
effectively mapping semantically similar classes together in
embedding space.

To aid the instance segmentation head center predictions,
we also add an auxiliary loss that applies directly to the
embeddings from the semantic head. Fig. 3 shows a random
projection from the 32-dimensional embeddings to 3 dimen-
sions, plotted as RGB values. It is possible to see that not
only the embeddings are different from class to class, but
also between different instances of the same class. This loss
uses metric learning to cluster all pixel embeddings êp of
the same instance close to each other, and pushing all mean
embeddings of different instances away from each other. This
is done through an attraction and a repulsion loss, of the
form:

LATTRACT =
1

I

I∑
i=1

1

Pi

Pi∑
p=1

(
êi,p − ˆ̄ei

)2
(5)

LREPEL =
1

I(I − 1)

I∑
iA=1

I∑
iB=1

iA 6=iB

1(
ˆ̄eiA − ˆ̄eiB

)2 , (6)

where êi,p is the embedding for pixel p of instance i, and ˆ̄ei
is the mean embedding of all points in instance i.

Fig. 5: Influence of clustering radius. Left: Wrong clustering due
to fixed radii. Right: Correct clustering using the learned radii
depending on point difficulty.

Analogously to the center offsets, we also predict an error
radius for each pixel embedding that is later used for the
adaptive clustering, following an analogous loss to the center
offset error loss:

LEMBED ERR =
1

I

I∑
i=1

1

Pi

Pi∑
p=1

[
ε̂p −

∥∥êi,p − ˆ̄ei
∥∥]2, (7)

D. Instance Extractor

To obtain all individual instance IDs, we employ an
iterative procedure. First, we sample a thing point from the
semantic prediction and obtain its distance in feature space to
all other points in the same class. We propose two alternative
features to do this through the instance and the semantic
decoders. Using the instance decoder, the features represent
the prediction of the center of the instance ĉi = xp − ôp.
Using the semantic decoders, the features used are the
embeddings of each point êi,p. In both cases, we then use
the predictions of the error for each pixel as the clustering
radius to consider points as belonging to the same instance
as the initially sampled point. We then assign the instance
ID to all points within the radius, remove these points from
the pool, and start over with a new sampled point, until all
points are consumed. In our ablation study, we compare all
features and the usage of the learned radius vs. a statically
defined threshold chosen by cross-validation.

E. Point Cloud Extraction and Post-Processing

After the segmentation of the point cloud as a range image,
recovering all labels for the N original points in the point
cloud is desired. However, if N > HW , unprojecting the
image using the intrinsic calibration of the sensor does not
reconstruct all points. This is why the reprojection of the
labeled points to the 3D world is, instead, performed by
keeping an (N, 2) shaped list of (u, v) image indexes that
can use the label image as a lookup table to recover the
labels and IDs for all N points.

IV. EXPERIMENTAL EVALUATION

In the first part of the experiments, we compare our panop-
tic segmentation approach with state-of-the-art approaches
on SemanticKITTI [1], [2], a large-scale LiDAR dataset
providing instance and semantic segmentation annotations, as
well as a panoptic segmentation benchmark. We then provide
ablations studies to show the importance of different design
decisions of our approach, such as the use of semantic and
center embeddings jointly, the inclusion of the novel trilinear
upsampling module, and the category loss.

Implementation details. In all the following experiments,
we use the following parameters, when not otherwise stated.
All networks in the single-stage approach were trained
following the same training schedule, using Adam optimizer
with a learning-rate of 1 ·10−4, a warm-up ramp of 1 epoch,
momentums (0.9, 0.99), a learning-rate decay of 0.99 per
epoch, training for 200 epochs. To integrate all losses, we
tested GradNorm [4], but yielded no significant improvement
over the simple addition of all losses.
Dataset. We evaluate our approach on SemanticKITTI [1],
which provides point-wise semantic annotations for all scans
of the KITTI odometry split [8]. Recently, we extended the
dataset by providing temporally consistent instance annota-
tions for all scans in the dataset [2]. The dataset provides
23,201 scans for training and the remaining 20,351 scans are
used for evaluation on a benchmark server. We use sequence
08 from the training data comprised of 4,071 scans for
validation purposes. The dataset contains overall 28 classes
from which the vehicle classes and classes representing
humans have point-wise instance annotations.
Evaluation Metrics. In order to compare the semantic
segmentation branch with other approaches in the semantic
segmentation benchmark, we calculate the mean intersection
over union (mIoU) over all classes, defined as:

mIoU =
1

|Y|
∑
c∈Y

|{i | yi = c} ∩ {j | ŷj = c}|
|{i | yi = c} ∪ {j | ŷj = c}|

, (8)

where yi corresponds to the ground truth label of point ~pi
and ŷi to the prediction.

