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Zusammenfassung

R oboter haben das Potenzial, Aufgaben in Umgebungen
zu übernehmen, die für Menschen zu gefährlich, komplex
oder anspruchsvoll sind. Solche Umgebungen stellen aufgrund
ihrer dynamischen und oft unvorhersehbaren Natur besondere

Herausforderungen dar. Mobile Systeme müssen daher in der Lage sein, kurz-
und langfristige Veränderungen in ihrer Umwelt zu erkennen und entsprechend
darauf zu reagieren. Mithilfe intelligenter Wahrnehmungssysteme können
Roboter Unfälle verhindern, indem sie beispielsweise andere Verkehrsteilnehmer
erkennen und rechtzeitig Ausweichmanöver einleiten. Zudem können sie
autonom Personen und Güter transportieren, zeitaufwändige Aufgaben wie die
Überwachung von Pflanzenwachstum übernehmen oder gefährliche Missionen im
Katastrophenschutz durchführen. Generell erledigen Roboter Aufgaben
effizienter und sicherer als Menschen, die durch Müdigkeit, Unaufmerksamkeit
oder eingeschränkte Sinneswahrnehmungen beeinträchtigt sein können.

In den genannten Szenarien arbeiten mobile Roboter in der Regel autonom
und nehmen kontinuierlich ihre Umgebung wahr, um sowohl ihren internen Zus-
tand als auch die Umwelt zu analysieren. Dazu nutzen sie Sensoren wie globale
Navigationssatellitensysteme, Kameras, Radarsensoren, inertiale Messeinheiten
oder LiDAR-Scanner. Zu den wichtigsten Aufgaben gehören die Erstellung von
Karten, die Lokalisierung in diesen Karten und die Segmentierung von Sensor-
daten in Klassen wie Autos, Gebäude oder Verkehrsschilder. Um diese Auf-
gaben effektiv zu lösen, muss ein mobiler Roboter seine komplexe und dynamische
Umgebung sowohl räumlich als auch zeitlich wahrnehmen. Dazu analysiert er be-
wegte Objekte wie Menschen und erkennt gleichzeitig strukturelle Veränderungen
der Umwelt. Eine besondere Herausforderung ist, dass weder die Beschaffenheit
der Umgebung noch die Eigenschaften der Objekte im Vorfeld bekannt sind. Dies
erfordert eine hohe Robustheit der Systeme gegenüber Unsicherheiten sowie die
Fähigkeit, über verschiedene Sensorkonfigurationen hinweg zu generalisieren.

Diese Arbeit konzentriert sich auf zwei zentrale Fragen beim Einsatz mobiler
Roboter in unbekannten und dynamischen Umgebungen: “Was bewegt sich?”
und “Wohin bewegt sich ein Objekt?”. Um diese zu beantworten, verarbeiten
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und interpretieren wir räumliche und zeitliche Daten. Erstens müssen wir bewegte
Objekte identifizieren, da diese temporäre Hindernisse für die Online-Pfadplanung
darstellen. Zweitens ist es notwendig, den zukünftigen Zustand der Umgebung zu
schätzen, um beispielsweise einen Pfad zu planen, der das zukünftige Verhalten
anderer Verkehrsteilnehmer berücksichtigt.

Im ersten Teil der Arbeit beantworten wir die Frage “Was bewegt sich?”.
Dabei analysieren wir sequenzielle LiDAR-Punktwolken und segmentieren sie in
bewegte und unbewegte Punkte. Anschließend verbessern wir das System, in-
dem wir eine lokale Karte für die Segmentierung nutzen und die dynamische
Umgebung in einer volumetrischen Repräsentation modellieren. Um die Gener-
alisierungsfähigkeit der Ansätze zu demonstrieren, testen wir verschiedene Train-
ingskonfigurationen mit Daten, die von mehreren Sensoren mit unterschiedlichen
Scanmustern erfasst wurden. Zudem sind wir in der Lage, langfristige Verän-
derungen wie geparkte Autos oder wachsende Vegetation zu erkennen und diese
Objekte für die Lokalisierung in einer gegebenen Karte herauszufiltern.

Der zweite Teil der Arbeit befasst sich mit der Frage “Wohin bewegt sich ein
Objekt?”. Dazu stellen wir eine kompakte Darstellung der lokalen Nachbarschaft
eines Zielfahrzeugs in Autobahnszenarien vor. Wir entwickeln eine Methode,
die diese räumlich-zeitlichen Daten effizient verarbeitet und zukünftige Manöver
und Trajektorien der Fahrzeuge vorhersagt. Im letzten Kapitel entwerfen wir ein
System, das die gesamte Umgebung anhand einer Sequenz vergangener LiDAR
Punktwolken zeitlich vorhersagt. Diese Methode erfordert keine manuell erstell-
ten Annotationen wie Referenztrajektorien und lässt sich daher leicht auf neue
Umgebungen übertragen sowie online trainieren und evaluieren.

Mit dieser Arbeit leisten wir wesentliche Fortschritte zur Weiterentwicklung
der räumlich-zeitlichen Wahrnehmung in dynamischen Umgebungen. Wir en-
twickeln mehrere neuartige Methoden, um LiDAR Punktwolken zu segmentieren
und zeitliche Vorhersagen der Umgebung zu treffen. Wir zeigen in diversen Ex-
perimenten, dass wir die Methoden erfolgreich auf reale Daten in unbekannten
Umgebungen mit unterschiedlichen Sensorkonfigurationen übertragen können.
Außerdem stellen wir neue annotierte Datensätze und Open-Source Implemen-
tierungen unserer Ansätze zur Verfügung und haben alle vorgestellten Beiträge
in Zeitschriftenartikeln oder begutachteten Konferenzbeiträgen veröffentlicht.

iv



Abstract

R obotic systems have the potential to revolutionize operations in envi-
ronments that are too dangerous, intricate, or demanding for humans.
These environments pose notable challenges due to their dynamic and
often unpredictable nature, requiring robots to identify and adapt to

short- and long-term changes. By leveraging advanced perception capabilities,
robots can address critical tasks such as preventing accidents by detecting and
reacting to vulnerable road users. They can also autonomously transport humans
and goods while adapting to evolving demands, carrying out time-consuming
tasks like crop monitoring, or accomplishing dangerous missions like disaster
response. Robots can execute tasks more efficiently and safely by overcoming
human limitations such as fatigue, inattention, or restricted sensory perception.

In these scenarios, mobile robots typically operate autonomously, continu-
ously perceiving their environment to estimate both their internal state and the
state of their surroundings. They usually rely on sensors like global navigation
satellite system receivers, cameras, radar sensors, inertial measurement units, or
LiDAR scanners. Key tasks include building maps of the environment, localizing
in such maps, or segmenting different classes like cars, buildings, or traffic signs.
Urban environments are often complex and dynamic, containing moving objects
like humans or undergoing structural changes. To solve such tasks, a mobile
robot must possess both spatial awareness and spatio-temporal perception – an
understanding of how the environment evolves and what is changing in it explic-
itly. A major challenge these approaches encounter is the unknown nature of the
environment beforehand, which requires the system to be highly robust and able
to generalize across different sensor configurations and settings.

This thesis focuses on two main questions when deploying mobile robots in
unknown and dynamic environments: “What is moving?” and “Where is an
object moving to?”. We must process and interpret spatial and temporal data to
address these. First, knowing which parts of the environment belong to moving
objects is an essential spatio-temporal perception task for online path planning.
For example, moving objects occupy space only temporarily, meaning we can
consider the space again traversable for planning after the object has moved.
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Moving objects can also advance into areas previously regarded as free, causing
potential collisions with our planned trajectory. Second, we are interested in
estimating the future state of the surroundings. This prediction enables us to,
for example, properly plan a future path that reflects the future behavior of other
traffic participants.

