Bonnet: An Open-Source Training and Deployment Framework for
Semantic Segmentation in Robotics using CNNs

Andres Milioto

Abstract— The ability to interpret a scene is an important
capability for a robot that is supposed to interact with its
environment. The knowledge of what is in front of the robot is,
for example, relevant for navigation, manipulation, or planning.
Semantic segmentation labels each pixel of an image with a
class label and thus provides a detailed semantic annotation of
the surroundings to the robot. Convolutional neural networks
(CNNs) are popular methods for addressing this type of
problem. The available software for training and the integration
of CNN:s for real robots, however, is quite fragmented and often
difficult to use for non-experts, despite the availability of sev-
eral high-quality open-source frameworks for neural network
implementation and training. In this paper, we propose a tool
called Bonnet, which addresses this fragmentation problem by
building a higher abstraction that is specific for the semantic
segmentation task. It provides a modular approach to simplify
the training of a semantic segmentation CNN independently of
the used dataset and the intended task. Furthermore, we also
address the deployment on a real robotic platform. Thus, we
do not propose a new CNN approach in this paper. Instead, we
provide a stable and easy-to-use tool to make this technology
more approachable in the context of autonomous systems. In
this sense, we aim at closing a gap between computer vision
research and its use in robotics research. We provide an open-
source codebase for training and deployment. The training
interface is implemented in Python using TensorFlow and the
deployment interface provides a C++ library that can be easily
integrated in an existing robotics codebase, a ROS node, and
two standalone applications for label prediction in images and
videos.

I. INTRODUCTION

Perception is an essential building block of most robots.
Autonomous systems need the capability to analyze their
surroundings in order to safely and efficiently interact with
the world. Augmenting the robot’s camera data with the
semantic categories of the objects present in the scene, has
the potential to aid localization [2, 3, 25], mapping [16, 32],
path planning and navigation [10, 34], manipulation [5, 30],
precision farming [20, 22, 21] as well as many other tasks
and robotic applications. Semantic segmentation provides a
pixel-accurate category mask for a camera image or an image
stream. The fact that each pixel in the images is mapped to a
semantic class, allows the robot to obtain a detailed semantic
view of the world around it and aids to the understanding
the scene.

Most methods, which represent the current state of the
art in semantic segmentation, use fully convolutional neural
networks. The success of neural networks for many tasks

All authors are with the University of Bonn, Germany. This work has
partly been supported by the EC under the grant number H2020-ICT-
644227-Flourish, and the German Research Foundation under Germany’s
Excellence Strategy, EXC-2070 - 390732324 (PhenoRob).

Cyrill Stachniss

.

N < } J 5 S : oy
N 2 o . %
b = A [o §

3 o 3

Fig. 1. Sample predictions from Bonnet. Left: Raw RGB images. Right:
Overlay with semantic segmentation label from CNN prediction. From top
to bottom: Cityscapes dataset [9], person segmentation inferring a photo
from our research group, trained on COCO [18], Crop-Weed agricultural
dataset [6]. Best viewed in color.

from machine vision to natural language processing has trig-
gered the availability of many high-quality open-source de-
velopment and training frameworks such as TensorFlow [1],
Caffe [15], or Pytorch [24]. Even though these frameworks
have simplified the development of new networks and the
exploitation of GPUs dramatically, it is still non-trivial for a
novice to build a usable pipeline from training to deployment
in a robotic platform. Companies such as NVIDIA and
Intel have furthermore developed custom accelerators such
as TensorRT or the Neural Compute SDK. Both use graphs
created with TensorFlow or Caffe as inputs and transform
them into a format in which inference can be accelerated by
custom inference hardware. As with the other frameworks,
their learning curve can be steep for a developer that actually
aims at solving a robotics problem but which relies on the
semantic understanding of the environment. Last but not
least, source code from computer vision research related to
semantic segmentation is often made available, which is a
great achievement. Each research group, however, uses a
different framework and adapting the trained networks to an
own robotics codebase can sometimes take a considerable
amount of development time.

Therefore, we see the need for a tool that allows a
developer to easily train and deploy semantic segmentation
networks for robotics. Such a tool should allow developers to

easily add new research approaches into the robotic system
while avoiding the effort of re-implementing them from
scratch or modifying the available code until it becomes
at least marginally usable for the research purpose. This is
something that we experienced ourselves and observed in the
community too often.

