
RangeNet++: Fast and Accurate LiDAR Semantic Segmentation

Andres Milioto Ignacio Vizzo Jens Behley Cyrill Stachniss

Abstract— Perception in autonomous vehicles is often carried
out through a suite of different sensing modalities. Given
the massive amount of openly available labeled RGB data
and the advent of high-quality deep learning algorithms for
image-based recognition, high-level semantic perception tasks
are pre-dominantly solved using high-resolution cameras. As
a result of that, other sensor modalities potentially useful
for this task are often ignored. In this paper, we push the
state of the art in LiDAR-only semantic segmentation forward
in order to provide another independent source of seman-
tic information to the vehicle. Our approach can accurately
perform full semantic segmentation of LiDAR point clouds
at sensor frame rate. We exploit range images as an inter-
mediate representation in combination with a Convolutional
Neural Network (CNN) exploiting the rotating LiDAR sensor
model. To obtain accurate results, we propose a novel post-
processing algorithm that deals with problems arising from
this intermediate representation such as discretization errors
and blurry CNN outputs. We implemented and thoroughly
evaluated our approach including several comparisons to the
state of the art. Our experiments show that our approach
outperforms state-of-the-art approaches, while still running
online on a single embedded GPU. The code can be accessed
at https://github.com/PRBonn/lidar-bonnetal.

I. INTRODUCTION

Semantic scene understanding is one of the key building
blocks of autonomous robots working in dynamic, real-world
environments. To achieve the required scene understanding,
robots are often equipped with multiple sensors that allow
them to leverage the strengths of each modality. Com-
bining multiple complementary sensing modalities allows
for covering the shortcomings of individual sensors such
as cameras, laser scanners, or radars. This is particularly
critical in the context of autonomous driving, where a failure
of one modality can have lethal or significant monetary
consequences in case it is not properly covered by another
redundant sensor.

An important tasks in semantic scene understanding is
the task of semantic segmentation. Semantic segmentation
assigns a class label to each data point in the input modality,
i.e., to a pixel in case of a camera or to a 3D point
obtained by a LiDAR. In this paper, we explicitly address
semantic segmentation for rotating 3D LiDARs such as
the commonly used Velodyne scanners. Unfortunately, the
majority of state-of-the-art methods currently available for
semantic segmentation on LiDAR data either don’t have
enough representational capacity to tackle the task, or are
computationally too expensive to operate at frame-rate on a

All authors are with the University of Bonn, Germany. This work has
partly been supported by the German Research Foundation under Germany’s
Excellence Strategy, EXC-2070 - 390732324 (PhenoRob) as well as grant
number BE 5996/1-1, and by NVIDIA Corporation.

Fig. 1: Velodyne HDL-64E laser scan from KITTI dataset [7] with
semantic information from RangeNet++. Best viewed in color, each
color represents a different semantic class.

mobile GPU. This makes them not suitable to aid the task of
supporting autonomous vehicles, and addressing these issues
is the aim of this work.

The main contribution of this paper is a new method
for accurate, fast, LiDAR-only semantic segmentation. We
achieve this by operating on a spherical projection of the
input point cloud, i.e., a 2D image representation, similar
to a range image, and therefore exploit the way the points
are detected by a rotating LiDAR sensor. Our method infers
the full semantic segmentation for each pixel of the image
using any CNN as a backbone. This yields an efficient
approach but can lead to issues caused by discretization
or blurry CNN outputs. We effectively resolve these issues
via a reconstruction of the original point with semantics
without discarding any points from the original point cloud,
regardless of the used resolution of the image-based CNN.
This post-processing step, which also runs online, operates
on the image representation and is tailored towards efficiency.
We can calculate nearest neighbors in constant time for each
point and exploit GPU-based calculations. This allows us
to infer full semantic segmentation of LiDAR point clouds
accurately and faster than the frame rate of the sensor.
Since the approach runs with any range image-based CNN
backbone, we call it RangeNet++. See Fig. 1 for an example.

In sum, we make three key claims: Our approach is able
to (i) accurately perform semantic segmentation of LiDAR-
only point clouds, surpassing the state of the art significantly,
(ii) infer semantic labels for the complete original point

https://github.com/PRBonn/lidar-bonnetal

cloud, avoiding to discard points regardless of the level of
discretization used in the CNN, and (iii) work at the frame
rate of a Velodyne scanner on an embedded computer that
can easily fit in robots or in a vehicle.

II. RELATED WORK

Semantic segmentation for autonomous driving using im-
ages made an immense progress in recent years due to
the advent of deep learning and the availability of increas-
ingly large-scale datasets for the task, such as CamVid [2],
Cityscapes [4], or Mapillary [12]. Together, this enables the
generation of complex deep neural network architectures
with millions of parameters achieving high-quality results.
Prominent examples are Deeplab V3 [3] and PSPNet [23].

Despite their impressive results, these architectures are
too computationally expensive to run in real-time on an
autonomous system, which is a must for autonomous navi-
gation exploiting semantic cues. This spawned the creation
of more efficient approaches such as Bonnet [11], ENet [13],
ERFNet [17], and Mobilenets V2 [18], which leverage the
law of diminishing returns to find the best trade-off between
runtime, the number of parameters, and accuracy. These,
however, are designed for images and not for LiDAR scans.

Transferring these results to LiDAR data has, so far, been
hindered by two factors: (i) the lack of publicly available
large-scale datasets for the task of semantic segmentation in
autonomous driving and (ii) how prohibitively expensive to
run most LiDAR semantic segmentation models are.