In the first part of the thesis, we answer the question of “What is moving?”.
We utilize sequential LiDAR scans and segment them into moving and non-
moving points to know which parts of the environment are currently moving.
We further improve the system by identifying moving objects in a local map and
integrating them into a volumetric belief about the dynamic environment. To
demonstrate the generalization capabilities of these two approaches, we evaluate
multiple training and inference setups using data acquired from various sensors
with different sensor patterns. Finally, we also consider long-term changes such
as parked cars or growing vegetation as dynamic since they have moved from a
prior point in time. We use the previously presented architectures to filter out
unstable points for localization in a given map.

The second part of the thesis addresses the question of “Where is an object
moving to?”. We propose a compact representation of the local neighborhood
of a target vehicle in a highway scene and develop an approach for efficiently
processing spatio-temporal data to predict future maneuvers and trajectories of
the vehicles. Lastly, we design a system that predicts a future representation
of the entire environment given a sequence of past LiDAR scans by estimating
what the sensor will perceive next. Since this task does not require external
supervision, our approach generalizes well to new environments, and we can train
and evaluate it online without needing large amounts of labeled data.

This thesis offers multiple contributions to advancing spatio-temporal per-
ception for mobile robots in dynamic environments. We propose several novel
methods to process and interpret spatio-temporal data, particularly for LiDAR
segmentation and future state prediction. We demonstrate the generalization
capabilities of these methods in various experiments on real-world data with dif-
ferent sensor configurations. We also make new labeled datasets and open-source
implementations of our approaches available to the research community. We
published all presented techniques in peer-reviewed conference papers or journal
articles.
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Chapter 1

Introduction

M obile robots operate around us to solve tasks that humans do not
want to carry out, cannot perform, or which are too dangerous or
demanding for humans. These systems must ensure a safe oper-
ation by constantly perceiving and analyzing their environment.

For example, robots need to know their current location and the state of their
environment, including the behavior of other agents.

Nowadays, robotic platforms carry out tasks under specific safety measures in
well-defined and well-known environments like manufacturing facilities or logistic
warehouses, often at least partially under human supervision. However, to fully
realize such systems’ potential, they must also be able to operate autonomously
in highly complex and dynamic environments and work next to humans or in
changing environments. We illustrate the dynamic environments of such promis-
ing future directions in Fig. 1.1.

The situation in Fig. 1.1 (a) shows a so-called “ghost bike”, which serves as a
memorial for a location at which a bicyclist was killed during a traffic accident.
Bicyclists are vulnerable road users who usually share the road with vehicles,
putting them at high risk of driving mistakes. Advanced perception systems can
identify such moving traffic participants and warn the driver or even actively
avoid collisions, drastically increasing road safety for all its users. We show
another dynamic environment example in Fig. 1.1 (b). Autonomous vehicles can
make individual transportation accessible for everyone because human-operated
vehicles are often not efficient enough to cover all demands, especially in rural
areas. The task of autonomous driving in daily traffic is challenging because the
vehicle has to navigate next to human-driven vehicles, bicyclists, and pedestrians,
resulting in a highly unknown dynamic environment. Lastly, mobile robots like
the platform in Fig. 1.1 (c) can assist us in tedious agricultural tasks like weeding
control, growth stage monitoring, or harvesting to increase yield and, at the
same time, a more sustainable crop production. Such an environment usually
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(a) Road Safety

(b) Transportation (c) Automation

Dynamic
Environments

Examples Of

Figure 1.1: Examples of how advanced perception systems can protect, transport, and support
us in different scenarios. In all cases, perception systems must operate in unknown and dynamic
environments to allow mobile robots to navigate and perform their intended tasks safely. Images
taken by Craig F. Walker (Boston Globe), Hamburger Hochbahn AG, and Lincoln Centre for
Autonomous Systems.

undergoes spatio-temporal changes due to, for example, changing vegetation or
different seasons, which requires a system that is robust to dynamic environments.
Nowadays, we also use mobile platforms to perform dangerous tasks in emergency
response, such as extinguishing fires or carrying equipment. In the future, they
could autonomously navigate in large buildings to seek the cause of a fire or
secure hazardous chemical components. Such systems constantly face dynamic
objects like humans and changing environments due to fire. Therefore, they need
to recognize and adapt to these spatio-temporal changes to support emergency
response efficiently.

To solve such tasks, we equip robots with proprioceptive and exteroceptive
sensors. Accelerometers, gyroscopes, or wheel encoders are proprioceptive sensors
that measure the robot’s internal state. On the other hand, exteroceptive sensors
like global navigation satellite systems, cameras, radars, and light detection and
ranging (LiDAR) sensors acquire information from the robot’s environment, and
we can use them for both estimating the robot’s state and the state of the en-
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vironment. This thesis will primarily focus on perception tasks using sequential
point clouds obtained from a LiDAR sensor. A LiDAR sensor is an active sensor
that shoots laser beams into the environment while measuring the time until the
beam returns to the sensor. From this time-of-flight information, we can compute
the beam range. Given the azimuth and elevation angle at which the beam was
directed, we obtain an Euclidean coordinate in the sensor’s local frame. LiDAR
sensors have shown a promising potential due to their precise 3D measurements
compared to cameras and radars and their usability without passive light sources,
for example, at night.

1.1 Main Research Questions
Given the challenges mentioned above, we can state two main questions these
robotic systems should be able to answer: “What is moving?” and “Where is an
object moving to?”, which we visualize in Fig. 1.2.

“What is moving?”

First, a mobile robot needs to know which objects in its environment are moving
because these require further analysis to, for example, avoid collisions with moving
objects as shown in Fig. 1.2. We phrase this in the question “What is moving?”
and answer it in the first part of the thesis.

One way to infer moving objects in LiDAR data is to process multiple scans
and assign a semantic class to each point, for example, buildings, pedestrians,
or moving vehicles. Afterward, we can remap the predicted labels into moving
and non-moving classes. We call this task multi-scan semantic segmentation,
which has been studied under various names in the literature [100, 108, 161,
164, 176, 192, 204]. Another recent research topic is panoptic tracking or 4D
panoptic segmentation, in which we not only segment the points into classes
but also assign them to instances and track these over time [11, 95, 118, 119,
204, 217]. The methods above have the upside of additionally providing the
semantic class of the object, which can be further used for traversability analysis
in path planning [135]. However, the downside is that these approaches are
often complex and cannot be directly transferred to new, unknown environments
because of prior assumptions about the sensor or environment. Most approaches
infer the output based on a parametric model, whose parameters are trained
from labeled data. This procedure requires the availability of large datasets with
labeled point clouds, which is a time-consuming and tedious task if done for
many classes. Another challenge arises when deploying such systems in new,
unseen environments, with potentially new and unknown object classes present
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Moving?

Moving?

“What is moving?”

“Where is an object moving to?”

Moving?

Figure 1.2: Two main questions robot systems must answer when operating in dynamic envi-
ronments. We visualize a LiDAR point cloud in blue, measured from the black car. Top: The
perception system must identify moving objects around the car independent of their seman-
tic class. Bottom: For moving objects, estimating where they are moving to in the future is
important to avoid collisions.

in the scene and a changed sensor setup. Lastly, it needs to be clarified if we
need the full semantic information of objects for downstream tasks. For example,
it is sufficient to know which LiDAR measurements belong to moving objects to
obtain a static map of the environment for planning or obstacle avoidance.