The contribution of this paper is a stable, easy to use,
software tool with a modular codebase which implements
semantic segmentation using CNNs. It solves training and
deployment on a robot. Thus, we do not propose a new CNN
approach here. Instead, we provide a clean and extensible
implementation to make this technology easily usable in
robotics and to enable a larger number of people to use
CNN s for semantic segmentation on their robots. We strongly
believe that our tool allows the scientific robotics commu-
nity to save time on the CNN implementations, enabling
researchers to spend more time to focus on how such infor-
mation can aid robot perception, localization, mapping, path
planning, obstacle avoidance, manipulation, safe navigation,
etc. We show this with different example use cases from the
community, where robotics researchers with no expertise in
deep learning were able to, using Bonnet, train and deploy
semantics in their systems with minimal effort. Bonnet relies
on TensorFlow for our graph definition and training, but
provides the possibility of using different backends with
a clean and stable C++ API for deployment. It allows
for the possibility to transparently exploit custom hardware
accelerators that become commercially available, without
modifying the robotics codebase.

In sum, we provide (i) a modular implementation platform
for training and deploying semantic segmentation CNNs in
robots; (ii) three sample architectures that perform well for
a variety of perception problems in robotics while working
roughly at sensor framerate; (iii) a stable, easy to use,
C++ API that also allows for the addition of new hardware
accelerators as they become available; (iv) a way to promptly
exploit new datasets and network architectures as they are
introduced by computer vision and robotics researchers.

Although we do not propose a new scientific method,
we believe that this work has a strong positive impact on
the robotics community. Six months after becoming publicly
available, Bonnet already has a considerable user base and
won “Best Demo Award” at the Workshop on Multimodal
Robot Perception at ICRA 2018. Our open-source software is
available at https://github.com/PRBonn/bonnet.

II. RELATED WORK

Semantic segmentation is important in robotics. The pixel-
wise prediction of labels can be precisely mapped to objects
in the environment and thus allowing the autonomous system
to build a high resolution semantic map of its surroundings.

One of the pioneers in efficient feed-forward encoder-
decoder approaches to semantic segmentation is Segnet [4].
It uses an encoder based on VGG16 [31], and a symmetric
decoder outputting a semantic label for each pixel of the
input image. The decoder uses the encoder pooling indexes
to perform the unpooling to recover some of the lost spatial

resolution during pooling. Segnet is available as a Caffe im-
plementation and has pre-trained weights for several datasets.
U-Net [28], which was released contemporaneously, exploits
the same encoder-decoder architecture but uses a decoder
concatenation of the whole encoder feature map instead
of sharing pooling indexes. This allows for more accurate
decision boundaries, which comes at a higher computational
and memory cost. U-Net is available as an implementation
in a modified Caffe version and provides pre-trained weights
for a medical dataset. PSP-Net [36] uses ResNet [12] as the
encoder, and exploits global information through a pyramid
of average-pooling layers after the latter, to provide more
accurate semantics based on the environment of the image
objects. PSP-Net is also available as a modified Caffe imple-
mentation and comes with pre-trained weights from different
scene parsing datasets. All of these architectures are based on
encoders such as VGG and ResNet, which focus on accuracy
of the predictions rather than the execution speed for a near
real-time application in robotics.

Other architectures use post-processing steps to improve
the decision boundaries in the segmented masks. Some
versions of DeepLab [7] use fully connected conditional
random fields (CRF) in addition to the last layer CNN
features in order to improve the localization performance.
CRF-as-RNN [37] replaces the CRF with a recurrent neural
network for prediction refinement, also deviating from a
fully feed-forward implementation. Both approaches provide
modified implementations of Caffe and pre-trained weights
for some scene parsing datasets. Because of rather ineffi-
cient feature extractors and the post-processing steps, their
execution speed is quite far away from the frame-rate of a
regular camera, even when executed on the most powerful
acceleration hardware available today.