To tackle the problem of the lack of data, Wu et
al. [21], [22] used the provided bounding box of the KITTI
dataset [7]. They also leveraged simulation to generate realis-
tic looking scans from a game engine. We have released the
first large-scale dataset with full semantic segmentation of
LiDAR scans [1], in which all scans of the KITTI odometry
dataset [7] were densely annotated, i.e., over 43 000 scans,
with over 3.5 billion annotated points. Without the data-
starvation barrier, this paper investigates which of the current
state-of-the-art algorithms can be exploited and adapted for
point cloud in the autonomous driving context.

Leveraging large datasets for other contexts [5], [8],
several deep learning-based methods for 3D semantic seg-
mentation were recently developed, such as PointNet [14],
PointNet++ [15], TangentConvolutions [20], SPLATNet [19],
SuperPointGraph [10], and SqueezeSeg [21], [22].

One of the problems of dealing with point cloud data
directly is the lack of a proper ordering, which makes learn-
ing order-invariant feature extractors extremely challenging.
Qi et al. [14], [15] use as inputs the raw, un-orderered point
clouds and apply symmetrical operators that are able to deal
with this ordering problem. For this purpose, max pooling is
used by PointNet [14] to combine the features and generate
permutation-invariant feature extractors. This, however, is a
limiting factor for PointNet, causing it to lose the ability to
capture spatial relationships between features. This limits its
applicability to complex scenes. PointNet++ [15] tackles this
problem by using a hierarchical approach for feature extrac-
tion. By exploiting individual PointNets in a local vicinity,

it captures short-range dependencies and then applies this
concept hierarchically to capture global dependencies.

Tatarchencko et al. [20] take a different approach to handle
unstructured point clouds. They propose TangentConvolu-
tions that apply CNNs directly on surfaces, which can only
be achieved if neighboring points are sampled from the
same surface. In this case, the authors can define a tangent
convolution as a planar convolution that is applied to the
projection of the surface at each point. This assumption
is, however, violated in case of a rotating LiDAR and the
generated distance-dependent sparsity of the point cloud.

Su et al. [19] approach the representational problem
differently in SPLATNet, by projecting the points in a high-
dimensional sparse lattice. However, this approach does not
scale well neither in terms of computation nor in memory
consumption. To alleviate this, bilateral convolutions [9]
allow them to apply theses operators exclusively on occupied
sectors of the lattice.

Landrieu et al. [10] manage to summarize the local
relationships in a similar fashion to PointNets by defin-
ing a SuperPoint Graph. This is achieved by creating so-
called SuperPoints, which are locally coherent, geometrically
homogeneous groups of points that get embedded by a
PointNet. They create a graph of SuperPoints that is an aug-
mented version of the original point cloud, and train a graph
convolutional network to encode the global relationships.

In the case of rotating LiDAR segmentation segmentation,
the number of points per scan is in the order of 105.
This scale prevents all of these aforementioned methods
from running in real-time, limiting their applicability in
autonomous driving. In contrast, we propose a system that
provides accurate semantic segmentation results, while still
running at frame-rate of the sensor.

Leading the charge in online processing, SqueezeSeg and
SqueezeSegV2 [21], [22], by Wu et al., also use a spherical
projection of the point cloud enabling the usage of 2D
convolutions. Furthermore, a light-weight fully convolutional
semantic segmentation is applied along with a conditional
random field (CRF) to smooth the results. The last step is
an un-discretization of the points from the range image back
into the 3D world. Both are capable of running faster than
the sensor rate, i.e., 10 Hz, and we use them as the basis of
our approach.

Several limitations need to be addressed in order to provide
full semantic segmentation with this framework. First, the
projection needs to be extended to include the full LiDAR
scan, since the SqueezeSeg framework only uses the frontal
90 degrees of the scan, where the objects of the original
KITTI dataset labels are annotated by bounding boxes. Sec-
ond, the SqueezeNet backbone is not descriptive enough to
infer all the 19 semantic classes provided by our dataset [1].
Third, we replace the CRF, which operates in the image
domain by an efficient, GPU-based nearest neighbor search
acting directly on the full, un-ordered point cloud. This last
step enables the retrieval of labels for all points in the cloud,
even if they are not directly represented in the range image,
regardless of the used resolution.

A

B

C

D

point cloud

spherical projection

semantic segmentation raw output filtered output

Fig. 2: Block diagram of the approach. Each of the arrows corresponds to one of our modules.

We propose a novel approach inspired by projection-based
methods which allow the usage of planar convolutions and
overcomes its drawbacks. Our method accurately segments
entire LiDAR scans at or faster than the frame rate of the
sensor (around 10 Hz), uses range images and 2D CNNs as
a proxy, and deals properly with the discretization errors that
need to be addressed after re-projecting the results to the 3D
point cloud.

III. OUR APPROACH

The goal of our approach is to achieve accurate and fast
semantic segmentation of point clouds, in order to enable
autonomous machines to make decisions in a timely manner.
To achieve this segmentation, we propose a projection-based
2D CNN processing of the input point clouds and utilize a
range image representation of each laser scan to perform the
semantic inference. We use in the following the term range
image for the spherical projection of the point cloud, but each
pixel, which corresponds to a horizontal and vertical direc-
tion, can store more than only a range value. The projection
is followed by a fast, GPU-based, k-Nearest-Neighbor (kNN)
search over the entire point cloud, which allows us to recover
semantic labels for the entire input cloud. This is particularly
critical when using small resolution range images, since the
projection would otherwise lead to a loss of information.