In this thesis, we focus on the task of moving object segmentation (MOS) [28].
In MOS, we decide for each LiDAR point if it belongs to a moving or a non-
moving object. We argue that for most downstream tasks like collision avoidance,
knowing which semantic class the moving object is associated with is not critical.
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This paradigm shift circumvents existing problems in semantic segmentation,
like the underlying long-tailed distribution of the semantic classes, meaning that
there are many classes with less frequent occurrence such that they are either
underrepresented or not represented at all in the training data. For example,
suppose that objects like a baby stroller or a bicycle with a trailer are not part
of the training data. In that case, a semantic segmentation approach might not
recognize them as one of the known moving classes and will not detect them
correctly. In contrary, a MOS method can still identify them as moving points.
Training models for MOS also requires labeled data of moving and non-moving
points, but we can drastically reduce the complexity and the required number of
labeled examples. We will also show in this thesis that these models can generalize
well to new environments and sensor setups.

“Where is an object moving to?”
After identifying moving objects, the robot can predict what will happen next
and plan accordingly. Such estimation helps to decide if a planned path interferes
with other objects’ trajectories in the future. Therefore, the question we aim to
answer in the second part of the thesis is “Where is an object moving to?”.

In general, we have to look at sequential sensor data over time to predict
the future state of the environment because more than a single snapshot of the
environment is needed to reason about its temporal change. Over the past years,
learning-based approaches have shown to be effective for natural language pro-
cessing, in which a sequence of text is processed to, for example, predict the next
most likely word token [141]. This research field inspired other researchers to
predict completely different future states, such as the future trajectories of traffic
participants [5, 43, 67]. Most researchers explored architectures like recurrent
neural network (RNN) [48, 83], long short-term memory network (LSTM) [72],
or transformers [184] to process spatio-temporal data. These systems can become
rather complex in their design and training. One reason is that the spatial and
temporal information is often processed sequentially. Instead, this thesis focuses
on convolution-based architectures for prediction because of their simplicity and
effectiveness for robotic applications. For example, one advantage is the joint
processing of spatial and temporal information, which makes the training and
testing of our architectures faster.

We must address several challenges to successfully deploy a prediction model
in a new and unseen environment. Similar to the perception tasks mentioned
above, these models are often trained based on labeled data, and the training
data can differ from the measurements in a new environment. Consequently,
the prediction models must generalize well to new and unseen environments.
Besides that, some prediction models take the trajectories of neighboring objects
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as inputs, which requires previous detection and tracking of objects. Therefore,
these preceding perception steps must also work reliably in the new environment
and deal with missed detections. Another challenge of supervised prediction
is that there is no possibility of evaluating the performance of a model during
runtime because the ground truth trajectories are not available. Consequently,
it is unclear if we can trust our prediction model in a new environment, making
it hard to integrate its output into downstream planning tasks safely. One way
to tackle these challenges is to directly predict what the sensor will perceive
next instead of an intermediate representation like tracked trajectories. Since
this information will always be available, we can train these approaches online in
new environments. At the same time, this allows us to evaluate the performance
of our prediction model because we can compare its previously predicted output
with the actual new measurements. Self-supervised prediction is a promising new
research direction that we will explore in the last chapter of this thesis.

1.2 Main Contributions
In this thesis, we will tackle fundamental questions that must be answered for a
robot to operate in dynamic environments: “What is moving?” and “Where is
an object moving to?”. This section summarizes the main contributions of the
thesis to the spatio-temporal perception of mobile robots.

The first contribution is an approach to segment moving objects in a sequence
of LiDAR scans, which we present in Chap. 3 and call 4DMOS. Our underlying
assumption is that we can infer the motion of an object from a limited number of
consecutive scans. We propose to rely solely on the information about which parts
of the environment are occupied at a particular time and represent the sequence
of LiDAR measurements as a sparse 4D tensor. We use sparse convolutions to
jointly extract spatio-temporal features and predict a moving object confidence
score for each point representing the likelihood of belonging to a moving object.
To further increase the robustness towards false positive and negative predictions,
we propose a receding horizon strategy that allows us to fuse multiple predictions
for the same point in a static state binary Bayes filter. We experimentally demon-
strate the effectiveness of our approach and show that it generalizes well to new,
unseen environments because, in contrast to existing methods, we do not exploit
any environment- or sensor-specific information.

The second contribution is a map-based approach to segment moving objects,
which we refer to as MapMOS and describe in Chap. 4. Integrating all measure-
ments into a local map and using the map for the segmentation has advantages
compared to the sequence-based approach in 4DMOS, for example, when an ob-
ject is partially occluded within the sequence. Also, some sensors like scanners by
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Livox have an irregular sensing pattern, which breaks the assumption of 4DMOS
that the moving object is always visible within the sequence. In addition, we
propose maintaining a volumetric belief about which parts of the environment
can contain moving objects. We show how we can use the belief to improve the
segmentation performance and obtain a static map of the environment, which we
can exploit in downstream tasks like planning.

We demonstrate in both, Chap. 3 and Chap. 4, that generalization to new sen-
sors and environments is a crucial capability of modern spatio-temporal percep-
tion systems and that a lot of state-of-the-art approaches fail on this. To further
test and evaluate these generalization capabilities properly, we propose a public
moving object segmentation benchmark with heterogeneous sensors in Chap. 5.
The dataset contains moving object labels for four different LiDAR sensors with
varying fields of view and sensor patterns that capture the scene simultaneously
for the training, validation, and testing of MOS approaches. We demonstrate
the generalization capabilities of our proposed methods and test how different
training setups affect the performance when evaluating the estimation from data
obtained with another sensor type.

To close the first part, which answers the “What is moving?” question, we
show how we can use our architecture to segment stable points in Chap. 6. This
task aims at segmenting not only currently moving points but generally unstable
points for localization in a pre-built map. We consider points unstable if, for
example, they belong to vegetation or parked cars that have changed between
the initial mapping and the later localization session. Our fourth contribution is
a system that filters out unstable points and can improve localization in changing
environments, such as an orchard or a parking lot.

Part II of this thesis answers the “Where is an object moving to?” question,
which is essential for path planning in dynamic environments to, for example,
avoid collisions. The fifth contribution of this thesis is an approach that predicts
the maneuver and trajectory of a vehicle in structured environments like highways.
We propose to encode the past information of neighboring vehicles over time in
an efficient, dense tensor and use spatio-temporal convolutions to classify the
maneuver and then regress the corresponding trajectory of a vehicle. We train
the approach in a supervised fashion and successfully predict trajectories close to
the recorded ground truth.

Lastly, the sixth contribution in Chap. 8 is a method that can predict a
future state of the environment solely from a stream of measured point clouds
by predicting a sequence of future point clouds. The main advantage is that no
preceding perception steps like detection and tracking are required. The approach
can be trained and evaluated online without any manually provided labels by
comparing how close the measured scan is to the previously predicted point cloud.
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Overall, this thesis offers six contributions to spatio-temporal perception in
dynamic environments. We published all presented approaches in peer-reviewed
conference papers and journal articles and experimentally tested them on real-
world data. All methods can operate at the sensor frame rate given adequate
hardware.