Robots, however, need online inference capabilities for
most applications. There has been work focusing on infer-
ence efficiency, both in terms of execution time and model
size. Enet [23] proposes efficient down-sampling modules,
efficient bottlenecks, and dilated convolutions to decrease the
model size and to improve the computational efficiency. Enet
is available as an Torch implementation and provides pre-
trained weights. ICNet [35] proposes a compressed pyramid
scene parsing network using an image cascade that incor-
porates multi-resolution branches to provide a more efficient
implementation of PSP-Net that can run closer to real-time. It
is available as a Caffe implementation based in PSP-Net, and
contains pre-trained weights. ERFNet [27] proposes a way
of widening each layer by replacing the bottleneck modules
with efficient dilated separable convolution modules. It is
available both, as Torch and PyTorch implementations, and
contains pre-trained weights. Mobilenets-v2 [29] proposes
inverted residuals and linear bottlenecks to achieve near
state-of-the-art performance in semantic segmentation using
efficient constrained networks. Mobilenets-v2 is available as
a TensorFlow implementation.

This fragmentation of different systems and backends
motivates our idea of providing a modular implementation
tool, in which such architectures can be realized.

https://github.com/PRBonn/bonnet

Variable Receptive
Downsample module Field Non-bottleneck Upscallng madﬁ

Fig. 2. Example of an encoder-decoder semantic segmentation CNN
implemented in Bonnet. It is based on the non-bottleneck idea behind
ERFNet [27]. Best viewed in color.

III. BONNET: TRAINING AND DEPLOYMENT
FOR SEMANTIC SEGMENTATION IN ROBOTICS

We provide our semantic segmentation tool called Bonnet
with a Python training pipeline and a C++ deployment li-
brary. The C++ deployment library can be used standalone or
as a ROS node. We provide three sample architectures focus-
ing on realtime inference, based of ERFNet [27] (see Fig. ,
InceptionV3 [33], and MobilenetsV2 [29] as well as pre-
trained weights on four different datasets. Our codebase
allows for fast multi-GPU training, for easy addition of new
state-of-the-art architectures and available datasets, for easy
training, retraining, and deployment in a robotic system. It
furthermore allows for transparently using different backends
for hardware accelerators as they become available. This all
comes with a stable C++ APL

The usage of Bonnet is split in two steps. First, training
the models to infer the pixel-accurate semantic classes from
a specific dataset through a Python interface which is able
to access the full-fledged API provided by TensorFlow for
neural network training. Second, deploying the model in an
actual robotic platform through a C++ interface which allows
the user to infer from the trained model in either an existing
C++ application or a ROS-enabled robot. Fig. [3| shows a
modular description of this division, from the application
level to the hardware level, which we explain in detail in
the following sections. Note that for a reasonable number of
use-cases, a developer using Bonnet can avoid coding more
or less completely. By simply providing own training data, a
new application can be deployed in a robot by simply fine-
tuning one of the models and deploying using the ROS node.

IV. BONNET TRAINING

The training of the models is performed through the
methods defined through the abstract classes Dataset
and Network (see Fig. [3), which handle the pre-fetching,
randomization, and pre-processing of the images and labels,
and the supervised training of the CNNs, respectively.

In order to train a model using our tool, there is a sequence
of well-defined steps that need to be performed, which are:

o Dataset definition, which is optional if the dataset is

provided in one of our defined standard dataset formats.

o Network definition, which is also optional if the pro-

vided architecture fits the needs of the addressed se-
mantic segmentation task.

ROS C++
‘ P AT H Nodes ‘ Apps ‘
Python interface
C++
lerary
train.yaml| data.yaml net.yam| | |nodes.yaml
Tensorflow Graph ‘

‘Tensorﬂow H TensorRT H Other ‘

CPU ‘ ‘ GPU ‘

Fig. 3. Abstraction of the codebase. Python interface is used for training
and graph definition, and C++ library can use a trained graph and infer
semantic segmentation in any running application, either linking it or
by using the ROS node. Both interfaces communicate through the four
configuration files in yaml format and the trained model weights.

o Hyper-parameter tuning.

e GPU training, either through single or multiple GPUs.
This step can be performed either from scratch, or from
a provided pre-trained model.

e Graph freezing for deployment, which optimizes the
models to strip them from training operations and
outputs a different optimized model format for each
supported hardware family.

