
Fast Instance and Semantic Segmentation Exploiting Local
Connectivity, Metric Learning, and One-Shot Detection for Robotics

Andres Milioto Leonard Mandtler Cyrill Stachniss

Abstract— Semantic scene understanding is important for
autonomous robots that aim to navigate dynamic environments,
manipulate objects, or interact with humans in a natural way. In
this paper, we address the problem of jointly performing seman-
tic segmentation as well as instance segmentation in an online
fashion, so that autonomous robots can use this information
on-the-go and without sacrificing accuracy. We achieve this by
exploiting a local connectivity prior of objects in the real world
and a multi-task convolutional neural network architecture.
The network identifies the individual object instances and their
classes without region proposals or pre-segmentation of the
images into individual classes. We implemented and thoroughly
evaluated our approach, and our experiments suggest that our
method can be used to accurately segment instance masks of
objects and identify their class in an online fashion.

I. INTRODUCTION

Perception is one of the main building blocks for robotic
applications that need interaction with real-world, dynamic
environments such as city roads or domestic environments. It
is important for robots to operate safely and in an situation-
dependent manner. Semantic information about the environ-
ment in the form of object detection, semantic segmentation,
and instance segmentation have been exploited for many
robotics tasks such as mapping [9], [14], [19], [32], visual
place recognition [11], and manipulation [4], [18], [21], [31].

One of three different types of approaches is typically used
in this context: semantic segmentation, object detection, and
instance segmentation. Semantic segmentation (see Fig. 1,
middle) conveniently provides a class label for each pixel
of an image, and therefore enables applications that require
accurate object masks such as removal of dynamic objects for
visual odometry. However, it does not provide an association
of the pixels to an object instance. This is inconvenient
for robotic tasks where the location of each object is of
interest, for example, to be used as a visual landmark, for
object manipulation, or collision avoidance. Furthermore,
performing semantic segmentation is often computationally
demanding. This is especially true if using high resolution
images, which is often desired for high accuracy and han-
dling objects at a far distance. On the other side of the
spectrum, object detection provides a class label for each
object instance jointly with the regression of the image
coordinates of a bounding box that encloses the object. This
approach is popular as it has the advantage of fast inference.
Unfortunately, object detection does not provide an object

All authors are with the University of Bonn, Germany. This work has
partly been supported by the German Research Foundation under Germanys
Excellence Strategy, EXC-2070 - 390732324 (PhenoRob), and NVIDIA
Corporation.

Fig. 1. Desired workflow. Top: Input RGB image. Middle: Semantic
segmentation mask. Bottom: Instance segmentation mask.

mask, and the correlation between the object boundaries and
the bounding boxes can be hard to infer.

The holy grail for semantic scene understanding in
robotics is instance segmentation (see Fig. 1, bottom), as it
not only identifies each individual object instance, but also
provides an accurate segmentation mask and thus enables a
further, task-specific, analysis of the image content.

The main contribution of this paper is a novel approach
that in parallel performs instance segmentation and semantic
segmentation, both in an efficient and effective manner for
robotics. We propose a convolutional neural network (CNN)
architecture that uses superpixel summarization of locally
connected regions of an image, and combines object detec-
tion and a metric learning pipeline to speed up joint semantic
and instance segmentation without sacrificing accuracy. Our
CNN predicts, for each output superpixel, the probability of
it being an instance center, a high-dimensional embedding
from a metric learning loss, and a softmax probability for
the semantic segmentation task. This approach allows us to
perform fast upsampling without sacrificing mask accuracy,
while at the same time speeding up the clustering of the
embeddings to obtain an individual instance mask for each
object in the scene.

II. RELATED WORK

Several methods for instance segmentation have been pro-
posed over the last years, most of them based on some CNN
backbone for feature extraction but using different types of
decoders. Such approaches can be grouped according to how
they exploit different decoder architectures.



Fig. 2. Our architecture. The different resolution features are skipped to all decoders in their respective output stride (OS). Each decoder predicts a
volume of lower resolution than the input, in this case of OS8, reducing the number of pixels to cluster by a factor of 64. After the decoders predict the
semantic mask, and the centers and embeddings are joined into individual instances, the superpixels are used to upsample the results. The encoder shown
is Darknet53 [25].