1.3 Publications
All parts of this thesis have been published in peer-reviewed conference papers
and journal articles:

• B. Mersch∗, T. Höllen∗, K. Zhao, C. Stachniss, and R. Roscher.
Maneuver-based Trajectory Prediction for Self-driving Cars Using
Spatio-temporal Convolutional Networks. In Proc. of the IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), 2021. DOI:
10.1109/IROS51168.2021.9636875. (∗ authors contributed equally)

• B. Mersch, X. Chen, J. Behley, and C. Stachniss. Self-supervised Point
Cloud Prediction Using 3D Spatio-temporal Convolutional Networks. In
Proc. of the Conf. on Robot Learning (CoRL), 2021. DOI:
10.48550/arXiv.2110.04076

• B. Mersch, X. Chen, I. Vizzo, L. Nunes, J. Behley, and C. Stachniss. Re-
ceding Moving Object Segmentation in 3D LiDAR Data Using Sparse 4D
Convolutions. IEEE Robotics and Automation Letters (RA-L), 7(3):7503–
7510, 2022. DOI: 10.1109/LRA.2022.3183245

• B. Mersch, T. Guadagnino, X. Chen, Tiziano, I. Vizzo, J. Behley, and
C. Stachniss. Building Volumetric Beliefs for Dynamic Environments
Exploiting Map-Based Moving Object Segmentation. IEEE Robotics and
Automation Letters (RA-L), 8(8):5180–5187, 2023. DOI:
10.1109/LRA.2023.3292583

• I. Hroob∗, B. Mersch∗, C. Stachniss, and M. Hanheide. Generalizable Sta-
ble Points Segmentation for 3D LiDAR Scan-to-Map Long-Term Localiza-
tion. IEEE Robotics and Automation Letters (RA-L), 9(4):3546–3553, 2024.
DOI: 10.1109/LRA.2024.3368236. (∗ authors contributed equally)

• H. Lim, S. Jang, B. Mersch, J. Behley, H. Myung, and C. Stachniss.
HeLiMOS: A Dataset for Moving Object Segmentation in 3D Point
Clouds From Heterogeneous LiDAR Sensors. In Proc. of the IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), 2024. DOI:
10.1109/IROS58592.2024.10801938

8



Chapter 1. Introduction

1.4 Further Scientific Contributions
During my doctorate, I was also involved as a co-author in the following peer-
reviewed conference and journal publications which are not part of the thesis:

• X. Chen, S. Li, B. Mersch, L. Wiesmann, J. Gall, J. Behley, and C. Stach-
niss. Moving Object Segmentation in 3D LiDAR Data: A Learning-based
Approach Exploiting Sequential Data. IEEE Robotics and Automation Let-
ters (RA-L), 6(4):6529–6536, 2021. DOI: 10.1109/LRA.2021.3093567

• X. Chen, B. Mersch, L. Nunes, R. Marcuzzi, I. Vizzo, J. Behley, and
C. Stachniss. Automatic Labeling to Generate Training Data for Online
LiDAR-Based Moving Object Segmentation. IEEE Robotics and
Automation Letters (RA-L), 7(3):6107–6114, 2022. DOI:
10.1109/LRA.2022.3166544

• I. Vizzo, B. Mersch, R. Marcuzzi, L. Wiesmann, J. Behley, and
C. Stachniss. Make It Dense: Self-Supervised Geometric Scan Completion
of Sparse 3D Lidar Scans in Large Outdoor Environments. IEEE Robotics
and Automation Letters (RA-L), 7(3):8534–8541, 2022. DOI:
10.1109/LRA.2022.3187255

• I. Vizzo, T. Guadagnino, B. Mersch, L. Wiesmann, J. Behley, and
C. Stachniss. KISS-ICP: In Defense of Point-to-Point ICP – Simple,
Accurate, and Robust Registration If Done the Right Way. IEEE Robotics
and Automation Letters (RA-L), 8(2):1029–1036, 2023. DOI:
10.1109/LRA.2023.3236571

• M. Zeller, V. Sandhu, B. Mersch, J. Behley, M. Heidingsfeld, and
C. Stachniss. Radar Velocity Transformer: Single-scan Moving Object
Segmentation in Noisy Radar Point Clouds. In Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), 2023. DOI:
10.1109/ICRA48891.2023.10161152

• H. Lim, L. Nunes, B. Mersch, X. Chen, J. Behley, H. Myung, and C. Stach-
niss. ERASOR2: Instance-Aware Robust 3D Mapping of the Static World
in Dynamic Scenes. In Proc. of Robotics: Science and Systems (RSS), 2023.
DOI:10.15607/RSS.2023.XIX.067

• I. Vizzo, B. Mersch, L. Nunes, L. Wiesmann, T. Guadagnino, and
C. Stachniss. Toward Reproducible Version-Controlled Perception
Platforms: Embracing Simplicity in Autonomous Vehicle Dataset
Acquisition. In Worshop on Building Reliable Ratasets for Autonomous
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Vehicles, IEEE Intl. Conf. on Intelligent Transportation Systems (ITSC),
2023. DOI: 10.1109/ITSC57777.2023.10421988

• M. Zeller, V. Sandhu, B. Mersch, J. Behley, M. Heidingsfeld, and
C. Stachniss. Radar Velocity Transformer: Single-scan Moving Object
Segmentation in Noisy Radar Point Clouds. In Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), 2023. DOI:
10.1109/ICRA48891.2023.10161152

• S. Gupta, T. Guadagnino, B. Mersch, I. Vizzo, and C. Stachniss. Effectively
Detecting Loop Closures using Point Cloud Density Maps. In Proc. of the
IEEE Intl. Conf. on Robotics & Automation (ICRA), 2024. DOI: 10.1109/I-
CRA57147.2024.10610962

• L. Nunes, R. Marcuzzi, B. Mersch, J. Behley, and C. Stachniss. Scaling Dif-
fusion Models to Real-World 3D LiDAR Scene Completion. In Proc. of the
IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR),
2024. DOI: 10.1109/CVPR52733.2024.01399

• T. Guadagnino∗, B. Mersch∗, I. Vizzo∗, S. Gupta, M. Malladi, L. Lobefaro,
G. Doisy, and C. Stachniss. Kinematic-ICP: Enhancing LiDAR Odometry
with Kinematic Constraints for Wheeled Mobile Robots Moving on Pla-
nar Surfaces. Accepted for Proc. of the IEEE Intl. Conf. on Robotics &
Automation (ICRA), 2025. DOI: 10.48550/arXiv.2410.10277. (∗ authors
contributed equally).

1.5 Open Source Contributions
During my doctorate, I published multiple open-source implementations of the
presented approaches and contributed to the following open-source projects:

• Point-cloud-prediction: Self-supervised point cloud prediction
https://github.com/PRBonn/point-cloud-prediction

• 4DMOS: Sequence-based moving object segmentation
https://github.com/PRBonn/4DMOS

• KISS-ICP: LiDAR odometry pipeline for simple, accurate, and robust
registration
https://github.com/PRBonn/kiss-icp

• MapMOS: Map-based moving object segmentation
https://github.com/PRBonn/4DMOS
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• Meta-workspace: Workspace for reproducible version-controlled percep-
tion platforms
https://github.com/ipb-car/meta-workspace

• Kinematic-ICP: LiDAR odometry pipeline for wheeled mobile robots
https://github.com/ipb-car/kinematic-icp

• KISS-SLAM: LiDAR SLAM pipeline
https://github.com/ipb-car/kiss-slam
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Chapter 2

Basic Techniques

I n this chapter, we review basic techniques that we use throughout the
remaining chapters and which are essential to understanding the main con-
tributions of this thesis. Spatio-temporal perception generally refers to
estimating a state given measured data over time. This data can be, for

example, a sequence of point clouds a mobile robot is collecting using its LiDAR
scanner. Often, such spatio-temporal data is extensive and requires advanced
processing, which we will present in this chapter.