A. Dataset Definition

The abstract class Dataset provides a standard way to
access dataset files, given a desired split for it in training,
validation, and testing sets. The codebase contains a general
dataset parser, which can be used to import a directory
containing images and labels that are split into our standard
dataset format. This parser can also be used as a guideline
to implement an own parser, for an own organization of the
dataset files. The definition of each semantic class, the colors
for the debugging masks, the desired image inference size,
and the location of the dataset are meant to be performed
in the corresponding dataset’s data.yaml configuration file,
of which there are several examples in the codebase. Once
the dataset is parsed into the standard format, the abstract
class Network knows how to communicate with it in
order to handle the training and inference of the model.
Besides the handling of the file opening and feeding to
the CNN trainer, the abstract dataset handler performs the
desired dataset augmentation, such as flips, rotations, shears,
stretches, and gamma modifications. The dataset handler
runs on a thread different from the training, such that there
is always an augmented batch available in RAM for the
network to use, but also allows the program to use big
datasets in workstations with limited memory. The selection
of this cache size allows for speed vs. memory adjustment,
which depend on the system available to the trainer.

B. Network Definition

Once the dataset is properly parsed into the standard
format, the CNN architecture has to be defined. We provide

three sample architectures and provide pre-trained weights
for different datasets, and different network sizes, depending
on the complexity of the problem. Other network archi-
tectures can be easily added, given the modular structure
of our codebase, and it is the main purpose of the tool
to allow the implementation of new architectures as they
become available. For this, the user can simply create a
new architecture file, which inherits the abstract Network
class, and define the graph using our library of layers. If
a novel layer needs to be added, it can be implemented
using TensorFlow operations. The abstract class Network,
see Fig. Bl contains the definition of the training method
that handles the optimization through stochastic gradient
descent, inference methods to test the results, metrics for
performance assessment, and the graph definition method,
which each architecture overloads in order to define different
models. If a new architecture requires a new metric or
a different optimizer, these can be modified simply by
overloading the corresponding method of the abstract class.
The interface with the model architecture is done through the
net.yaml configuration file, which includes the selection of
the architecture, the number of layers, number of kernels
per layer, and some other architecture dependent hyper-
parameters such as the amount of dropout [13], and the batch
normalization [14] decay.

The interface with the optimization is done through the
train.yaml configuration file, which contains all training
hyper-parameters, such as learn rate, learn rate decay, batch
size, the number of GPUs to use, and some other parameters
such as the possibility to periodically save image predictions
for debugging, and summaries of the weights and activations
histograms, which take a lot of disk space during training,
and are only useful to have during hyper-parameter selection.
There are examples of these configuration files provided for
the included architectures in the codebase.

It is important to notice that since the abstract classes
Network and Dataset handle most cases well with their
default implementation, no coding is required to add a new
task and train a model unless for special cases. However, if a
complex dataset is to be added, or a new network implemen-
tation is desired, Bonnet allows for its easy implementation.

C. Hyper-parameter Selection

Once the network and the dataset have been properly
defined, the hyper-parameters need to be tuned. We recom-
mend doing the hyper-parameter selection through random-
search, as single GPU jobs, which can be performed by start-
ing the training with different configuration files (net.yaml,
train.yaml), with all summary options enabled, and then
choosing the best performing model for a final multi-GPU
training until convergence. The tool is designed in this
way for more simplicity, and because the hyper-parameter
selection jobs can be scheduled easily with an external job-
scheduling tool. Some of the hyper-parameters which can
be configured are: the number of images to cache in RAM,
the amount and type of data augmentation, the decays for
batch normalization [14] and regularization through weight

SSD
CPU
Pre-fetched Dataset fetcher,
batches preprocessor

e T
Model Variables -{ Avg.; Apply }‘—
GPUO GPU 1
Image Image
Batch 0 Batch 1
| |
CNN ‘ CNN
Model ‘ Model
Label " Label X
Batch 0 RodiS Bat(‘:h 1 Legis
1
Loss0 | | Loss1 |
!
Gradients 0 Gradients 1

Fig. 4. Multi-GPU training. Example using two GPUs, but scalable to all
GPUs available in workstation.

decay and dropout [13], the learning rate and momentums
for the optimizer, the type of weighting policy for dealing
with unbalanced classes in the dataset, the v for the focal
loss [19], the batch size, and number of GPUs.