To measure the quality of the joint semantic and instance
segmentation for each class, we use the recently proposed
panoptic quality (PQ) [16], [2]:

PQ =
1

|Y|
∑
c∈Y

∑
(S,Ŝ)∈TPc

IoU(S, Ŝ)

|TPc|+ 1
2 |FPc|+ 1

2 |FNc|
, (9)

where IoU(S, Ŝ) is the intersection over union between the
prediction segment Ŝ and the ground truth segment S, TPc
are the pairs of predicted segments Ŝ that present over 50%
intersection over union (IoU) with a ground truth segment
S, FPc the set of unmatched predicted segments Ŝ, and FNc
the set of unmatched ground truth segments S. The overall
panoptic quality (PQ) metric averaged over all classes, which
makes the metric insensitive to class imbalance.

For stuff classes, Porzi et al. [31] use an alternative metric
that considers the specific case of only one segment per
image, where the segment- and IoU-based criterion often
leads to unmatched predictions (FP):

PQ†c =

{
IoU(S, Ŝ) , if c is a stuff class

PQc , otherwise.
(10)

Lastly, SemanticKITTI defines an ontology assigning each
class to a category, e.g., truck, car, other-vehicle belong
to the category vehicle [2]. These category definitions are
useful for autonomous driving, e.g. identifying humans as
an alternative to the more fine-grained person or bicyclist
classes. Therefore, alternatively to the class-wise metrics, we
also evaluate all approaches with respect to categories.

A. Comparison with the State of the Art

The first experiment evaluates the performance of our
single-stage approach in comparison with the two-stage
approaches proposed as baselines for the panoptic task in [2].

Tab. I shows the results in terms of class-wise performance
on the test set. Likewise, Tab. II shows the performance
in respect to the categories. Our proposed single-stage ap-
proach gets superior performance in comparison with the
two-stage approach using RangeNet++ [27]. However, it is
worse than the best performing KPConv [41], which achieves
44.5 panoptic quality and can be mainly attributed to better
semantic segmentation, albeit at a higher computational cost.

We also show in the results the difference between using
the category loss and head, vs a lookup table between class
prediction and corresponding category. Interestingly, these
results show that the category loss helps to improve the
panoptic quality performance for thing classes, but leads
to worse results with respect to the semantic segmentation
quality as shown by a drop in mIoU.

Nevertheless, the main motivation for our single-stage
approach is the improved computational efficiency in com-
parison to the aforementioned two-stage approaches. Instead
of using multiple different networks, we can use a single
multi-task network, which also profits from sharing the
encoder between different tasks. Fig. 6 shows the runtime
performance in relation to the panoptic quality. Our single-
stage approach is considerably faster than the two-stage
approaches. Here, we assume that the separate object de-
tectors runs in parallel (314 ms for pedestrian/cyclist and
105 ms for car) after the semantic segmentation (200 ms for
KPConv and 95 ms for RangeNet++) resulting in 514 ms and
409 ms respectively. Our single-stage approach with trilinear
upsampling takes 85 ms on average.

B. Ablation Studies

We also validate that our contributions lead to an increase
in performance with respect to panoptic quality through
ablation studies. Note that here we evaluate all approaches
on the validation set.

The first experiment, cf. Tab. III, shows the influence
of the upsampling method to regain spatial resolution in
the decoder after backbone downsampling. We can see that
using our trilinear evaluation leads to considerable gains
in class and computational performance, allowing for more
downsampling without sacrificing in accuracy or speed.

The next experiment, cf. Tab. IV, shows the influence of
features used for clustering instances. We can see that the
best method using a single head is through the prediction of
the center instances, rather than the semantic embeddings.
However, combining both yields an increase in the perfor-
mance of the clustering, which is appreciated by an increase
in the recognition quality of things. Furthermore, we compare
the clustering using each feature with the learned radii vs the
best static threshold, found by cross-validation, and we show
that learning a point-wise radius helps the performance of the
approach.

Method FPS mIoU PQ PQ† RQ SQ PQTh RQTh SQTh PQSt RQSt SQSt

KPConv [41] + PointPillars [20] 1.9 58.8 44.5 52.5 54.4 80.0 32.7 38.7 81.5 53.1 65.9 79.0
RangeNet++ [27] + PointPillars [20] 2.4 52.4 37.1 45.9 47.0 75.9 20.2 25.2 75.2 49.3 62.8 76.5

Ours (without category loss) 11.8 51.0 35.3 44.3 45.0 76.5 19.1 24.1 76.7 47.2 60.2 76.4
Ours (with category loss) 11.8 50.9 38.0 47.0 48.2 76.5 25.6 31.8 76.8 47.1 60.1 76.2

TABLE I: Comparison of test set results on SemanticKITTI using stuff (St) and thing(Th) classes. All results in [%].