We can use this data to identify moving objects or predict where they go.
Due to the complexity of the problems presented, solving these purely based on
pre-defined rules and heuristics is often challenging. For example, LiDAR scans
can be noisy, incomplete, or corrupted by reflections, which makes it hard to
extract meaningful features reliably. Therefore, a common approach is to define
a parametric model that maps input data to the desired output and to learn
the mapping parameters from the data. Classic machine learning algorithms still
rely on hand-designed features. In contrast, deep learning algorithms operate on
raw data without manual steps beforehand and usually consist of multiple hidden
layers that extract highly abstract features. We refer the reader to the books by
Goodfellow et al. [61] or Prince [147] for a detailed overview of deep learning.

The most simple and well-known deep learning architecture is a multi-layer
perceptron, which consists of an input, output, and multiple intermediate hidden
layers. Each layer describes a fixed non-linear mapping from input to output
features. We optimize the parameters of this mapping by comparing the model’s
output with a known reference. For example, this can be the cross-entropy loss of
a predicted likelihood for the ground truth class in classification. We usually solve
the optimization problem using stochastic gradient descent or a more sophisti-
cated variant and backpropagate the gradients with respect to the parameters.
We will not go into the details of deep neural networks and how to train them
because these techniques are well-presented in the existing literature [61].
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In the case of spatio-temporal data, the main challenge lies in processing
data of variable size while extracting both spatial and temporal relationships.
Multi-layer perceptrons operate on fixed-size input vectors and cannot distinguish
higher-dimensional data. Instead, we will focus in Sec. 2.1 on a different type of
neural network, namely convolutional neural networks (CNNs). These build the
foundation for all architectures used in this thesis. Initially developed for 2D
images, CNNs have been further extended to work with higher dimensional data
such as 3D tensors, see Sec. 2.2. To process a sequence of 3D LiDAR scans for
segmentation, we will consider in Sec. 2.3 multiple 3D tensors over time, resulting
in a spatio-temporal 4D convolution. Since LiDAR point clouds are naturally
sparse compared to, for example, a dense camera image, we will show in Sec. 2.4
how sparse convolutions reduce the memory footprint and speed up the runtime
of the convolutions for point cloud data.

2.1 2D Convolutional Neural Networks
In computer vision, convolutions are an operation for applying a hand-designed
filter to an image. Such filters usually operate locally on a neighborhood of pixels
and are used, for example, for de-noising, smoothing, or segmentation. The filter
is represented by a kernel function that takes neighboring pixel values as input
and outputs a new value. The convolution defines how this filter slides along
the image axis to obtain a new image of feature values. The kernel function
usually has fixed parameters that are chosen based on heuristics. For example,
the Sobel operator or Sobel filter approximates the gradient of an image’s intensity
function and is commonly used to detect edges in images. We refer the reader to
the book by Förstner and Wrobel [55] or Szeliski et al. [174] for more examples.
Instead of finding fixed filters for different tasks, researchers focused on learning
the filter parameters from data. This allowed researchers to find representations
more suitable for such tasks, for example, identifying curves in handwritten digit
recognition [2, 64].

With the advancement of deep learning for computer vision tasks like digit
recognition [2] or object detection [59], CNNs are an efficient and well-performing
framework to extract information from images. Like the abovementioned image
convolutions, CNNs apply a mathematical operation on a local neighborhood.
These operations usually consist of a linear mapping of the pixel-wise features
with the kernel parameters and then passing it through a non-linear activation
function. We illustrate two convolutional steps in Fig. 2.1. In this simple example,
our image has a single channel resulting in matrix I, which we can index with
discrete pixel coordinates u and v for its value Iu,v. The kernel is a matrix of
size 3× 3 with learnable parameters wi,j ∈ R. Suppose the indexed pixel exceeds
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Figure 2.1: Two examples for the feature computation in a 2D convolution.

the image coordinates and no channel information is available. In that case, using
a padding strategy like zero-padding is common, which sets the channel value to
zero. If we do not pad the image, we cannot compute the output feature and,
therefore, reduce the size of the output feature map by one along each dimension.
For a location [u, v]T ∈ Z2 of the output feature image, we can compute its
value fu,v ∈ R by

fu,v =
∑[
i
j

]
∈V2

K

wi,j Iu+i,v+j, (2.1)

where V2
K denotes the set of offsets which represent the neighborhood of the

location [u, v]T given by a kernel of size K. In this example with a kernel of
size 3, this results in 9 offsets of
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Passing the resulting feature map through non-linear activation functions and
normalization layers is standard to ensure a zero-mean and unit-variance Gaus-
sian distribution of the resulting non-linear features. Also, the feature maps are
often downsampled or upsampled to decrease or increase their resolution to man-
age the memory footprint and the level of detail the features describe. We can
achieve downsampling by applying strided convolutions. Usually, we apply the
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convolutional filter with a stride of one across the entire image, meaning that we
move the filter at most by one pixel across each dimension of the feature map.
A stride of two moves the filter by two pixels, effectively skipping half of the
convolutions. The larger stride leads to a faster computation of the convolution
and an output that has a smaller size compared to the input. An alternative to
strided convolutions are pooling layers, which reduce the size of the feature map
using different operations like max pooling, average pooling, or global pooling.

By downsampling, we also increase the receptive field of the output features,
meaning that we compute each feature from a larger part of the input feature
map. This property is essential to processing large objects in an image by ensuring
that the output feature “sees” enough of the object in the input image.

It is common to use transpose convolutions to upsample a feature map. These
increase the size of the output map by applying the kernel to each input feature
individually, effectively resulting in multiple sub-maps with the kernel size that
we can combine to create a larger output map.

We call this collection of layers a convolutional block. Many variations and
strategies exist for layering such architectures in practice, but most consist of
similar building blocks. Finally, we obtain a CNN by stacking multiple convo-
lutional blocks, resulting in a deep architecture with an often large number of
trainable parameters.

Using local image operators for feature extraction has two main advantages
compared to the traditional multi-layer perceptrons: First, they ensure local con-
nectivity of the output features because they are not connected to all input fea-
tures but just the local neighborhood. Second, due to the translation equivariance
of the local operator, the parameters of a kernel are shared, meaning that we use
the same kernel across the whole image, effectively reducing the total number of
trainable parameters.

2.2 Higher Dimensional Convolutions

We can generalize the convolution in Eq. (2.1) to D-dimensional spaces. To
compute an output feature f out

u ∈ RNout at a discrete coordinate u ∈ ZD, we apply
a convolution kernel W ∈ RKD ×Nout ×Nin on the input features of size Nin in the
local neighborhood defined by the kernel with kernel size K. More specifically,
we can split the kernel into KD matrices, resulting in a matrix W i ∈ RNout ×Nin

for each offset i ∈ ZD given by the kernel. Doing so, we express the convolution
by summing over the products of each kernel matrix W i with the corresponding
input feature f in

u+i ∈ RNin at location u+ i. This results in the following higher-
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Figure 2.2: Example of how we apply a 3D convolutional filter along the spatial axes x and y

and a temporal axis t.

dimensional convolution for the output feature f out
u ∈ RNout at location u ∈ ZD

f out
u =

∑
i∈VD

K

W if
in
u+i, (2.3)

in which VD
K denotes the set of D-dimensional offsets the kernel of size K is

operating on with
∣∣VD

K

∣∣ =KD. Note that the result of Eq. (2.3) is usually followed
by a non-linear activation function, which we omit for better readability.