One group of approaches works with region proposals
coming from an object detection pipeline and a posterior
mask segmentation between foreground and background.
This has the advantage that these approaches can deal with
an arbitrary object number and usually provide accurate
results. State-of-the-art examples are Mask-RCNN [12] or
PANet [17]. Such type of pipeline is particularly useful
in application-specific use cases where obtaining region
proposals is easy, for example in [20]. However, there are
two main disadvantages of these types of proposal-based,
two-stage pipelines. First, they are usually slow and second,
the relationship between the object mask and its bounding
box may not be straight-forward. This may render the com-
putation of the object mask hard in some cases. Furthermore,
most of these approaches infer the segmentation of the
foreground class in each bounding box proposal in a reduced
resolution, relying on bilinear upsampling to map it back to
the original image size. This sacrifices the accuracy of the
object boundaries.

The second group of approaches relies on recurrent neural
networks and attention mechanisms [27], [29]. They take a
single image as an input and output instance masks, one by
one in a counting-like manner. This is sometimes reported as
biologically inspired, but these approaches do not offer the
best accuracy and runtime.

The last group of approaches to instance segmentation is
based on metric learning strategies [3], [5], [10], [22], [24].
They rely on predicting a discriminative high-dimensional
embedding for each pixel, followed by a clustering of pixel
embeddings into individual instances. Some methods in this
context rely on a previously executed, semantic segmentation
of the input into the individual semantic classes, and subse-
quently predict an embedding [5] or an energy function [3]
that allows to separate the pixels inside each semantic class
mask into individual instances. The required semantic seg-
mentation usually comes from a computationally expensive
CNN and, thus, except few examples, these approaches can-

not run in real-time on robot, and their accuracy has an upper
bound that is given by the performance of the pre-processing
step. Alternative approaches [10], [22], try to predict both,
the class labels, as well as the instance embeddings at the
same time. There is, however, no concept of “objectness” in
these types of pipelines, which makes the posterior clustering
of the embeddings difficult and computationally demanding.

Our approach overcomes this limitation by adding the
inference of the object centers confidence such as in oneshot
object detection pipelines, which in turn allows us to speed
up the post processing by avoiding the expensive all-to-
all similarity matrix calculation. Furthermore, we exploit
fast GPU-based superpixel summarization, which exploits
the local connectivity of pixels in objects, and allows us
to further reduce the number of computations needed to
calculate the similarity matrix between the embeddings in
each semantic class and the centers of clusters. This is key
for achieving semantic analysis at camera frame-rate.

III. OUR APPROACH

The main goal of our work is to obtain accurate instance
segmentation masks of objects from RGB camera images
in a timely manner. We propose a CNN-based algorithm
that combines detection and segmentation with superpixel
summarization, allowing us to obtain accurate semantic and
instance labels for each pixel of an image. As our approach
operates in a low dimensional feature-space grid, it is fast to
run without sacrificing mask or instance performance.

Our method uses a common CNN encoder extracting
features from RGB images at different resolutions, and has
three separate decoder heads, see Fig. 2. Each decoder head
combines and upsamples the multi-resolution features into a
low-dimensional grid, which makes the processing fast. We
explain these three output grids extensively, and we call the
value at a certain (x, y) position of this grid a “grid ele-
ment”. Such an element addresses all corresponding feature
values at that spatial position. The three heads predict: (i) a
semantic segmentation mask which maps each grid element



to a softmax pseudo-probability distribution over the desired
semantic classes; (ii) a high-dimensional embedding for each
grid element, which is to be close in Euclidean similarity
for elements belonging to the same instance, and distant
otherwise; and (iii) the confidence of each grid element being
an object center. Parallelly, the input is processed by a fast
GPU-based superpixel algorithm [26] based on SLIC [1]
which is able to upsample each “grid element” into the
locally connected pixels in the original resolution output.

Our approach can be summarized in three main steps.
First, a CNN backbone summarizes the image as a set of
features of different resolution, and three task decoders up-
sample these features into task grids of lower resolution than
the input. These decoders contain the semantic segmentation,
center confidences, and embeddings respectively for each of
the groups of input pixels that are mapped to it. Second, and
in parallel with the CNN, a fast superpixel extraction [26] of
the original image is performed resulting in a mapping used
to upsample the decoder grids. Finally, a post processing is
performed to map each embedding to an individual object
center and extract the instances, previous to upsampling
using the mappings from step two.