D. Multi GPU training

Once the most promising model is found, the training
can be done with this hyper-parameter set using multiple
GPUs to be able to increase the batch size, and hence,
the speed of training. Changing the number of GPUs used
for training is as simple as changing the setting in the
train.yaml configuration file, but we recommend scaling the
hyper-parameter set found following the procedure described
in [11] for better results. The multi-GPU training, as de-
scribed in Fig.] is performed by synchronously averag-
ing the gradients obtained by a single Stochastic Gradient
Descent step in each GPU. For this, all model parameters
are stored in main memory and they are transferred to each
GPU after each step of averaged gradient update. This is
handled by the abstract network’s training method, and it is
transparent to the user. The accuracy and Jaccard index (IoU)
are periodically reported and the best performing models in
the validation set are stored. We store both the best accuracy
and the best intersection over union model, for posterior use
in deployment. The mean Jaccard index (IoU) is used for the
final evaluation:

1
C

(2

TruePos;
TruePos; + FalsePos; + FalseNeg;

c
mloU =

1

Another important work to make GPU training more
efficient is the introduction of the concept of “checkpointed
gradients” [8], which allows to fit big models in GPU
memory in sub-linear space. This is done by checkpointing
nodes in the computation graph defined by the model, and

TABLE I
PIXEL-WISE METRICS FOR SAMPLE ARCHITECTURES.

Dataset Arch. Input Size #Param #Ops. mloU mAcc.
ERFNet 1024x512 1.8M 66B 62.8% 92.7%

Cityscapes Mobilenets 768x384 6.9M 72B 63.5% 93.7%
Inception 768x384 43M 47B 66.4% 94.1%

COCO Inception 640x480 43M 48B 87.1% 97.8%
Persons 320x240) 12B 83.4% 96.9%
. 512x384 24B 64.1% 92.3%
Synthia — ERENet g50:700 M gsp 7139 9529
Crop-Weed ERFNet 512x384 1.IM 9B 80.1% 98.5%

recomputing the parts of the graph in between those nodes
during backpropagation. This makes it possible to calculate
the network gradients in the backward pass at reduced mem-
ory cost, without increasing the computational complexity
linearly. Our tool allows to use the implementation of the
checkpointed gradients, and therefore, besides allowing for
bigger batches due to the multi-GPU support, it also allows
for bigger per-GPU batches.

E. Graph Freezing for Deployment

Once the trained model performs as desired, the tool
exports a log directory containing a copy of all the configura-
tion files used, for later reference, and two directories inside
containing the best IoU and best accuracy checkpoints. To
deploy the model and use it with different back-ends, such as
TensorRT, we need to “freeze” the desired model. Freezing
removes all of the helper operations required for training
and unnecessary for inference, such as the optimizer ops,
the gradients, dropout, and calculation of train-time batch
normalization momentums. The abstract network provides a
method which handles this procedure and creates another
directory with four frozen models: the model in NCHW
format, which is faster when inferring using GPUs; the model
in NHWC format, which can be faster when using CPUs; an
optimized model, which tries to further combine redundant
operations, and an 8-bit quantized model for faster inference.
This method also generates a new configuration file called
nodes.yaml, which contains important node names, such as
the inputs, code, and outputs as logits, softmax, and argmax.
This allows for a more automated parsing of the frozen model
during inference and automatically remembering the names
of the inputs and outputs. We provide a Python script for this
procedure, which takes a training log directory as an input
and outputs all the frozen models and their configuration
files in a packaged directory that contains all files needed
for deployment. We also provide other applications to test
this model in images and videos, in order to observe the
performance qualitatively for debugging, and to serve as an
example for serving using python, in case this is desired. It is
key to notice that since the whole process can be performed
in a host PC, the device PC on the robot only needs the
dependencies to run the inference, such as our C++ library.

Listing 1. C++ code showing simplicity of semantic segmentation CNN
inference in C++ application, using Bonnet tool as a library.

#include <bonnet.hpp>
#include <opencv2/core/core.hpp>
#include <string>

int main() {

// path to frozen dir

std :: string path = "/path/frozen/pb";
// tf for Tensorflow, trt for TensorRT
std :: string backend = "trt";

// gpu or cpu (or specialized)

std :: string dev = "/gpu:0";

// Create the network
bonnet :: Bonnet net(path,
// Infer image from disk
cv::Mat image, mask, mask_color;
image = cv::imread("/path/to/image");
net.infer (image, mask);

// 1If necessary,
net.color (mask,

backend, dev);

~olorize (like Fig.1l)

mask_color);

V. BONNET DEPLOYMENT

For the deployment of the model on a real robot, we
provide a C++ library with an abstract handler class that takes
care of the inference of semantic segmentation, and allows
for each implemented back end to run without changes in
the API level. The library can handle inference from a frozen
model that is generated through the last step of the Python
interface. Bonnet handles the inference through the user’s
selection of the desired back end, execution device (GPU,
CPU, or other accelerators), and the frozen model to use.
There are two ways to access this library. One is by linking
it with an existing C++ application, using the two provided
standalone applications as a usage example. The second one
is to use the provided ROS node, which already takes care of
everything needed to do the inference, from debayering the
input images, to resizing, and publishing the mask topics, so
that no coding is needed. List. 1| contains an example of how
to build a small “main.cpp” application to perform semantic
segmentation on an image from disk using our C++ library.