Method FPS mIoU PQ PQ† RQ SQ PQTh RQTh SQTh PQSt RQSt SQSt

KPConv [41] + PointPillars [20] 1.9 84.8 70.0 71.5 79.2 87.3 54.3 62.1 86.7 77.8 87.8 87.7
RangeNet++ [27] + PointPillars [20] 2.4 78.8 63.6 65.9 74.3 83.8 43.8 52.3 82.2 73.5 85.3 84.6

Ours (without category loss) 11.8 77.4 59.9 62.6 71.4 81.7 37.7 47.2 78.0 71.0 83.4 83.5
Ours (with category loss) 11.8 77.8 65.8 68.1 77.2 83.5 53.6 63.8 82.5 71.9 84.0 84.0

TABLE II: Comparison of test set results on SemanticKITTI using stuff (St) and thing(Th) categories. All results in [%].

OS Method mIoU PQ PQ† FPS

32 Transpose convolution 46.4 30.8 41.9 11.1
8 Transpose convolution 48.5 31.2 42.6 4.2

32 Ours (trilinear) 50.7 36.5 46.1 11.8

TABLE III: Influence of upsampling method evaluated on validation
set with respect to panoptic quality and runtime.

Center Embedding Learnt
Radius RQTh PQ

3 23.7 34.4
3 3 26.7 35.8

3 18.0 32.8
3 3 20.0 33.3

3 3 3 28.2 36.5

TABLE IV: Features used for clustering of things on validation set
with respect to recognition and panoptic quality.

V. CONCLUSION

In this paper, we propose a novel approach for single-stage
LiDAR-based panoptic segmentation which achieves high
panoptic quality while still running over the frame rate of
the sensor. Our experiments show that our approach achieves
results that are on par with, but faster than the best perform-
ing real-time approach on SemanticKITTI. Our ablations
studies also show that the addition of the novel range-image-
based trilinear upsampling module allows our approach to
use larger output strides than approaches using transpose
convolutions, resulting in faster runtime without sacrificing
accuracy. Furthermore, we show that the combination of our
geometric and semantic feature embeddings helps increase
the performance of the approach in terms of recognition
quality. This is also the case for our learned point-wise
radii, which adapts the clustering threshold for points of
different difficulty. Finally, the addition of a category loss
makes category-based results more robust. This means that
if we get a class wrong, we will more likely confuse it with
an instance of the same category, which is desired behavior.

0 100 200 300 400 500
inference time (ms)

20

30

40

50

Pa
no

pt
ic

Qu
al

ity
 (P

Q)
KPConv/PP
RangeNet++/PP
Ours

Fig. 6: Runtime of the evaluated approaches. Green area represents
the zone of approaches faster than the rate of the sensor.

REFERENCES

[1] J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stach-
niss, and J. Gall. SemanticKITTI: A Dataset for Semantic Scene
Understanding of LiDAR Sequences. In Proc. of the IEEE/CVF
International Conf. on Computer Vision (ICCV), 2019.

[2] J. Behley, A. Milioto, and Cyrill Stachniss. A Benchmark for LiDAR-
based Panoptic Segmentation based on KITTI. arXiv preprint, 2020.

[3] B. De Brabandere, D. Neven, and L. Van Gool. Semantic instance
segmentation with a discriminative loss function. In Deep Learning
for Robotic Vision workshop, IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2017.

[4] Z. Chen, V. Badrinarayanan, C.Y. Lee, and A. Rabinovich. Grad-
Norm: Gradient Normalization for Adaptive Loss Balancing in Deep
Multitask Networks. arXiv preprint, 2017. Proceedings of the 35th
International Conference on Machine Learning (2018), 793-802.

[5] B. Cheng, M.D. Collins, Y. Zhu, T. Liu, T.S. Huang, H. Adam, and
L. Chen. Panoptic-DeepLab. In Proc. of the ICCV Workshop: Joint
COCO and Mapillary Recognition Challlenge Workshop, 2019.

[6] M. Cordts, S. Mohamed Omran, Ramos, T. Rehfeld, M. Enzweiler,
R. Benenson, U. Franke, S. Roth, and B. Schiele. The cityscapes
dataset for semantic urban scene understanding. In Proc. of the IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), 2016.