A. Joint Semantic and Instance Segmentation CNN

Our CNN structure is composed of four main components:
(i) a fully convolutional encoder which extracts features
at different resolutions for the decoders, (ii) a decoder
which infers a downsampled semantic segmentation softmax
distribution over the semantic classes, (iii) a decoder which
infers a confidence of each superpixel being an object center,
and (iv) a decoder which infers a 32-dimensional embedding
for each superpixel using a discriminative metric loss. All
four components are trained jointly using a weighted sum
of the three task losses. In the following subsections, we
introduce each of these modules in detail:

1) Encoders: we use two different convolutional back-
bone architectures for the multi-resolution feature extraction
with different levels of descriptiveness, defined by their size
and the number of layers. On the computationally expensive
side of the spectrum, we use Darknet 53 [25] (DN53), which
is a ResNet [13] inspired architecture and has proven to work
well for the object detection task as a part of the YOLOv3
architecture. This architecture also obtains top-1 accuracy on
the validations set of ImageNet-1K [8] of 77.2%, which is the
current state of the art, and higher than ResNet101, which
is 50% slower to run. This makes it a well-suited feature
extractor for our backbone. On the other side of the de-
scriptiveness spectrum, we use a MobilenetsV2 [30] (MNv2)
encoder, which has an order of magnitude less parameters
than Darknet 53 and is designed to maximize efficiency for
running on mobile devices. This backbone achieves a top-1
ImageNet accuracy of 72%. This is lower than the more
expensive Darknet 53, but is the current state of the art
for real-time applications. Before attaching the decoders, we
pretrain both backbones on ImageNet to accuracy, using the
standard output stride (OS) of both backbones of 32, which
means that the last layer will be downsampled 32 times from

Fig. 3. Instance labels and their corresponding 32-dimensional embeddings
randomly projected to 3 dimensions to show them in RGB. Best viewed in
color.

the original image size. Our framework allows the extraction
of any feature resolution of the model to skip to the decoder,
and to modify the output stride of the final layer by using
dilated convolutions, such as proposed in [6], to be able to
segment small objects at the expense of extra calculations.
We use two different encoders to show that the gains of
our approach are similar regardless of the architecture used,
meaning that once a better feature extractor is designed, our
method can be used on top of it.

2) Semantic Segmentation Decoder: all decoders have the
same architecture, but their last layer is passed through a dif-
ferent activation function. Furthermore, during training they
are optimized with different losses. On top of the encoder
we attach a module that upsamples the last layer’s features
and concatenates them to their matching skip resolution in
the encoder (see Fig. 2). After the concatenation we use
a [1 × 1] convolution that squashes the upsampled features
with the skipped ones, and 2 layers of [3 × 3] convolutions
to combine them and learn task-specific parameters. This is
done iteratively until the output volume matches the size
of the grid needed to perform the superpixel upsampling.
For the semantic segmentation head, the output depth is the
number of classes, and the activation function is a softmax
ŷc = elogitc∑

c e
logitc

, where logitc is the unbounded output in
the slice corresponding to class c. This gives a pseudo-
probability distribution per grid-element, which is optimized
using a weighted cross-entropy loss:

Lsemantic = −
C∑
c=1

wc yc log
(
ŷc
)

(1)

wc =
1

log (fc + ε)
; fc =

1

P

P∑
p=1

{
1 if p = c

0 if p 6= c
(2)

where wc which penalizes class c according to the inverse
of its frequency in the ground truth, bounded by a parameter
ε which is set to 1.02 in all our experiments.