Our approach is therefore divided into four steps, depicted
in Fig. 2. These four steps are discussed in detail in the
following subsections: (A) a transformation of the input
point cloud into a range image representation, (B) a 2D
fully convolutional semantic segmentation, (C) a semantic
transfer from 2D to 3D that recovers all points from the
original point cloud, regardless of the used range image
discretization, and (D) an efficient range image based 3D
post-processing to clean the point cloud from undesired
discretization and inference artifacts, using a fast, GPU-based
kNN-search operating on all points.

A. Range Image Point Cloud Proxy Representation

Several LiDAR sensors, such as the Velodyne sensor
represent the raw input data in a range-image-like fashion.
Each column represents the range measured by an array
of laser range-finders at one point in time, and each row
represents different turning positions for each of those range-
finders, which are fired at a constant rate. However, in a
vehicle moving at high speeds this rotation does not happen
fast enough to ignore the skewing generated by this sort of

“rolling shutter” behavior. To obtain a more geometrically
consistent representation of the environment for each scan,
we must consider the vehicle motion, resulting in a point-
cloud which no longer contains range measurements for
each pixel, but contains multiple measurements for some
others. In order to obtain an accurate semantic segmentation
of the full LiDAR point cloud, our first step is to convert
each de-skewed point cloud into a range representation. For
this, we convert each point pi = (x, y, z) via a mapping
Π : R3 7→ R2 to spherical coordinates and finally to image
coordinates, as defined by(

u
v

)
=

(
1
2

[
1− arctan(y, x)π−1

]
w[

1−
(
arcsin(z r−1) + fup

)
f−1
]
h

)
, (1)

where (u, v) are said image coordinates, (h,w) are the
height and width of the desired range image representation,
f = fup + fdown is the vertical field-of-view of the
sensor, and r = ||pi||2 is the range of each point. This
procedure results in a list of (u, v) tuples containing a pair
of image coordinates for each pi, which we use to generate
our proxy representation. Using these indexes, we extract
for each pi, its range r, its x, y, and z coordinates, and
its remission, and we store them in the image, creating a
[5 × h × w] tensor. Because of the de-skewing of the scan,
the assignment of each points to its corresponding (u, v) is
done in a descending range order, to ensure that all points
rendered in the image are in the current field of view of the
sensor. We furthermore save this list of (u, v) pairs to gather
and clean the semantics of the resulting point cloud, as we
describe in Sec. III-C and Sec. III-D.

B. Fully Convolutional Semantic Segmentation

To obtain the semantic segmentation of this range image
representation of the point cloud we use a 2D semantic
segmentation CNN, which is modified to fit this particular
input type and form factor. Similarly to Wu et al. [21],
we use an encoder-decoder hour-glass-shaped architecture,
which is depicted in Fig. 3. These types of deep hour-glass-
shaped segmentation networks are characterized by having
an encoder with significant downsampling, which allows the
higher abstraction deep kernels to encode context informa-
tion, while running faster than non-downsampling counter-
parts. In our case, this downsampling is 32 (see Fig. 3).
This is later followed by a decoder module which upsamples
the “feature code” extracted by the convolutional backbone

Fig. 3: Our fully convolutional semantic segmentation architecture. RangeNet53 is inspired in a Darknet53 Backbone [16].

encoder to the original image resolution, adding also con-
volutional layers to refine these results. At the same time,
after each upsampling we also add skip connections between
different levels of output stride (OS) of the encoder and sum
them to the corresponding output stride feature volume in
the decoder, illustrated by the black arrows, to recover some
of the high-frequency edge information that gets lost during
the downsampling process. After this encoding-decoding
behavior, the last layer of the architecture performs a set
of [1× 1] convolutions. This generates an output volume of
[n× h× w] logits, where n is the number of classes in our
data. The last layer during inference is a softmax function
over the unbounded logits of the form ŷc = elogitc∑

c elogitc
.

This gives a probability distribution per pixel in the range
image, where logitc is the unbounded output in the slice
corresponding to class c. During training, this network is
optimized end to end using stochastic gradient descent and
a weighted cross-entropy loss L:

L = −
C∑

c=1

wc yc log
(
ŷc
)
, where wc =

1

log (fc + ε)
(2)

penalizes the class c according to the inverse of its fre-
quency fc. This handles imbalanced data, as is the case
for most datasets in semantic segmentation, e.g. the class
“road” represents a significantly larger number of points in
the dataset than the class “pedestrian”.

To extract rich features for our encoder backbone, we
define our RangeNet architectures by modifying the Dark-
net [16] backbone architecture in a way that makes it usable
for our purposes. This backbone was designed with general
image classification and object detection tasks in mind and
is very descriptive, achieving state-of-the-art performance in
several benchmarks for these tasks. However, it was designed
to work with square aspect ratio RGB images. The first
necessary modification to the backbone is to allow the first
channel to take images with 5 channels. As we are dealing
with a sensor that has an array of 64 vertically-placed laser
range-finders producing in the order of 130 000 points per
scan, this leaves us with a range image of around w =
2048 pixels. To retain information in vertical direction, we
therefore only perform downsampling in horizontal direction.
This means that in the encoder, an OS of 32 means a
reduction in w of a factor of 32, but 64 pixels still remain

intact in vertical direction h. To evaluate how well our post-
processing recovers the original point cloud information,
we analyze input sizes of [64 × 2048], [64 × 1024], and
[64 × 512] in our experimental evaluation, which produce
feature volumes at the end of the encoder of size [64× 64],
[64× 32], and [64× 16] respectively.