VI. SAMPLE USE CASES SHIPPED WITH BONNET

In order to show the capabilities of Bonnet, we provide
three sample architectures focusing on realtime inference.
The three models included are based on ERFNet [27],
InceptionV3 [33], and MobilenetsV2 [29], with minor mod-
ifications which allow to run the architectures in TensorRT,
which supports a subset of all TensorFlow operations, and
makes the networks much faster to run, as we show in Tab.

Tab. [I| shows the performance of the sample architectures
on four diverse and challenging datasets, two for scene
parsing, one for people segmentation, and one for preci-
sion agriculture purposes, for which we provide the trained
weights. Because each problem presents a different level of
difficulty and uses images of a different aspect ratio, we

TABLE II
MEAN RUNTIME OF THE ERFNET-BASED ARCHITECTURE FOR
DIFFERENT DATASETS, INPUT SIZES, AND BACKENDS.

Dataset Input Size

Back-end

GTX1080Ti

Jetson TX2

512x256
Cityscapes
1024x512

TensorFlow
TensorRT
TensorFlow
TensorRT

T9ms (52 FPS)
10ms (100 FPS)
71ms (14 FPS)
33ms (30 FPS)

170ms (6 FPS)
89ms (11 FPS)
585ms (2 FPS)
245ms (4 FPS)

CoCco 640x480

Persons 350x240

TensorFlow
TensorRT
TensorFlow
TensorRT

27ms (37 FPS)
15ms (65 FPS)
21ms (47 FPS)
7ms (142 FPS)

321ms (3 FPS)
128ms (8 FPS)
200ms (5 FPS)
80ms (14 FPS)

512x384
Synthia
960x720

TensorFlow
TensorRT
TensorFlow
TensorRT

20ms (50 FPS)
11ms (100 FPS)
61ms (16 FPS)
27ms (37 FPS)

223ms (4FPS)
127ms (8 FPS)
673ms (1 FPS)
362ms (3 FPS)

Crop-Weed 512x384

TensorFlow
TensorRT

9ms (111 FPS)
4ms (250 FPS)

132ms (8 FPS)
99ms (10 FPS)

show the performance of the model for different number of
parameters and number of operations by varying the number
of kernels of each layer of the base architecture and the size
of the input.

Since Bonnet is meant to serve as a general starting point
to implement different architectures, we advise referring to
the code in order to have an up-to-date measure of the latest
architecture design performances.

Tab. shows the runtime of the ERFNet based model,
with varying complexity and input size. It shows how much
the inference time can be improved by using custom accel-
erators for the available commercial hardware. This further
supports the importance of allowing the user to transparently
benefit from its usage with no extra coding effort, as well as
providing a modular C++ backend which allows the support
of other backends as they become available.

VII. SAMPLE USE CASES FROM THE COMMUNITY

Fig. 5] section shows some example use cases from other
robotics researchers where one of the architectures was used
with the standard parser to train and deploy Bonnet semantics
in four different applications, with zero coding effort, from
training to deployment using C++ or ROS. Use case (a)
uses our person segmentation trained on COCO and the
C++ library as an off-the-shelf preprocessing tool to remove
dynamics from camera data before feeding it into a TSDF-
based GPU-accelerated realtime mapping pipeline. In (b), an
inception-based model was trained to recognize berries in
wine yards for automated, robotic, yield estimation. In (c),
the ERFNet model was retrained starting from Cityscapes
weight in order to infer the segmentation of facade ele-
ments using the ETRIMS dataset [17]. Finally, in (d), the
inception-based model was trained to recognize toys using a
large database of objects downloaded from the Internet, and
deployed using the ROS node in a humanoid robot with a
JetsonTX2 for efficient, semantic, path planning [26]. Bonnet
has been used in several other use cases by the community.