3) Embedding Decoder: the objective of this branch is to
provide a high-dimensional embedding (with 32 dimensions
in our case) that has a low Euclidean distance to all other
grid elements of the same instance, and a high Euclidean
distance to all other instances. Fig. 3 shows this in action
by randomly projecting all 32-dimensional embeddings into
3D space so that each embedding can be mapped to an
RGB value (for illustrative reasons). The embedding branch
is analog to the semantic segmentation branch, in terms
of upsampling, concatenating, squashing, and adding extra



convolutional layers, but the main difference lies in the
lack of an activation function. For this layer, instead of
a softmax activation, we use the unbounded logits, which
we call ê. Following [5] we define three hinged losses to
achieve this purpose. In all equations, K is the number of
instances, Pk is the number of grid elements in instance k,
‖·‖ is the L2-norm, and [x]+ means the positive part of x,
meaning max(0, x), which hinges the loss. The first loss is
the attraction loss

Lattract =
1

K

K∑
k=1

1

Pk

Pk∑
p=1

[
‖êk,c − êk,p‖ − δa

]+
(3)

which defines that all pixels of the same instance should
have a low Euclidean distance to the embedding in its
center. As in [5], this loss is hinged, which means that the
embeddings that are already “close enough” to the center
embedding do not receive a loss. This allows the embeddings
to move around improving training and inference stability.
This is modulated by the parameter δa, set to 0.1 for all our
experiments. Note that in [5], the distance is calculated to
the mean of the embedding due to the lack of the concept
of object center. The second loss is the repelling loss:

Lrepel =
1

K(K − 1)

K∑
kA=1

K∑
kB=1

kA 6=kB

[
δr − ‖êkA,c − êkB ,c‖

]+
(4)

This loss pushes the object centers from different instances
away from each other in embedding space. Analogously
to the attraction loss, this loss is hinged to allow the
embeddings to move around when they are “far enough”.
This is modulated by δr, which is set to 1.0. The third
loss Lreg = 1

K

∑K
k=1 ‖êk,c‖ penalizes the norm of all

embeddings in the object centers to improve stability, making
the embeddings stay close to the origin, and has no fur-
ther meaning for the approach. We combine the three loss
functions as a weighted sum and use it to backpropagate
through the embedding decoder, as well as the encoder as:
Lembed = α Lattract +β Lrepel +γ Lreg, with α = β = 1.0 and
γ = 0.001.

4) Instance Center Decoder: The last decoder head is
the object center confidence head, which is analogous to
the other two in terms of architecture design. This branch
predicts, for each grid element, the confidence of it being
the center of an object. In this decoder, the output volume
is of depth 1, followed by a sigmoid activation of shape
ŷ = σ(logit) = 1/(1 + e-logit). This branch is optimized
by a weighted cross-entropy loss between the output and
the object center targets. However, because the number of
grid elements is orders of magnitude larger than the average
amount of objects in each image, the easy background
elements overwhelm the loss. Therefore, we follow [16] and
add an extra focal loss term modulated by γ. This makes
the loss of easy background examples lower to prevent this

overwhelming:

Lcenters =

{
−α (1− ŷ)γ log (ŷ) if y = 1

−(1− α) ŷγ log (1− ŷ) if y = 0
(5)

In our experience, the object loss does not converge unless
this term is added. Another important parameter for the
confidence head is the initialization of the bias of the last
layer before the sigmoid. Usually, models for binary classifi-
cation are initialized to output positive or negative class with
equal probability, and therefore, in the presence of imbalance
as extreme as our task, the loss is dominated by the easy
negatives causing instabilities. Following [16], we initialize
the last bias of this decoder to b = − log((1−π)/π), where
π is a prior calculated from the class imbalance. For all
experiments, we use π = 0.1, α = 0.01 and γ = 2, which
are obtained as the parameter which gives the lowest cross-
validation error.

B. Postprocessing

Once the CNN has predicted all three heads, we perform a
fast post-processing step to obtain the final output. First, we
mask the embeddings and object centers with the semantic
segmentation grid from the first head, in order to separate the
embeddings and centers of each class from each other and the
background (see Fig. 2). Then we extract all grid elements
that have a center confidence over 0.7 and extract the center
of mass of all connected components in this binary mask.
This step is necessary because the center of an object is not
a perfectly defined concept, and therefore the CNN usually
outputs blobs instead of single elements for each instance.
We also perform an elimination of “duplicated” cluster
centers, which are the centers that have embedding distances
lower than δa from Eq. (3). These steps are analogous to the
non-maximum suppression step in object detectors, where
several anchors detect an object, and only one is kept by
setting a threshold in the intersection over union.