C. Point Cloud Reconstruction from Range Image

The common practice to map from a range image repre-
sentation to a point cloud is to use the range information,
along with the pixel coordinates and the sensor intrinsic
calibration to realize a mapping Π∗ : R2 7→ R3. However,
since we are generating the range image from a point
cloud originally, as stated in Sec. III-A, this could mean
dropping a significant number of points from the original
representation. This is especially critical when using smaller
images in order to make the inference of the CNN faster.
E.g. a scan with 130 000 points projected to a [64 × 512]
range image will represent only 32 768 points, sampling the
closest point in each pixel’s frustum. Therefore, to infer all
the original points in the semantic cloud representation, we
use all the (u, v) pairs for all the pi obtained during the
initial rendering process and index the range image with the
image coordinates that correspond to each point. This can be
performed extremely fast in the GPU before the next post
processing step takes place, and it results in a semantic label
for each point that was present in the entire input scan, in a
loss-less way.

D. Efficient Point Cloud Post-processing

Unfortunately, the benefits of the expedite semantic seg-
mentation of LiDAR scans through 2D semantic segmen-
tation of range images does not come without draw-backs.
The encoder-decoder hour-glass-like CNNs provide blurry
outputs during inference, which is also a problem for RGB
and RGBD semantic segmentation. Some methods, such
as [21] use a conditional random field over the predictions
in the image domain after the 2D segmentation to eliminate
this “bleeding” of the output labels. Using the softmax prob-
abilities of each pixel as unary potentials for the CRF, and
penalizing jumps in signal and Euclidean distance between
neighboring points. Even though this helps in 2D, it does not
fix the problem after the re-projection to three-dimensional
space, since once the labels are projected into the original

semantic segmentation (2D) semantic segm. (re-projection)

Fig. 4: Illustration of the label re-projection problem. Both the fence
and the car in the range image (left) were given the proper semantic
label, but during the process of sending the semantics back to the
original points (right), the labels were also projected as “shadows”.

point cloud, two or more points which were stored into
the same range image pixel will get the same semantic
label. This effect is illustrated in Fig. 4, where the labels
of the inferred point cloud present shadows in objects in the
background due to the blurry CNN mask, and the mentioned
discretization. Moreover, if we wish to use smaller range
image representations to infer the semantics, this problem
becomes even stronger, resulting in shadow-like artifacts of
the semantic information in objects of different classes.

To solve this problem, we propose a fast, GPU-enabled,
k-nearest neighbor (kNN) search operating directly in the
input point cloud. This allows us to find, for each point in
the semantic point cloud, a consensus vote of the k points
in the scan that are the closest to it in 3D. As it is common
in kNN search, we also set a threshold for the search, which
we call cut-off, setting the maximum allowed distance of a
point considered a near neighbor. The distance metric to rank
the k closest points can be the absolute differences in the
range, or the Euclidean distance. Although, we also tried to
use the remission as a penalization term, which did not help
in our experience. From now on, we explain the algorithm
considering the usage of the absolute range difference as
the distance, but the Euclidean distance works analogously,
albeit being slower to compute.

We explain the steps of our algorithm, described in Alg. 1,
referring to the corresponding line numbers. Our approxi-
mate nearest neighbor search uses the range image represen-
tation to obtain, for each point in the [h,w] range image, an
[S, S] window around it in the image representation, with
S being a value found empirically through a grid-search
in the validation set. This operation is performed through
the “im2col” primitive, which is internally used by most
parallel computing libraries to calculate a convolution, and
therefore directly accessible through all deep learning frame-
works. This results in a matrix of dimension [S2, hw], which
contains an unwrapped version of the [S, S] neighborhood
in each column, and each column center contains the actual
pixel’s range (lines 2–4). As not all points are represented in
the range image, we use the (u, v) tuples for each pi obtained
during the range image rendering process, and extend this
representation to a matrix of dimension [S2, N], containing
the range neighborhoods of all the scan points (lines 5–7).
As this is done by indexing the unfolded image matrix, the
centers of columns don’t represent the actual range values
anymore. Thus, we replace the center row of the matrix by
the actual range readings for each point. The result of this is

a [S2, N] matrix which contains all the range readings for the
points in the center row, and in each column, its unwrapped
[S, S] neighborhood (lines 8–9). This is a key checkpoint in
the algorithm, because it allows us to find in a quick manner
a set of S2 candidates to consider during the neighbor search
for each point, in parallel. This allows our algorithm to
run orders of magnitude faster than other nearest neighbor
search approaches such the ones in FLANN, which work
in unordered point clouds, by exploiting the arrangement of
the scan points in the sensor. This key structural difference
allows us to run in real-time even for large point clouds.

The following two steps are analogous to this unwrapping
(lines 10–15), but instead of obtaining the ranges of the
neighbor candidates, it contains their labels. This [S2, N] la-
bel matrix is later used to gather the labels for the consensus
voting, once the indexes for the k neighbors are found. At
this point of the algorithm, we are able to calculate the dis-
tance to the actual point for each of the S2 candidates. If we
subtract the [1, N] range representation of the LiDAR scan
from each row of the [S2, N] neighbor matrix, and point-
wise apply the absolute value, we obtain a [S2, N] matrix
where each point contains the range difference between the
center of the neighborhood (which is the query point) and the
surrounding points (lines 16–18). The fact that we are using
a small [S, S] neighborhood search around each point allows
us to make the assumption that the absolute difference in the
range is a good proxy for the euclidean distance, as points
that are close in (u, v) coordinates will only have similar
range if their actual distance in 3D space are similar. This is
tested empirically in our experimental section, allowing us to
make the distance calculation more efficiently, and obtaining
the same result for the post-processing.