The D-dimensional convolutions allow us to extract features not solely from
images but also from higher dimensional data. We will exploit this in Chap. 7
and Chap. 8 to apply 2D and 3D convolutions over spatial dimensions but also
across time. We visualize such a 3D convolution in Fig. 2.2 in which we shift the
kernel along all three coordinate axes. These higher dimensional convolutions
allow researchers to extract spatio-temporal features within a single architecture
and use them to do various spatio-temporal perception tasks. Temporal convo-
lutions across time are intuitive because the common assumptions about spatial
convolutions still hold: First, an output feature at a given time index should
mainly depend on the inputs that are close in time. Second, the feature com-
putation should be equivariant to the absolute time since we apply the same
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2.3. Spatio-Temporal 4D Convolutions

convolutional kernel along the time axis. In the next section, we give an example
of extending higher dimensional convolutions to sequences of 3D point clouds.

2.3 Spatio-Temporal 4D Convolutions

Spatio-temporal perception often involves 3D data from LiDAR scanners. To-
day, sensors commonly output up to 2.6 M points per second, processing a large
amount of data at the sensor frame rate. In the first part of this thesis, we will
extract spatio-temporal features from such a stream of data to segment the points
into, for example, moving and non-moving points.

Formally, we process a point cloud sequence P = {P1,P2, . . . ,PM} of M

LiDAR scans Pt = {pt,1,pt,2, . . . ,pt,Nt
} with Nt points pt,i ∈ R3. We can

consider the collection of points as a 4D point cloud by extending the point
coordinates with the scan’s timestamp, resulting in p̂t,i = [xi, yi, zi, t]

⊤ ∈ R4.
For simplicity, we can omit the subscript t because we can infer the point cloud
index from the time coordinate of the point. To apply our convolutional
framework, we must represent the data in a regular grid to obtain a notion of
the neighborhood and define the convolutions. To do this, we voxelize the 4D
point cloud using a given spatial voxel size ∆s ∈ R and temporal
resolution ∆t ∈ R between scans, resulting in a discrete coordinate u ∈ Z4

u =

[⌊
x

∆s

⌋
,

⌊
y

∆s

⌋
,

⌊
z

∆s

⌋
,

⌊
t

∆t

⌋]⊤
, (2.4)

where b·c denotes the flooring operation. A voxel can encompass multiple points
that fall into it, but we always keep track of the original points. We additionally
store features in the voxel that contain information about the measurement, like
intensity, or use a constant value to represent the occupancy of the grid cell.

We can now define 4D convolutions on the resulting voxel grid based on
the higher dimensional convolution introduced in Sec. 2.2 by choosing an in-
put dimension of D=4. We visualize such a spatio-temporal 4D convolution
in Fig. 2.3. Note that in this simplified example, we only show a single kernel
of size 3× 3× 3× 3 and without padding, which results in a smaller output ten-
sor. One can see that the feature of a voxel at time t considers inputs from all
neighboring voxels at the same points in time but also one timestamp before and
after. We will offset the kernel in both the spatial and temporal directions for
the following computations.
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Figure 2.3: Schema of a Spatio-Temporal 4D convolution. Note that the cubes represent the
same spatial voxel grid at different points in time.

2.4 Sparse Convolutions

The spatio-temporal 4D convolutions presented in Sec. 2.3 do not scale well for
large environments because the size of the input volume grows cubically with the
spatial and linear with the temporal dimension. Assuming a voxel size of 10 cm,
a sequence of 10 scans with a radius of 100 m, this can result in the worst case
in an input tensor with 200

0.1

3 · 10 = 8 · 1010 voxels over which the convolutional
kernels will slide to extract spatio-temporal features. However, LiDAR scans are
sparse by nature, meaning that the free space causes a lot of empty voxels, and
the result of the convolutions will be zero most of the time. We will exploit this
by representing the voxel grid as a sparse tensor and using a sparse convolutional
network that can operate on sparse grids.

In existing literature, sparse convolutional networks are not uniquely defined.
Liu et al. [107] proposed to prune parameters in a CNN to achieve a sparse
architecture. However, the convolutions are still defined on the dense inputs.
The definition of convolutions operating directly on sparse data has been further
investigated by Graham et al. [63] and Choy et al. [32]. In this thesis, we follow
the terminology from Choy et al. [32], who also provide an implementation, the
MinkowskiEngine. This implementation allows the computation of the output
features only for non-empty regions by applying the convolutional kernels to the
non-empty inputs.
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Figure 2.4: Schema of a sparse convolution. In contrast to the dense convolution, we only
compute output features for non-empty voxels and only from non-empty inputs.

2.4.1 Sparse Tensors
A sparse tensor is defined as the non-empty coordinates of a voxel grid and its
corresponding features. For our 4D example from Sec. 2.3, we can express the
resulting 4D tensor as a sparse tensor with N coordinates C and features F using
the notation introduced by Choy et al. [32] reading

C =

x1 y1 z1 t1
... ... ... ...
xN yN zN tN

 , F =

f
T
1
...

fT
N

 , (2.5)

where xi, yi, zi, ti are the discretized coordinates from Eq. (2.4). In contrast to
the dense convolutions in Sec. 2.2, sparse convolutions are defined by not only
the kernel but also the input and output coordinates because not all neighbors
are present in the case of a sparse voxel grid. The so-called generalized convolu-
tion [32] encompasses this and is given by

f out
u =

∑
i∈

{
VD
K

∣∣u+i∈C in
} W if

in
u+i for u ∈ Cout, (2.6)

where VD
K again defines the offsets given by the kernel, but this time, we apply

this set to the coordinate u and intersect it with the set of non-empty input
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coordinates C in. In doing so, we only consider non-empty voxels for the feature
computation and only compute output features for non-empty voxels defined by
coordinates in Cout. We show a sparse example of the previously visualized 2D
convolution in Fig. 2.4.

2.4.2 MinkUNet
In the remainder of the thesis, we will use the MinkowskiEngine for sparse convo-
lutions [32]. Specifically, we base our sparse 4D architecture on the Minkowski-
UNet models developed by Choy et al. [32]. This architecture implements widely
used concepts like residual blocks [70] and a U-shaped architecture with skip con-
nections [152] to achieve sufficient compression and de-compression while main-
taining a high level of details during the feature extraction. We build our archi-
tecture based on the MinkUNet32, which we visualize in Fig. 2.5.
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Figure 2.5: Architecture of a MinkowskiUNet32. Originally taken from [32].
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Part I

Spatio-Temporal Segmentation
of LiDAR Data

23





Chapter 3

Sequence-Based Moving Object
Segmentation

A key challenge for autonomous vehicles is to navigate in unseen dy-
namic environments, which usually raises the question of “What is
moving?”. Distinguishing moving from static objects in 3D LiDAR
data is a crucial task for autonomous systems and essential to, for

example, plan collision-free trajectories [177], or understand the future behavior
of other traffic participants [182, 198]. In LiDAR MOS, we aim to identify which
points in a sequence of LiDAR scans belong to moving objects. Afterward, one can
use the knowledge about moving objects to further improve localization [28, 30],
mapping [28], or scene flow estimation [14, 60, 181].

Various approaches exist for integrating the knowledge of moving objects
into state estimation problems. For visual simultaneous localization and map-
ping (SLAM), some feature-based approaches remove dynamic objects to avoid
wrong correspondences [167, 208, 210]. On the contrary, Henein et al. [71] use
an instance-level object segmentation to identify potentially moving points and
explicitly track their motion as rigid bodies in a factor graph optimization frame-
work. Recently, the Khronos [158] framework was proposed to maintain a spatio-
temporal representation of the environment while integrating short-term dynam-
ics and long-term structural changes.