Once we extract all the centers of objects, we mask their
32-dimensional embeddings as well as all the embeddings
of the grid elements belonging to a certain class, and we
calculate a similarity matrix between all elements in the class
and all the centers. The next step calculates the maximum
similarity object center for each element, and filters the ones
that have a distance greater than δa, to eliminate elements
that were incorrectly assigned by the semantic head. This
procedure assigns a unique id to each instance in a class and
groups all their elements, and is repeated for all classes. The
final step in the post-processing is to upsample each grid
element for both the clustered instances and the semantic
mask into the original size output space, which is done using
the one-to-many mapping exploiting the neighborhood color
information from the superpixels (see Fig. 2). We explain
how we obtain this mapping in the following section.

C. Superpixel Extraction for Locally Consistent Upsampling

Our approach upsamples the low resolution output grids
of the CNN using an over-segmentation grid of the input
in superpixels, improving over simple bilinear upsampling



“Motorcycle” “Person”

Instances Centers
Original size Downsampled grid

Fig. 4. Procedure to get from original sized labels to downsampled versions
using the label at the center of mass of each superpixel.

without sacrificing runtime. These superpixels need to be
small enough to capture the “connectivity” of real world
objects, avoiding under-segmetation, but as big as possible
in order to maximize the reduction of the size of the CNN
output. This makes both, the inference and the clustering of
the instances, faster. Thus, this size is a compromise which
depends on the sizes of objects in the data, and is selected
by evaluating the under-segmentation error in the training set
of our data, the Cityscapes dataset [7].

For an image size H × W and a superpixel size k, the
SLIC algorithm starts with a grid of size H/k × W/k of
evenly distributed cluster centers c. The approach then iter-
atively (i) obtains the nearest neighbor cluster center using
a distance δs = ‖ILab(i)− ILab(c)‖ + α ‖Ixy(i)− Ixy(c)‖
for each pixel i, only looking in the clusters present in a
2K × 2K neigborhood; and (ii) updates the cluster centers
to become the mean of the newly associated cluster pixels.
This is done until convergence, or until a limit number of
iterations is met. Thanks to its definition as a selective nearest
neighbor search followed by cluster center update, SLIC is
highly parallelizable. The gSLICr implementation used in
our approach performs the nearest neighbor search in CUDA
using one thread per pixel, as well as the cluster update using
a kernel to do the accumulation of the energy values, and
a separate one for the reduction which returns the updated
clusters. This allows for a segmentation which runs around
83 times faster than its CPU counterpart. Due to the rigid
nature of the output of all CNNs, if we want to use the
extracted superpixels to improve the boundary consistency
of the output masks using a one-to-many mapping, we need
all of the cluster centers in the over-segmentation to remain
in a grid-like structure. Therefore, we perform one iteration
of the algorithm in order to get the boundary information of
each locally consistent area, but without updating the cluster
centers. This yiels a grid in a structure that has a close
resemblance with the regular grid with which the algorithm
was initialized.

IV. EXPERIMENTAL EVALUATION

The experiments are designed to show the efficiency and
performance of our joint semantic and instance segmentation
approach, and to support the claims that our method is
capable of performing both tasks in parallel, accurately, and
faster than previous approaches. We implemented the whole
approach presented in this paper relying on Pytorch.

A. Training Data

For our experiments, we use the Cityscapes dataset [7],
which contains 5,000 annotated images with fine annotations
of 30 semantic classes, 8 of which contain instance labels,
plus 20000 images containing coarse annotations. For our
experiments, we use the 8 classes containing fine pixel-
wise instance information: “person”, “rider”, “car”, “truck”,
“bus”, “train”, “motorcycle”, and “bicycle”, and we treat the
remaining pixels as background, both for the semantic as
well as the instance task (see Fig. 5 for examples of the
images in the dataset). To train our architecture, we choose
a downsampling rate based on two criteria: maximizing the
superpixel size to decrease the output stride of the decoders,
making the clustering of the instance elements faster, and
at the same time, minimizing the under-segmentation error.
For all experiments, we use an image size of 1024 × 512
and the best performing superpixel size in our experiments
was 4, which allows us to reduce the number of pixels in
the post-processing by 16, as well as reduce the inference
time of the CNN. We train our networks downsampling the
targets using the superpixels extracted from the inputs. This
is, if an image and its corresponding semantic and instance
label are of size H × W , and the superpixels are of size k,
the output grids and the used targets for each loss are of size
H/k × W/k and each target grid element is the label at the
center of mass of its corresponding superpixel (see Fig. 4).
We train the whole architecture end-to-end starting with the
encoder pretrained on ImageNet, as stated in Sec. III-A.