The next step is to weight the distances by an inverse
Gaussian kernel, which penalizes the bigger differences in
the range between points that are distant in (u, v) more. This
is done by the point-wise multiplication of each column with
the unwrapped kernel (lines 19–27).

After this, we need to find the k closest points for
each column containing the S2 candidates, which is a done
through an argmin operation (lines 28–29). This allows us to
get the indexes for the k points in the S neighborhood with
the least weighted distance.

The last step in our search is to check which ones of those
k points fit within the allowed threshold, which we call cut-
off, and accumulate the votes from all the labels of the points
within that radius. This is performed through a gather add
operation, which generates a [C,N] matrix, where C is the
number of classes, and each row contains the number of votes
in its index class (lines 30–41). A simple argmax operation
over the columns of this matrix returns a [1, N] vector which
contains the clean labels for each point in the input LiDAR
point cloud, and serves as the output of our approach (lines
42–43).

It is important to notice that, given the independence
of all the points inside the loops in Alg. 1, each of the
main components can be represented either with a parallel
computing primitive or in a highly vectorized way, both

Algorithm 1: Efficient Projective Nearest Neighbor
Search for Point Labels

Data: Range Image Irange of size W ×H ,
Label Image Ilabel of predictions of size W ×H ,
Ranges R for each point p ∈ P of size N ,
Image coordinates (u, v) of each point in R.

Result: Labels Lconsensus for each point of size N .
1 Let be [l:u] = {i | l ≤ i ≤ u} the range from l to u.
/* Get S2 neighbors N′ for each pixel */

2 foreach (u, v) ∈ [1:W]× [1:H] do
3 foreach (i, j) ∈ [1:S]× [1:S] do
4 N′[v ·W + u, j · S + i] = Irange[u+ i, v + j]

/* Get neighbors N for each point */
5 foreach (u, v) ∈ C do
6 foreach (i, j) ∈ [1:S]× [1:S] do
7 N[v ·W + u, i · S + j] = N′[v ·W + u, i · S + j]

/* Fill in real point ranges */
8 foreach i ∈ [1:N] do
9 N[i, b(S · S − 1)/2c] = R(i)

/* Label neighbors L′ for each pixel */
10 foreach u ∈ [1:W], v ∈ [1:H] do
11 foreach (i, j) ∈ [1:S]× [1:S] do
12 L′[v ·W + u, i · S + j] = Ilabel[u+ i, v + j]

/* Get label neighbors L for each point */
13 foreach (u, v) ∈ C do
14 foreach (i, j) ∈ [1:S]× [1:S] do
15 L[v ·W + u, i · S + j] = L′[v ·W + u, i · S + j]

/* Distances to neighbors D for each point */
16 foreach i ∈ n [1:N] do
17 foreach j ∈ n [1:S·S] do
18 D[i, j] = |N[i, j]−R(i)|

/* Compute inverse Gaussian Kernel */
19 Let N (u | µ, σ) be a Gaussian with mean µ and std. deviation σ.
20 foreach (i, j) ∈ [1:S]× [1:S] do
21 G′[j · S + i] = N (i | 0, σ) · N (j | 0, σ)
22 Let be Gmax = max {G′[i] | i ∈ [1:S·S]} the maximium of G′

23 foreach i ∈ [1:S·S] do
24 G[i] = 1−Gmax ·G′[i]

/* Weight neighbors with inverse Gaussian kernel
*/

25 foreach i ∈ [1:N] do
26 foreach j ∈ [1:S·S] do
27 D[i, j] = D[i, j] ·G[j]

/* Find k-nearest neighbors S for each point */
28 foreach i ∈ [1:N] do
29 S[i] = {j | |{n ∈ [1:S·S] | D[i, n] < D[i, j]}| ≤ k}

/* Gather votes. */
30 foreach i ∈ [1:N] do
31 n = 1
32 foreach j ∈ S[i] do
33 if D[i, j] > δcutoff then
34 Lknn[i, n] = C + 1

35 else
36 Lknn[i, n] = L[i, j]

37 n = n+ 1

/* Accumulate votes. */
38 foreach i ∈ [1:N] do
39 foreach j ∈ [[:1] : k] do
40 if Lknn[i, j] ≤ C then
41 V[i,Lknn[i, j]] = V[i,Lknn[i, j]] + 1

/* Find maximum consensus. */
42 foreach i ∈ [1:N] do
43 Lconsensus[i] = argmaxc Lknn[i, c]

of which are directly implementable in a GPU, using off-
the-shelf, high abstraction deep learning or data science
frameworks.

This algorithm requires setting four different hyperparam-
eters: (i) S which the size of the search window, (ii) k which
is number of nearest neighbors, (iii) cut-off which is the
maximum allowed range difference for the k, and (iv) σ for
the inverse gaussian. The values for the hyperparameters are
calculated empirically through a data-driven search in the
validation set of our training data, and a brief analysis is
provided in the experimental section.

IV. EXPERIMENTAL EVALUATION

The experimental evaluation is designed to support our
claims that our approach: (i) outperforms the state of the
art in the task of semantic segmentation of LiDAR scans,
(ii) infers the entire point cloud while recovering the high
frequency information in the un-projection step, and (iii) runs
online in an embedded computer at sensor frame-rate.

Dataset. We train and evaluate our approach on a large-
scale dataset that provides dense point-wise annotations for
the entire KITTI Odometry Benchmark [7], [1]. The dataset
is comprised of over 43 000 scans from which over 21 000
from sequences 00 to 10 are available for training and the
remaining scans from sequences 11 to 21 are used as test set.
We used sequence 08 as validation set for hyperparameter
selection and trained our approach on the remaining training
sequences. Overall, the dataset provides 22 classes from
which 19 classes are evaluated on the test set via our
benchmark website.