(a) Dynamic object removal for mapping

Fig. 5. Sample use cases from the community. Left: illustration of
the application. Right: overlay RGB image with semantic prediction from
Bonnet. In (a), the left column represents the generated 3D model filtering
the dynamics, not the input image.

VIII. CONCLUSION

In this paper, we presented Bonnet, an open-source seman-
tic segmentation training and deployment tool for robotics
research. Bonnet eases the integration of semantic segmen-
tation methods for robotics. It provides a stable interface
allowing the community to better collaborate, add different
datasets and network architectures, and share implementation
efforts as well as pre-trained models. We believe that this
tool speeds up the deployment of semantic segmentation
CNNs on research robotics platforms. We provide three
sample architectures that operate at framerate, and include
pre-trained weights for diverse and challenging datasets with
the goal that the robotics community will exploit them and
contribute to the tool.

ACKNOWLEDGMENTS

We thank Laura Zabawa, Susanne Wenzel, Emanuele
Palazzolo, and Peter Regier for for useful feedback and for
providing the images with example use cases of Bonnet for
their current research.

[1]

[2

—

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

REFERENCES

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, 1. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. War-
den, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow:
Large-Scale Machine Learning on Heterogeneous Distributed Systems.
arxiv, 2016.

A. Armagan, M. Hirzer, and V. Lepetit. Semantic segmentation for 3d
localization in urban environments. In Joint Urban Remote Sensing
Event (JURSE), pages 1-4, 2017.

N. Atanasov, M. Zhu, K. Daniilidis, and G.J. Pappas. Localization
from semantic observations via the matrix permanent. Intl. Journal of
Robotics Research (IJRR), 35(1-3):73-99, 2016.

V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A deep
convolutional encoder-decoder architecture for image segmentation.
IEEE Trans. on Pattern Analalysis and Machine Intelligence (TPAMI),
2017.

N. Blodow, L. C. Goron, Z. C. Marton, D. Pangercic, T. Riihr,
M. Tenorth, and M. Beetz. Autonomous semantic mapping for robots
performing everyday manipulation tasks in kitchen environments. In
Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS), pages 42634270, 2011.

N. Chebrolu, P. Lottes, A. Schaefer, W. Winterhalter, W. Burgard,
and C. Stachniss. Agricultural robot dataset for plant classification,
localization and mapping on sugar beet fields. Intl. Journal of Robotics
Research (IJRR), 2017.

L.C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A.L.
Yuille. Deeplab: Semantic image segmentation with deep convo-
lutional nets, atrous convolution, and fully connected crfs. arXiv
preprint, abs/1606.00915, 2016.

T. Chen, B. Xu, C. Zhang, and C. Guestrin. Training deep nets with
sublinear memory cost. arXiv preprint, abs/1604.06174, 2016.

M. Cordts, S. Mohamed Omran, Ramos, T. Rehfeld, M. Enzweiler,
R. Benenson, U. Franke, S. Roth, and B. Schiele. The cityscapes
dataset for semantic urban scene understanding. In Proc. of the IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), 2016.
R. Drouilly, P. Rives, and B. Morisset. Semantic representation
for navigation in large-scale environments. In Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), pages 1106-1111, 2015.
P. Goyal, P. Dollar, R. Girshick, P. Noordhuis, L. Wesolowski, A. Ky-
rola, A. Tulloch, Y. Jia, and K. He. Accurate, Large Minibatch SGD:
Training ImageNet in 1 Hour. arxiv, 2017.

K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for
Image Recognition. In Proc. of the IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), 2016.

G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. Improving neural networks by preventing co-
adaptation of feature detectors. arXiv preprint, abs/1207.0580, 2012.
S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. arXiv preprint,
abs/1502.03167, 2015.

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell. Caffe: Convolutional Architecture for
Fast Feature Embedding. arxiv, 2014.

R. Khanna, M. Moller, J. Pfeifer, F. Liebisch, A. Walter, and R. Sieg-
wart. Beyond point clouds - 3d mapping and field parameter mea-
surements using uavs. In Proc. of the IEEE Conf. on Emerging
Technologies Factory Automation (ETFA), pages 1-4, 2015.