B. Performance

This experiment is designed to show that our algorithm
can efficiently segment and classify individual objects from
camera images, without sacrificing accuracy.

Tab. I shows the results of training in the 2,975 training
set images with fine, pixel-wise annotations, and validating
the results in 500 held out images from different cities. The
first row shows the results of training an architecture with a
strong, state of the art backbone (DN53) and inferring only
the semantic and embedding branch, without the embedding
centers or superpixel upsampling, and applying an all-to-
all clustering of the instance pixels afterwards. The subse-
quent rows show our approach inferring the cluster centers
with different backbones, and decoder output strides. The
results show two interesting effects. First, even though the
baseline with no superpixel upsampling or center inferrence
performs slightly better than our best performing architecture
(row 0 vs. 1), this costs almost 3 times more to run, due to
the expensive post-processing in the absence of the inferred
cluster centers. Second, when using decoder OS 4, which
means upsampling with superpixels of size k = 4, the models
perform similarly to their non-upsampled counterparts, but
run 2 times faster in the case of the Darknet based model,
and almost 3 times faster for the Mobilenets based one.

Tab. II and Tab. III show a comparison to other state-
of-the-art methods for semantic segmentation and instance
segmentation, respectively. Tab. II shows that our algorithm
performs the semantic segmentation task on par with other



Input Semantic (Ours) Semantic (GT) Instance (Ours) Instance (GT)

Fig. 5. Examples of results on the validation set for our MobilenetsV2 backend using a decoder output grid downsampled 16 times (decoder OS 4).

TABLE I
PERFORMANCE ON VALIDATION SET BY ENCODER, INPUT SIZE, AND OUTPUT STRIDES

Encoder Parameters Instance Semantic Runtime (avg.)
Input Enc. OS Dec. OS mAP@50% mAP IoU Spix CNN Cluster FPS

Baseline using Darknet 53 1024 x 512 16 1 46.9% 24.3% 65.4% - 138 ms 240 ms 2

Ours using Darknet 53 1024 x 512 16 1 46.7% 22.3% 65.4% - 141 ms 36 ms 5.5
4 46.5% 21.9% 63.7% 4 ms 73 ms 9 ms 12

Ours using Mobilenets V2 1024 x 512 16 1 46.2% 21.9% 62.3% - 48 ms 36 ms 11
4 45.2% 21.1% 60.4% 4 ms 19 ms 9 ms 31

state-of-the-art, real-time methods, but with the burden of
having to infer the instances as well. Tab. III shows that our
approach performs better than other state of the art methods,
but slightly under-performs the best benchmark submissions
such as MaskRCNN [12] and PANet [17], which are roughly
15 times slower to run.

TABLE II
COMPARISON WITH OTHER STATE-OF-THE-ART REAL-TIME SEMANTIC

SEGMENTATION METHODS.

IoU Segnet*[2] ERFNet*[28] ENet*[23] Ours MNv2 Ours DN53
Car 89.2% 93.4% 91.0% 88.6% 94.1%
Bus 43.1% 60.8% 49.3% 77.3% 73.2%

Truck 38.1% 52.2% 39.3% 57.4% 62.1%
Motorc. 35.7% 49.8% 41.6% 38.9% 45.8%

Train 44.1% 53.7% 50.5% 61.9% 62.4%
Bicyc. 51.8% 64.2% 59.8% 48.6% 53.9%
Person 62.7% 78.5% 71.3% 60.2% 61.3%

Rider 42.8% 59.7% 49.6% 50.6% 57.3%
Mean 50.9% 64.0% 56.5% 60.4% 63.7%
FPS 16 50 76 31 12

Methods with * perform the semantic task exclusively, not predicting instances.

TABLE III
COMPARISON WITH OTHER STATE-OF-THE-ART INSTANCE

SEGMENTATION METHODS.