Hyperparameter selection. All hyperparameters for
RangeNet models are selected and evaluated on the valida-
tion set (sequence 8). For all backbone trainings, we use
a learning rate of 1 · 10−3, with a decay of 0.99 every
epoch, and train for 150 epochs. For all CNN backbones,
convergence was achieved in less than 150 epochs. For all
the state-of-the-art methods, the hyperparameters were also
selected on the validation set.

Metrics. To assess the labeling performance, we use the
commonly applied mean Jaccard Index or mean intersection-
over-union (IoU) metric, mIoU, over all classes [6] given by

mIoU =
1

C

C∑
c=1

TPc

TPc + FPc + FNc
(3)

where TPc, FPc, and FNc correspond to the number of true
positive, false positive, and false negative predictions for
class c and C is the number of classes.

To better asses the performance with respect to the preci-
sion of the prediction, we propose an additional evaluation
metric which we call border-IoU. This metric is defined in
the same way as the standard IoU, but only applies within
the subset of points defined by an extra parameter which
considers how far a point is to the self occlusion of the
sensor, which is manifested in a change in the label in the
range image. This metric is designed to show how much our
algorithm can help the “shadow-like” wrong label projections
in the semantic point clouds.

TABLE I: IoU [%] on test set (sequences 11 to 21). RangeNet21 and RangeNet53 represent the new baselines with augmented Darknet
backbones (21 and 53 respectively), and the versions with (++) are treated with our fast point cloud post-processing based on range.

Approach Size ca
r

bi
cy

cl
e

m
ot

or
cy

cl
e

tr
uc

k

ot
he

r-
ve

hi
cl

e

pe
rs

on

bi
cy

cl
is

t

m
ot

or
cy

cl
is

t

ro
ad

pa
rk

in
g

si
de

w
al

k

ot
he

r-
gr

ou
nd

bu
ild

in
g

fe
nc

e

ve
ge

ta
tio

n

tr
un

k

te
rr

ai
n

po
le

tr
af

fic
-s

ig
n

m
ea

n
Io

U

Sc
an

s/
se

c

Pointnet [14]

50000pts

46.3 1.3 0.3 0.1 0.8 0.2 0.2 0.0 61.6 15.8 35.7 1.4 41.4 12.9 31.0 4.6 17.6 2.4 3.7 14.6 2
Pointnet++ [15] 53.7 1.9 0.2 0.9 0.2 0.9 1.0 0.0 72.0 18.7 41.8 5.6 62.3 16.9 46.5 13.8 30.0 6.0 8.9 20.1 0.1
SPGraph [10] 68.3 0.9 4.5 0.9 0.8 1.0 6.0 0.0 49.5 1.7 24.2 0.3 68.2 22.5 59.2 27.2 17.0 18.3 10.5 20.0 0.2
SPLATNet [19] 66.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 70.4 0.8 41.5 0.0 68.7 27.8 72.3 35.9 35.8 13.8 0.0 22.8 1
TangentConv [20] 86.8 1.3 12.7 11.6 10.2 17.1 20.2 0.5 82.9 15.2 61.7 9.0 82.8 44.2 75.5 42.5 55.5 30.2 22.2 35.9 0.3

SqueezeSeg [21]

64× 2048 px

68.8 16.0 4.1 3.3 3.6 12.9 13.1 0.9 85.4 26.9 54.3 4.5 57.4 29.0 60.0 24.3 53.7 17.5 24.5 29.5 66
SqueezeSeg-CRF [21] 68.3 18.1 5.1 4.1 4.8 16.5 17.3 1.2 84.9 28.4 54.7 04.6 61.5 29.2 59.6 25.5 54.7 11.2 36.3 30.8 55
SqueezeSegV2 [22] 81.8 18.5 17.9 13.4 14.0 20.1 25.1 3.9 88.6 45.8 67.6 17.7 73.7 41.1 71.8 35.8 60.2 20.2 36.3 39.7 50
SqueezeSegV2-CRF [22] 82.7 21.0 22.6 14.5 15.9 20.2 24.3 2.9 88.5 42.4 65.5 18.7 73.8 41.0 68.5 36.9 58.9 12.9 41.0 39.6 40
RangeNet21 [Ours] 85.4 26.2 26.5 18.6 15.6 31.8 33.6 4.0 91.4 57.0 74.0 26.4 81.9 52.3 77.6 48.4 63.6 36.0 50.0 47.4 20

RangeNet53
[Ours]

64× 2048 px 86.4 24.5 32.7 25.5 22.6 36.2 33.6 4.7 91.8 64.8 74.6 27.9 84.1 55.0 78.3 50.1 64.0 38.9 52.2 49.9 13
64× 1024 px 84.6 20.0 25.3 24.8 17.3 27.5 27.7 7.1 90.4 51.8 72.1 22.8 80.4 50.0 75.1 46.0 62.7 33.4 43.4 45.4 25
64× 512 px 81.0 9.9 11.7 19.3 7.9 16.8 25.8 2.5 90.1 49.9 69.4 2.0 76.0 45.5 74.2 38.8 62.7 25.5 38.1 39.3 52

RangeNet53++
[Ours+kNN]

64× 2048 px 91.4 25.7 34.4 25.7 23.0 38.3 38.8 4.8 91.8 65.0 75.2 27.8 87.4 58.6 80.5 55.1 64.6 47.9 55.9 52.2 12
64× 1024 px 90.3 20.6 27.1 25.2 17.6 29.6 34.2 7.1 90.4 52.3 72.7 22.8 83.9 53.3 77.7 52.5 63.7 43.8 47.2 48.0 21
64× 512 px 87.4 9.9 12.4 19.6 7.9 18.1 29.5 2.5 90.0 50.7 70.0 2.0 80.2 48.9 77.1 45.7 64.1 37.1 42.0 41.9 38