[7] F. Engelmann, T. Kontogianni, J. Schult, and B. Leibe. Know What
Your Neighbors Do: 3D Semantic Segmentation of Point Clouds. arXiv
preprint, 2018.

[8] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for Autonomous
Driving? The KITTI Vision Benchmark Suite. In Proc. of the IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), pages
3354–3361, 2012.

[9] B. Graham, M. Engelcke, and L. van der Maaten. 3D Semantic
Segmentation with Submanifold Sparse Convolutional Networks. In
Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2018.

[10] F. Groh, P. Wieschollek, and H. Lensch. Flex-Convolution (Million-
Scale Pointcloud Learning Beyond Grid-Worlds). In Proc. of the Asian
Conf. on Computer Vision (ACCV), Dezember 2018.

[11] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask R-CNN. In
Proc. of the IEEE Intl. Conf. on Computer Vision (ICCV), 2017.

[12] J. Hou, A. Dai, and M. Niessner. 3D-SIS: 3D Semantic Instance
Segmentation of RGB-D Scans. In Proc. of the IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2019.

[13] B. Hua, M. Tran, and S. Yeung. Pointwise Convolutional Neural
Networks. In Proc. of the IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2018.

[14] J. Huang and S. You. Point Cloud Labeling using 3D Convolutional
Neural Network. In Proc. of the Internation Conference on Pattern
Recognition (ICPR), 2016.

[15] M. Jiang, Y. Wu, and C. Lu. PointSIFT: A SIFT-like Network Module
for 3D Point Cloud Semantic Segmentation. arXiv preprint, 2018.

[16] A. Kirillov, K. He, R. Girshick, C. Rother, and P. Dollár. Panoptic
Segmentation. In Proc. of the IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2019.

[17] R. Klukov and V. Lempitsky. Escape from Cells: Deep Kd-Networks
for the Recognition of 3D Point Cloud Models. In Proc. of the IEEE
Intl. Conf. on Computer Vision (ICCV), 2017.

[18] J.D. Lafferty, A. McCallum, and F.C.N. Pereira. Conditional Random
Fields: Probabilistic Models for Segmentating and Labeling Sequence
Data. In Proc. of the Int. Conf. on Machine Learning (ICML), 2001.

[19] L. Landrieu and M. Simonovsky. Large-scale Point Cloud Semantic
Segmentation with Superpoint Graphs. In Proc. of the IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2018.

[20] A.H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom.
PointPillars: Fast Encoders for Object Detection From Point Clouds. In
Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2019.

[21] Y. LeCun, Y. Bengio, and G. Hinton. Deep Learning. Nature, 521:436–
444, 2015.

[22] Y. Li, X. Chen, Z. Zhu, L. Xie, G. Huang, D. Du, and X. Wang.
Attention-Guided Unified Network for Panoptic Segmentation. In
Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2019.

[23] T. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. Lawrence Zitnick. Microsoft COCO: Common
Objects in Context. In Proc. of the Europ. Conf. on Computer Vision
(ECCV), pages 740–755, 2014.

[24] H. Liu, C. Peng, C. Yu, J. Wang, X. Liu, G. Yu, and W. Jiang. An
End-To-End Network for Panoptic Segmentation. In Proc. of the IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), 2019.

[25] D. Maturana and S. Scherer. VoxNet: A 3D Convolutional Neural
Network for Real-Time Object Recognition. In Proc. of the IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), 2015.

[26] A. Milioto, L. Mandtler, and C. Stachniss. Fast Instance and Semantic
Segmentation Exploiting Local Connectivity, Metric Learning, and
One-Shot Detection for Robotics. In Proc. of the IEEE Intl. Conf. on
Robotics & Automation (ICRA), 2019.

[27] A. Milioto, I. Vizzo, J. Behley, and C. Stachniss. RangeNet++: Fast
and Accurate LiDAR Semantic Segmentation. In Proceedings of the
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2019.

[28] G. Neuhold, T. Ollmann, S. Rota Bulo, and P. Kontschieder. The
Mapillary Vistas Dataset for Semantic Understanding of Street Scenes.
In Proc. of the IEEE Intl. Conf. on Computer Vision (ICCV), 2017.

[29] D. Neven, B. De Brabandere, M. Proesmans, and L. Van Gool.
Instance Segmentation by Jointly Optimizing Spatial Embeddings and
Clustering Bandwidth. In Proc. of the IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), 2019.

[30] Q.H. Pham, D.T. Nguyen, B.S. Hua, G. Roig, and S.K. Yeung.
JSIS3D: Joint Semantic-Instance Segmentation of 3D Point Clouds
With Multi-Task Pointwise Networks and Multi-Value Conditional
Random Fields. In Proc. of the IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2019.