Model AP AP@50% FPS
DeepWatershed[3] 19.4% 35.3% -

FSUfAD[22] 21.0% 38.6% 21
Mask-RCNN [12] 26.2% 49.9% 2

PANet[17] 31.8% 57.1% 2
Mask-RCNN* [12] 32.0% 58.1% 2

PANet*[17] 36.4% 63.1% 2
Ours MNv2 21.1% 45.2% 31
Ours DN53 21.9% 46.5% 12

Methods with * were pretrained with COCO [15] dataset.

V. CONCLUSION

In this paper, we presented novel approach for joint
semantic and instance segmentation in an efficient manner.
Our main contribution is a CNN architecture based on one-
shot object detection and metric learning that can perform the
semantic and instance segmentation tasks simultaneously in
real-time. We achieve this by performing a fast GPU-based
superpixel over-segmentation, which allows us to exploit
local connectivity of neighboring pixels and reduce the com-
plexity of our algorithm, while still obtaining high resolution
masks. Our one-shot object detection based pipeline jointly
predicts the confidence of each superpixel being the center
of an object, its semantic class, and a high-dimensional
embedding which allows us to assign each individual oc-
cupied superpixel to an instance center. This allows us to
achieve three important algorithmic qualities. Firstly, given
the over-segmentation grid and the regression of the instance
centers as an object confidences, we avoid the selection of
the number of cluster centers for the k-means clustering of
the embeddings, and instead we can just count the regressed
instance centers over a desired confidence level. Secondly, by
exploiting the neighborhood information we both reduce the
number of pixels to cluster, allowing us to use bigger images,
and avoid stranded pixels at test time. Finally, the one-shot
architecture combined with the neighborhood summarization
makes the extraction of the instances faster when compared
to two-stage as well as other metric learning based methods.

ACKNOWLEDGMENTS

We thank NVIDIA for providing a Quadro P6000 GPU
which was partially used to train the models in this paper,
and Philipp Lottes and Jens Behley for fruitful discussions.



REFERENCES

[1] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Ssstrunk.
Slic superpixels compared to state-of-the-art superpixel methods. IEEE
Trans. on Pattern Analalysis and Machine Intelligence (TPAMI), 2012.

[2] V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A deep
convolutional encoder-decoder architecture for image segmentation.
IEEE Trans. on Pattern Analalysis and Machine Intelligence (TPAMI),
2017.

[3] M. Bai and R. Urtasun. Deep watershed transform for instance
segmentation. In Proc. of the IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2017.

[4] N. Blodow, L. C. Goron, Z. C. Marton, D. Pangercic, T. Rühr,
M. Tenorth, and M. Beetz. Autonomous semantic mapping for robots
performing everyday manipulation tasks in kitchen environments. In
Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS), pages 4263–4270, 2011.

[5] B. De Brabandere, D. Neven, and L. Van Gool. Semantic instance
segmentation with a discriminative loss function. In Deep Learning
for Robotic Vision workshop, IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2017.

[6] L. Chen, G. Papandreou, F. Schroff, and H. Adam. Rethinking Atrous
Convolution for Semantic Image Segmentation. arXiv preprint, 2017.

[7] M. Cordts, S. Mohamed Omran, Ramos, T. Rehfeld, M. Enzweiler,
R. Benenson, U. Franke, S. Roth, and B. Schiele. The cityscapes
dataset for semantic urban scene understanding. In Proc. of the IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), 2016.

[8] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei. Imagenet:
A large-scale hierarchical image database. In Proc. of the IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), pages
248–255, June 2009.

[9] R. Dubé, D. Dugas, E. Stumm, J. Nieto, R. Siegwart, and C.C. Lerma.
SegMatch: Segment Based Place Recognition in 3D Point Clouds. In
Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2017.

[10] A. Fathi, Z. Wojna, V. Rathod, P. Wang, H.O. Song, S. Guadarrama,
and K.P. Murphy. Semantic Instance Segmentation via Deep Metric
Learning. arXiv preprint, 2017.

[11] S. Garg, N. Snderhauf, and M.J. Milford. Don’t look back: Robusti-
fying place categorization for viewpoint and condition-invariant place
recognition. In Proc. of the IEEE Intl. Conf. on Robotics & Automation
(ICRA), 2018.