A. Performance of RangeNet++ w.r.t. State-of-the-art

The first experiment is designed to support our claim that
our approach over-performs the state of the art in the task of
scene semantic segmentation of LiDAR point clouds. Tab. I
shows the difference between our RangeNet backbones,
using 21 and 53 layers, and 7 other baseline methods.
The superior performance of our RangeNet baselines, even
without our cleaning, for all the input resolutions of shows
that it is a solid baseline to benchmark our efficient kNN
cleaning. Tab. I also shows that our method, RangeNet++,
which includes our kNN post processing consistently beats
its unprocessed RangeNet counterpart, showing the efficacy
of our kNN search. The kNN cleaning is consistently better
for all but one classes, unlike the CRF, which is a conclusion
reached by the original SqueezeSeg [21] paper as well, even
when the overall IoU is higher.

B. Ablation Studies

The second experiment shows the influence of the k and S
parameters in the validation set. For each of the 4 parameters
k, S, σ, and cut-off we chose a wide range of values and
evaluated the result of post-processing the inference results
of the RangeNet53 backbones for all input resolutions. Fig. 5
shows a normalized result of the IoU in the validation set for
each parameter set, for various k and S and the argmax of σ
and cut-off. The results also show that we can obtain similar
results using small kernels and the absolute range difference,
as a proxy for the Euclidean distance. This supports our
statement that this range difference is a good proxy for the
actual distance the closer the points are in the image.

C. Post-Processing Influence

The third experiment is designed to support our claim
that our algorithm improves the reconstruction of the se-
mantics of the entire point cloud even for smaller range
image resolutions. For this, we use our border-IoU metric,
which only considers points that are a certain number of
points away from a change in label. In Fig. 6 we show

1
3

5
7

9
11

13
15nu

m
be

r o
f n

ei
gh

bo
rs

 k
Ra

ng
e

[64×2048]
σ=1.0

3 5 7 9 11 13 15

window-size

1
3

5
7

9
11

13
15nu

m
be

r o
f n

ei
gh

bo
rs

 k
Eu

cl
id
ea

n

σ=2.0

[64×1024]
σ=1.0

3 5 7 9 11 13 15

window-size

σ=1.0

[64×512]
σ=0.5

3 5 7 9 11 13 15

window-size

σ=0.5

Io
U

M
in

Io
U

M
ax

Fig. 5: Hyperparameter search post-processing for both Range (top
row) and Euclidean distance (bottom row) using RangeNet53++,
and different input resolutions. All experiments used cutoff = 1.0m.

the value of the IoU and the value of the border IoU for
different distances to border. Note that our post-processing
approach doesn’t only improve the IoU score by a couple
of % points, but it significantly improves the border IoU
score for low values of the distance to border parameter.
This means that our approach is especially useful to help
in cases of label “bleeding” or “shadowing” described in
Sec. III-D. Another important conclusion is that there is only
marginal differences between using the faster to compute
range difference and the actual Euclidean distance, through-
out the entire spectrum of border distances, and in the IoU,
which support our statement that it is a good approximation.

D. Runtime

The fourth experiment is designed to support our claim
that the approach can run in its totality online in a moving
platform, using a single GPU. Tab. II shows the runtime for
the backbone, different post-processing distance functions
(for the best parameters), and the total time required. As
expected, the range-based post-processing is faster to calcu-

0.4

0.5

M
ea

n
Io

U
[%

]
Ra

ng
e

[64×2048] [64×1024] [64×512]

5 10 15

0.4

0.5

M
ea

n
Io

U
[%

]
Eu

cl
id
ea

n

5 10 15 5 10 15

raw output (bIoU)
raw output (IoU)

post-processed output (bIoU)
post-processed output (IoU)

Fig. 6: Border IoU (bIoU) and IoU as a function of the distance
to label change. This plot shows that our post-processing improves
the IoU, and significantly improves the borderIoU, which means
that it recovers blurry mask and discretization errors better.

TABLE II: Runtime of RangeNet53++.

Hardware Resolution (px) Processing time (ms) FPSCNN Range Euclid Total

Quadro P6000
64× 512 19

7 11
26 38

64× 1024 40 47 21
64× 2048 75 82 12

Jetson AGX
64× 512 45

35 52
80 13

64× 1024 87 122 8
64× 2048 153 188 5

late, since each distance calculation requires a subtraction
and an absolute value, compared to 3 squares, 2 sums, and a
square root. Therefore, since the difference in performance
is negligible, we use the sum of our CNN backbone plus
this range processing time for our total runtime, which we
evaluate in two different types of hardware.

V. CONCLUSION

In this work, we presented a fast and accurate framework
for semantic segmentation of point clouds recorded by a
rotating LiDAR sensor. Our main contribution is a novel
deep-learning-supported approach that exploits range images
and 2D convolutions, followed by a novel, GPU-accelerated
post-processing to recover consistent semantic information
during inference for entire LiDAR scans. Our experimental
evaluation suggests that our modified 2D deep CNN oper-
ating on range images outperforms the current state of the
art in semantic segmentation of LiDAR point clouds. More-
over, our efficient, GPU-enabled post-processing can further
improve on these results by recovering important boundary
information lost during the de-skewing of the laser scans,
the lossy discretization into a proxy representation, and the
inference through an hour-glass-shaped CNN. Overall, our
approach outperforms the state of the art both in accuracy and
runtime, taking a step forward towards sensor redundancy for
semantic segmentation for autonomous vehicles and robots.