[31] L. Porzi, S. Rota Bulo, A. Colovic, and P. Kontschieder. Seamless
Scene Segmentation. In Proc. of the IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), 2019.

[32] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. PointNet: Deep Learning
on Point Sets for 3D Classification and Segmentation. In Proc. of
the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
2017.

[33] Charles R. Qi, Or Litany, Kaiming He, and Leonidas J .Guibas. Deep
Hough Voting for 3D Object Detection in Point Clouds. In Proc. of
the IEEE Intl. Conf. on Computer Vision (ICCV), 2019.

[34] C.R. Qi, K. Yi, H. Su, and L. J. Guibas. PointNet++: Deep Hierarchical
Feature Learning on Point Sets in a Metric Space. In Proc. of the
Advances in Neural Information Processing Systems (NIPS), 2017.

[35] J. Redmon and A. Farhadi. YOLOv3: An Incremental Improvement.
arXiv preprint, 2018.

[36] D. Rethage, J. Wald, J. Sturm, N. Navab, and F. Tombari. Fully-
Convolutional Point Networks for Large-Scale Point Clouds. Proc. of
the Europ. Conf. on Computer Vision (ECCV), 2018.

[37] G. Riegler, A. Ulusoy, and A. Geiger. OctNet: Learning Deep 3D
Representations at High Resolutions. In Proc. of the IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2017.

[38] H. Su, V. Jampani, D. Sun, S. Maji, E. Kalogerakis, M-H. Yang,
and J. Kautz. SPLATNet: Sparse Lattice Networks for Point Cloud
Processing. In Proc. of the IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2018.

[39] L. Tchapmi, C. Choy, I. Armeni, J. Gwak, and S. Savarese. SEG-
Cloud: Semantic Segmentation of 3D Point Clouds. In Proc. of the
International Conference on 3D Vision (3DV), 2017.

[40] G. Te, W. Hu, Z. Guo, and A. Zheng. RGCNN: Regularized Graph
CNN for Point Cloud Segmentation. arXiv preprint, 2018.

[41] H. Thomas, C.R. Qi, J. Deschaud, B. Marcotegui, F. Goulette, and
L.J. Guibas. KPConv: Flexible and Deformable Convolution for Point
Clouds. arXiv preprint, 2019.

[42] W. Wang, R. Yu, Q. Huang, and U. Neumann. SGPN: Similarity Group
Proposal Network for 3D Point Cloud Instance Segmentation. In
Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2018.

[43] X. Wang, S. Liu, X. Shen, C. Shen, and J. Jia. Associatively
Segmenting Instances and Semantics in Point Clouds. In Proc. of
the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
2019.

[44] Z. Wang and F. Lu. VoxSegNet: Volumetric CNNs for Semantic Part
Segmentation of 3D Shapes. arXiv preprint, 2018.

[45] B. Wu, A. Wan, X. Yue, and K. Keutzer. SqueezeSeg: Convolutional
Neural Nets with Recurrent CRF for Real-Time Road-Object Segmen-
tation from 3D LiDAR Point Cloud. In Proc. of the IEEE Intl. Conf. on
Robotics & Automation (ICRA), 2018.

[46] B. Wu, X. Zhou, S. Zhao, X. Yue, and K. Keutzer. SqueezeSegV2:
Improved Model Structure and Unsupervised Domain Adaptation for
Road-Object Segmentation from a LiDAR Point Cloud. Proc. of the
IEEE Intl. Conf. on Robotics & Automation (ICRA), 2019.

[47] Y. Xiong, R. Liao, H. Zhao, R. Hu, M. Bai, E. Yumer, and R. Urtasun.
UPSNet: A Unified Panoptic Segmentation Network. In Proc. of the
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
2019.

[48] B. Yang, J. Wang, R. Clark, Q. Hu, S. Wang, A. Markham, and
N. Trigoni. Learning Object Bounding Boxes for 3D Instance
Segmentation on Point Clouds. In Proc. of the Conference on Neural
Information Processing Systems (NeurIPS), 2019.

[49] L. Yi, W. Zhao, H. Wang, M. Sung, and L. Guibas. GSPN: Generative
Shape Proposal Network for 3D Instance Segmentation in Point
Cloud. In Proc. of the IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2019.

[50] W. Zeng and T. Gevers. 3DContextNet: K-d Tree Guided Hierarchical
Learning of Point Clouds Using Local and Global Contextual Cues.
arXiv preprint, 2017.