For LiDAR SLAM, Pfreundschuh et al. [142] as well as Chen et al. [28, 30]
demonstrate the effectiveness of performing MOS in LiDAR data for improving
the quality of data associations. Moving objects also affect mapping for localiza-
tion and long-term planning because they remain as so-called “ghost artifacts” in
the map. Static mapping approaches [9, 10, 90, 104] alleviate this by first building
a map and then cleaning it from traces of dynamic objects in a post-processing
step. Thus, the addressed estimation problem has multiple relevant applications
in robotics.
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Figure 3.1: Given a sequence of point clouds, our approach identifies that the points belonging
to the bicyclist move in space over time. Top: Input sequence with points colorized (blue) with
respect to the timestamp. The darker the blue color, the newer the scan. Bottom: Our method
successfully predicts the bicyclist as “moving” (red) and the parked car as “non-moving” (black).

There exist mapping approaches that identify if observed points are potentially
moving or have moved throughout the mapping process [9, 30, 75, 144]. In this
chapter, we identify objects that are moving within a short time horizon because
these are the most interesting for online navigation. In contrast to the semantic
segmentation task, MOS in 3D LiDAR data does not require a complex notion
of semantic classes with extensive labeling to supervise learning-based methods
or evaluate their performance. Instead, the goal is to predict whether points
move or remain static throughout space and time. We visualize an exemplary
of a parked car and a moving bicyclist scenario in Fig. 3.1. In general, the task
requires extracting temporal information from the LiDAR sequence to decide
which points are moving and which are not. Previous works tackled this problem
by extracting temporal information from residual range images [28] or bird’s eye
view images [126], typically using a 2D CNN. The back-projection from these
2D representations to the 3D space often requires post-processing like k-nearest
neighbor clustering [28, 35, 50, 125] to avoid labels bleeding into points that are
close in the image space but distant in 3D. Other approaches can identify objects
that have moved in 3D space directly during mapping [9] or with a clustering and
tracking approach [29]. Nevertheless, these offline methods often rely on accessing
all LiDAR observations in the sequence.
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In this chapter, we focus on segmenting currently moving objects online and
directly in 3D space from a limited time horizon of observations. Given a sequence
of 3D LiDAR scans, we predict for each point if it belongs to a moving object, for
example, bicyclists or driving cars, or a static, i.e., non-moving one, like parked
cars, buildings, or trees. Our approach turns the sequence of observed LiDAR
scans into a voxelized sparse 4D point cloud as explained in Sec. 2.4. We apply
computationally efficient sparse 4D convolutions to jointly extract spatial and
temporal features and predict moving object confidence scores for all points in the
sequence. We develop a receding horizon strategy that allows us to predict moving
objects online and refine predictions based on new observations. We use a static
state binary Bayes filter to recursively integrate new scan predictions, resulting in
a more robust estimation. We evaluate our approach on the SemanticKITTI MOS
benchmark [15, 28] and show more accurate predictions than existing methods.
Since our approach only operates on the geometric information of point clouds
over time, it generalizes well to new environments, which we evaluate on a dataset
not seen during training.

3.1 4DMOS – Moving Object Segmentation
With 4D Convolutions

The main contribution of this chapter is 4DMOS, a novel approach that predicts
moving objects online for a short sequence of LiDAR scans. We exploit sparse
4D convolutions to jointly extract spatio-temporal features from the input point
cloud sequence. Such higher dimensional convolutions introduced in Sec. 2.4
allow us to efficiently process the data directly in the voxelized 4D space without
the need of projecting to lower dimensional spaces like range images as done in
previous works [29]. Such projections usually lead to information loss, and the
back-projection and clustering to retrieve per-point predictions introduce artifacts
like label bleeding [125]. The outputs of our network are moving object confidence
scores for the points in each input scan.

Our method operates in a sliding window fashion and appends a new ob-
served scan to the input sequence while discarding the oldest one. By doing so,
our method can include new observations in the estimation as they arrive. We
implemented a static state binary Bayes filter to fuse these predictions and, in
this way, increase the robustness to false predictions. Since our method uses only
the spatial point information over time, it is class agnostic and generalizes well
on unseen data.

In sum, we make three key claims: Our approach (i) segments moving
objects in LiDAR data more accurately compared to existing methods,
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Figure 3.2: Overview of our approach operating with a receding horizon strategy. We transform
all scans of the considered receding window to the current viewpoint. Next, we aggregate all
points and create a sparse 4D point cloud. We apply sparse 4D convolutions to extract spatio-
temporal features jointly. Our final layer predicts moving object confidence scores for all points
in the input sequence.

(ii) generalizes well to unseen environments without additional transfer learning
techniques, and (iii) improves the results by integrating new observations
online. We explicitly back up these three claims by our experimental evaluation
in Sec. 3.2. The code for this chapter and all pre-trained models are available at
https://github.com/PRBonn/4DMOS.

3.1.1 Overview

Given a point cloud sequence P = {P1,P2, . . . ,PM} of M LiDAR
scans Pt= {pt,1,pt,2, . . . ,pt,Nt

} with Nt points pt,i ∈ R3 taken at time t, we
represent the points as homogeneous coordinates, i.e., pi = [xi, yi, zi, 1]

⊤. Our
approach aims to predict which points are actually moving in the input
sequence P . As shown on the left in Fig. 3.2, we first express the points in a
common reference frame to better distinguish between ego motion and the
motion of objects. For simplicity, we transform the past point
clouds {P2, . . . ,PM} to the viewpoint of the current scan P1 and create a sparse
4D tensor, see Sec. 3.1.2.

We extract spatio-temporal features with a sparse convolutional architecture
and predict confidence scores of being actually moving for each point in the
sequence, see Sec. 3.1.3. As soon as we obtain a new LiDAR scan, we shift the
prediction window as explained in Sec. 3.1.4. The receding horizon strategy allows
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Chapter 3. Sequence-Based Moving Object Segmentation

recursively updating the estimation by fusing later predictions for the same scan
in the sequence in a static state binary Bayes filter, see Sec. 3.1.5.

3.1.2 Sequential Input Representation
The first step is to locally align all past point clouds {P2, . . . ,PM} in the se-
quence P to the viewpoint of the current LiDAR scan P1. In this chapter, we
assume to have access to estimated relative pose transformations j−1Tj from the
frame of scan Pj to the frame of scan Pj−1. Odometry estimation is a standard
task for autonomous vehicles. We can efficiently solve it on-board with an online
odometry system like KISS-ICP [188] or SLAM approaches like SuMa [17] or
CT-ICP [41], further improved by integrating information from an inertial mea-
surement unit [163] or by using wheel encoders. Our approach is agnostic to the
source of odometry information, and a local consistency is sufficient. We provide
an experiment on how the odometry affects the results in Sec. 3.2.7. In Chap. 4,
we will show how to integrate the odometry estimation into the pipeline.