REFERENCES

[1] J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stach-
niss, and J. Gall. SemanticKITTI: A Dataset for Semantic Scene
Understanding of LiDAR Sequences. In Proc. of the IEEE/CVF
International Conf. on Computer Vision (ICCV), 2019.

[2] G.J. Brostow, J. Fauqueur, and R. Cipolla. Semantic object classes in
video: A high-definition ground truth database. Pattern Recognition
Letters, 2008.

[3] L. Chen, G. Papandreou, F. Schroff, and H. Adam. Rethinking Atrous
Convolution for Semantic Image Segmentation. arXiv preprint, 2017.

[4] M. Cordts, S. Mohamed Omran, Ramos, T. Rehfeld, M. Enzweiler,
R. Benenson, U. Franke, S. Roth, and B. Schiele. The cityscapes
dataset for semantic urban scene understanding. In Proc. of the IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), 2016.

[5] A. Dai, A.X. Chang, M. Savva, M. Halber, T. Funkhouser, and
M. Nießner. ScanNet: Richly-Annotated 3D Reconstructions of Indoor
Scenes. In Proc. of the IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2017.

[6] M. Everingham, S. Eslami, L. van Gool, C. Williams, J. Winn,
and A. Zisserman. The Pascal Visual Object Classes Challenge a
Retrospective. International Journal on Computer Vision (IJCV),
111(1):98–136, 2015.

[7] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for Autonomous
Driving? The KITTI Vision Benchmark Suite. In Proc. of the IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), pages
3354–3361, 2012.

[8] T. Hackel, N. Savinov, L. Ladicky, Jan D. Wegner, K. Schindler, and
M. Pollefeys. SEMANTIC3D.NET: A new large-scale point cloud
classification benchmark. In ISPRS Annals of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, volume IV-1-W1,
pages 91–98, 2017.

[9] V. Jampani, M. Kiefel, and P.V. Gehler. Learning Sparse High
Dimensional Filters: Image Filtering, Dense CRFs and Bilateral Neural
Networks. In Proc. of the IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2016.

[10] L. Landrieu and M. Simonovsky. Large-scale Point Cloud Semantic
Segmentation with Superpoint Graphs. In Proc. of the IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2018.

[11] A. Milioto and C. Stachniss. Bonnet: An Open-Source Training and
Deployment Framework for Semantic Segmentation in Robotics using
CNNs. In Proc. of the IEEE Intl. Conf. on Robotics & Automation
(ICRA), 2019.

[12] G. Neuhold, T. Ollmann, S. Rota Bulo, and P. Kontschieder. The
Mapillary Vistas Dataset for Semantic Understanding of Street Scenes.
In Proc. of the IEEE Intl. Conf. on Computer Vision (ICCV), 2017.

[13] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello. ENet: A Deep
Neural Network Architecture for Real-Time Semantic Segmentation.
arXiv preprint, 2016.

[14] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. PointNet: Deep Learning
on Point Sets for 3D Classification and Segmentation. In Proc. of
the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
2017.

[15] C.R. Qi, K. Yi, H. Su, and L. J. Guibas. PointNet++: Deep Hierarchical
Feature Learning on Point Sets in a Metric Space. In Proc. of the
Advances in Neural Information Processing Systems (NIPS), 2017.

[16] J. Redmon and A. Farhadi. YOLOv3: An Incremental Improvement.
arXiv preprint, 2018.

[17] E. Romera, J. M. Alvarez, L. M. Bergasa, and R. Arroyo. Erfnet: Effi-
cient residual factorized convnet for real-time semantic segmentation.
IEEE Trans. on Intelligent Transportation Systems (ITS), 19(1):263–
272, 2018.

[18] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. Chen.
MobileNetV2: Inverted Residuals and Linear Bottlenecks. arxiv, 2018.

[19] H. Su, V. Jampani, D. Sun, S. Maji, E. Kalogerakis, M-H. Yang,
and J. Kautz. SPLATNet: Sparse Lattice Networks for Point Cloud
Processing. In Proc. of the IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2018.

[20] M. Tatarchenko, J. Park, V. Koltun, and Q-Y. Zhou. Tangent Convo-
lutions for Dense Prediction in 3D. In Proc. of the IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2018.

[21] B. Wu, A. Wan, X. Yue, and K. Keutzer. SqueezeSeg: Convolutional
Neural Nets with Recurrent CRF for Real-Time Road-Object Segmen-
tation from 3D LiDAR Point Cloud. In Proc. of the IEEE Intl. Conf. on
Robotics & Automation (ICRA), 2018.

[22] B. Wu, X. Zhou, S. Zhao, X. Yue, and K. Keutzer. SqueezeSegV2:
Improved Model Structure and Unsupervised Domain Adaptation for
Road-Object Segmentation from a LiDAR Point Cloud. Proc. of the
IEEE Intl. Conf. on Robotics & Automation (ICRA), 2019.

[23] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. Pyramid scene parsing
network. arXiv preprint, abs/1612.01105, 2016.

	Introduction
	Related Work
	Our Approach
	Range Image Point Cloud Proxy Representation
	Fully Convolutional Semantic Segmentation
	Point Cloud Reconstruction from Range Image
	Efficient Point Cloud Post-processing

	Experimental Evaluation
	Performance of RangeNet++ w.r.t. State-of-the-art
	Ablation Studies
	Post-Processing Influence
	Runtime

	Conclusion
	References