[12] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn. arXiv
preprint, 2017.

[13] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for
Image Recognition. In Proc. of the IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), 2016.

[14] R. Khanna, M. Möller, J. Pfeifer, F. Liebisch, A. Walter, and R. Sieg-
wart. Beyond point clouds - 3d mapping and field parameter mea-
surements using uavs. In Proc. of the IEEE Conf. on Emerging
Technologies Factory Automation (ETFA), pages 1–4, 2015.

[15] T. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. Lawrence Zitnick. Microsoft COCO: Common
Objects in Context. In Proc. of the Europ. Conf. on Computer Vision
(ECCV), pages 740–755, 2014.

[16] T.Y. Lin, P. Goyal, R.B. Girshick, K. He, and P. Dollár. Focal loss for
dense object detection. arXiv preprint, abs/1708.02002, 2017.

[17] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia. Path aggregation network for
instance segmentation. Proc. of the IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), 2018.

[18] P. Lottes, M. Höferlin, S. Sander, M. Müter, P. Schulze-Lammers, and
C. Stachniss. An Effective Classification System for Separating Sugar
Beets and Weeds for Precision Farming Applications. In Proc. of the
IEEE Intl. Conf. on Robotics & Automation (ICRA), 2016.

[19] J. McCormac, R. Clark, M. Bloesch, A.J. Davison, and S. Leutenegger.
Fusion++: Volumetric Object-Level SLAM. arXiv preprint, 2018.

[20] A. Milioto, P. Lottes, and C. Stachniss. Real-time blob-wise sugar
beets vs weeds classification for monitoring fields using convolutional
neural networks. In ISPRS Annals of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, 2017.

[21] A. Milioto, P. Lottes, and C. Stachniss. Real-time Semantic Segmen-
tation of Crop and Weed for Precision Agriculture Robots Leveraging
Background Knowledge in CNNs. In Proc. of the IEEE Intl. Conf. on
Robotics & Automation (ICRA), 2018.

[22] D. Neven, B.D. Brabandere, S. Georgoulis, M. Proesmans, and L.V.
Gool. Fast Scene Understanding for Autonomous Driving. arXiv
preprint, 2017.

[23] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello. Enet: Deep
neural network architecture for real-time semantic segmentation. arXiv
preprint, 1606.02147, 2016.

[24] C. Payer, D. tern, T. Neff, H. Bischof, and M. Urschler. Instance
Segmentation and Tracking with Cosine Embeddings and Recurrent
Hourglass Networks. arXiv preprint, 2018.

[25] J. Redmon and A. Farhadi. YOLOv3: An Incremental Improvement.
arXiv preprint, 2018.

[26] C.Y. Ren, V.A. Prisacariu, and I.D. Reid. gSLICr: SLIC superpixels
at over 250Hz. arXiv preprint, 2015.

[27] M. Ren and R.S. Zemel. End-to-end instance segmentation and
counting with recurrent attention. Proc. of the IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2017.

[28] E. Romera, J. M. Alvarez, L. M. Bergasa, and R. Arroyo. Erfnet: Effi-
cient residual factorized convnet for real-time semantic segmentation.
IEEE Trans. on Intelligent Transportation Systems (ITS), 19(1):263–
272, 2018.

[29] B. Romera-Paredes and P.H.S. Torr. Recurrent instance segmen-
tation. Proc. of the Europ. Conf. on Computer Vision (ECCV),
abs/1511.08250, 2016.

[30] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. Chen.
MobileNetV2: Inverted Residuals and Linear Bottlenecks. arxiv, 2018.

[31] M. Schwarz, A. Milan, A.S. Periyasamy, and S. Behnke. Rgb-d object
detection and semantic segmentation for autonomous manipulation in
clutter. Intl. Journal of Robotics Research (IJRR), 2017.

[32] N. Sünderhauf, F. Dayoub, S. McMahon, B. Talbot, R. Schulz, P.I.
Corke, G. Wyeth, B. Upcroft, and M. Milford. Place categorization and
semantic mapping on a mobile robot. arXiv preprint, abs/1507.02428,
2015.