F. Kor¢ and W. Forstner. eTRIMS Image Database for interpreting
images of man-made scenes. Technical report, April 2009.

T. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollar, and C. Lawrence Zitnick. Microsoft COCO: Common
Objects in Context. In Proc. of the Europ. Conf. on Computer Vision
(ECCV), pages 740-755, 2014.

T.Y. Lin, P. Goyal, R.B. Girshick, K. He, and P. Dollar. Focal loss for
dense object detection. arXiv preprint, abs/1708.02002, 2017.

P. Lottes, M. Hoferlin, S. Sander, M. Miiter, P. Schulze-Lammers, and
C. Stachniss. An Effective Classification System for Separating Sugar
Beets and Weeds for Precision Farming Applications. In Proc. of the
IEEE Intl. Conf. on Robotics & Automation (ICRA), 2016.

[21]

[22]

[23]

[24]

[25]

[26]

(27

[28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

A. Milioto, P. Lottes, and C. Stachniss. Real-time blob-wise sugar
beets vs weeds classification for monitoring fields using convolutional
neural networks. In ISPRS Annals of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, 2017.

A. Milioto, P. Lottes, and C. Stachniss. Real-time Semantic Segmen-
tation of Crop and Weed for Precision Agriculture Robots Leveraging
Background Knowledge in CNNs. In Proc. of the IEEE Intl. Conf. on
Robotics & Automation (ICRA), 2018.

A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello. Enet: Deep
neural network architecture for real-time semantic segmentation. arXiv
preprint, 1606.02147, 2016.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Automatic differenti-
ation in pytorch. In NIPS-W, 2017.

J. Poschmann, P. Neubert, S. Schubert, and P. Protzel. Synthesized
semantic views for mobile robot localization. In Proc. of the Eu-
rop. Conf. on Mobile Robotics (ECMR), pages 1-6, 2017.

P. Regier, A. Milioto, P. Karkowski, C. Stachniss, and M. Bennewitz.
Classifying Obstacles and Exploiting Knowledge about Classes for
Efficient Humanoid Navigation. In Proceedings of the IEEE-RAS Int.
Conf. on Humanoid Robots (HUMANOIDS), 2018.

E. Romera, J. M. Alvarez, L. M. Bergasa, and R. Arroyo. Erfnet: Effi-
cient residual factorized convnet for real-time semantic segmentation.
IEEE Trans. on Intelligent Transportation Systems (ITS), 19(1):263—
272, 2018.

O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional
networks for biomedical image segmentation. arXiv preprint,
abs/1505.04597, 2015.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. Chen.
MobileNetV2: Inverted Residuals and Linear Bottlenecks. arxiv, 2018.
M. Schwarz, A. Milan, A.S. Periyasamy, and S. Behnke. Rgb-d object
detection and semantic segmentation for autonomous manipulation in
clutter. Intl. Journal of Robotics Research (IJRR), 2017.

K. Simonyan and A. Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint, abs/1409.1556, 2014.
N. Siinderhauf, F. Dayoub, S. McMahon, B. Talbot, R. Schulz, P.I.
Corke, G. Wyeth, B. Upcroft, and M. Milford. Place categorization and
semantic mapping on a mobile robot. arXiv preprint, abs/1507.02428,
2015.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethink-
ing the Inception Architecture for Computer Vision. arXiv preprint,
2015.

C. Zhao, H. Hu, and D. Gu. Building a grid-point cloud-semantic
map based on graph for the navigation of intelligent wheelchair. In
Proc. of the Intl. Conf. on Automation and Computing (ICAC), pages
1-7, 2015.

H. Zhao, X. Qi, X. Shen, J. Shi, and J. Jia. Icnet for real-time
semantic segmentation on high-resolution images. arXiv preprint,
abs/1704.08545, 2017.

H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. Pyramid scene parsing
network. arXiv preprint, abs/1612.01105, 2016.

S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du,
C. Huang, and P. Torr. Conditional random fields as recurrent neural
networks. In Proc. of the IEEE Intl. Conf. on Computer Vision (ICCV),
2015.

	Introduction
	Related Work
	Bonnet: Training and Deployment for Semantic Segmentation in Robotics
	Bonnet Training
	Dataset Definition
	Network Definition
	Hyper-parameter Selection
	Multi GPU training
	Graph Freezing for Deployment

	Bonnet Deployment
	Sample Use Cases Shipped with Bonnet
	Sample Use Cases From The Community
	Conclusion
	References