We represent the relative transformations between scans
{
1T2, . . . ,

M−1TM

}
as homogeneous transformation matrices, i.e., j−1Tj ∈ SE(3). Further, we denote
the jth scan transformed to the current viewpoint at index one by

Pj→1 = {1Tjpi}pi∈Pj
with 1Tj =

j−2∏
k=0

j−k−1Tj−k. (3.1)

The motivation behind locally aligning the scans in the sequence is to elimi-
nate the ego motion of the vehicle, such that our CNN can focus on local point
patterns that move in space over time relative to the ego motion. We also pro-
vide experiments on the effect of the pose alignment in Sec. 3.2.5 and Sec. 3.2.7.
After applying the transformations, we aggregate the aligned scans into a 4D
point cloud by converting from homogeneous coordinates to cartesian coordi-
nates and by adding the time as an additional dimension, resulting in coordi-
nates [xi, yi, zi, ti]

⊤ for point pi.
Since outdoor point clouds obtained from a LiDAR sensor are naturally sparse,

we quantize the 4D point cloud into a sparse voxel grid with a fixed resolution
in time ∆t ∈ R and the same ∆s ∈ R for all three spatial axes. As explained
in Sec. 2.4, we use a sparse tensor to represent the voxel grid and only store
non-empty voxel indices and associated features. This representation efficiently
encodes the sparse nature of the point cloud, comprising both the point coordi-
nates C and the corresponding features F . We formulate the sparse tensor in the
following manner, where each row corresponds to a voxel:

C =

 b1 x1 y1 z1 t1
...

bN xN yN zN tN

 , F =

f
T
1
...

fT
N

 , (3.2)
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where bi is the batch index, ti is the time index of the 4D point and f i is the feature
vector associated to the i-th coordinate voxel. Sparse tensors are more memory
efficient than dense voxel grids since they only store information about the voxels
occupied by points instead of all voxels. The sparse representation allows us
to efficiently use spatio-temporal CNNs since common dense 4D convolutions
become intractable on large scenes.

3.1.3 Feature Extraction With Sparse 4D Convolutions
Several network architectures were proposed to work directly on point cloud data,
such as PointNet [148], PointNet++ [149], KPConv [176], and PointNetLK [8].
However, most architectures are computationally expensive and cannot generalize
well for high-dimensional spaces [32].

Using the sparse input representation discussed in Sec. 3.1.2, we can ap-
ply time- and memory-efficient sparse 4D convolutions to jointly extract spatio-
temporal features from the sparse 4D occupancy grid and predict a moving object
confidence score for each point. To this end, we use the MinkowskiEngine [32]
for sparse convolutions, see Sec. 2.4.2. Sparse convolutions operate on the sparse
tensor and define kernel maps that specify how the kernel weights connect the
input and output coordinates. The main advantage of sparse convolutions is the
computational speed-up compared to dense convolutions.

We use a sparse convolutional network developed for 4D semantic segmenta-
tion on RGB-D data and adapt it for MOS on LiDAR data. More specifically,
we modify the MinkUNet32 [32] from Sec. 2.4.2 by reducing the number of lay-
ers. The network is a sparse equivalent of a residual bottleneck architecture
with strided sparse convolutions for downsampling the feature maps and strided
sparse transpose convolutions for upsampling. The skip connections in a UNet
fashion [152] help to maintain details and fine-grained predictions. We reduce
the number of feature channels in the network, resulting in a model with 1.8 M
parameters, which is comparably low compared to the MOS baseline LMNet [28]
using SalsaNext [35] with 6.7 M or RangeNet++ [125] with 50 M parameters back-
bones. We provide the details on how to optimize these weights in Sec. 3.2.1. The
last layer of our network is a 4D sparse convolution with a softmax that predicts
moving object confidence scores between 0 and 1 for each point. We can directly
threshold these scores to obtain a MOS, or we can follow our receding horizon
strategy and fuse them after aggregating more predictions as explained in the
following sections, see Sec. 3.1.4 and Sec. 3.1.5.

In contrast to other semantic segmentation methods that use RGB values [32],
point coordinates [28, 172], or intensity readings [28, 172] as input features on
which the convolutional kernels operate, we initialize voxels occupied by at least
one point with a constant feature. In this chapter, we set this constant to 0.5,
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representing an unknown initial state as commonly used in occupancy grid map-
ping. Consequently, our input is a sparse 4D occupancy grid that only stores
voxels occupied by at least one point. This design makes it easier to deploy the
approach in new environments without estimating the distribution of coordinates
or intensity values to standardize the input data as done for semantic segmenta-
tion [125]. We further investigate the generalization capability of our approach
in Sec. 3.2.3.

3.1.4 Receding Horizon Strategy for Segmentation
The fully sparse convolutional architecture introduced in Sec. 3.1.3 jointly predicts
moving object confidence scores for all points in the input sequence. At inference
time, one option would be to divide the input data into fixed, non-overlapping
intervals and predict each sub-sequence once.

Instead, we propose a receding horizon strategy for MOS. When the LiDAR
sensor obtains the next point cloud, we add it to the input sequence and discard
the oldest scan, resulting in a first in, first out queue, see Fig. 3.2. The main
advantage is that we obtain an online estimation of the current scan’s moving
objects and re-estimate moving objects in past scans based on new observations,
effectively increasing the time horizon used for prediction. It is a natural idea
to use multiple observations to reduce the uncertainty of semantic estimations
and has been well investigated in mapping algorithms like SuMa++ [30]. It is
rarely used for online segmentation, and we propose a method to improve the
online MOS.

3.1.5 Fusion With Static State Binary Bayes Filter
Since our proposed method simultaneously predicts moving objects in M scans,
the receding horizon strategy leads to re-estimating the previously
predicted M−1 scans. These multiple predictions from different timestamps
allow for refining moving object estimation based on new observations. Since
the binary state of a point being moving or non-moving does not change over
time, we propose to infer it by fusing multiple predictions recursively with a
static state binary Bayes filter. The fusion effectively increases the time horizon
used for the final segmentation. It can correct estimates for points that belong
to slowly moving objects that only moved a small distance during the initial
time horizon. The Bayesian fusion reduces the false positives and negatives
arising from occlusions or noisy measurements.

Specifically, for a scan Pj, we can estimate moving objects at time t by fus-
ing all predicted moving object confidence scores from previously observed point
cloud sequences Z0:t = {Z0,Z1, . . . ,Zt} that contain the scan Pj. The term Zt
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denotes the observed input point cloud sequence {P1, . . . ,PM} with P1 recorded
at time t. We want to estimate the joint probability distribution of the moving
states Mj = {mj,i} of all points i in point cloud j up to time t denoted by

p (Mj | Z0:t) =
∏
i

p (mj,i | Z0:t) , (3.3)

where mj,i ∈ {0, 1} is the state of point pi ∈ Pj being moving. Note that this
implies that the moving state of two points is independent, which is true for points
that are far away, but it does not hold if the points belong to the same object.
However, since we do not have instance information, it is a valid assumption that
works well in practice. For better readability, we now consider a single point pi

in point cloud Pj and omit the subscript j without loss of generality.
We apply Bayes’ rule to the per-point probability distribution p (mi | Z0:t) in

Eq. (3.3) and follow the standard derivation of the recursive static state binary
Bayes filter [178]. Using the log-odds notation l(x)= log p(x)

1−p(x)
commonly used

in occupancy grid mapping, we finally end up with

l (mi | Z0:t) =

l (mi | Z0:t−1) + l (mi | Zt)− l(mi), if t ∈ T
l (mi | Z0:t−1) , otherwise,

(3.4)

with T being the set of timestamps in which we observe point pi in the input se-
quence Zt. Whereas l (mi | Z0:t−1) is a recursive term including all predictions for
the point i up to time t− 1, the term l (mi | Zt) denotes the logits of the probabil-
ity to be moving at time t. Note that if we do not observe the point pi at time t,
there is no prediction, and we do not update the recursive term l (mi | Z0:t−1).
The prior probability 0 ≤ p0 ≤ 1 in the last part l(mi)= log p0

1−p0
provides a

measure of the innovation introduced by a new prediction. For MOS, the prior
determines how much a predicted moving point in a single scan influences the
final prediction. We will investigate different priors in Sec. 3.2.5.

At time t, our network outputs scores St,j ∈ {st,i}
Nj

i=1 with st,i ∈ R that repre-
sent moving object confidence scores for each point cloud Pj with Nj points given
the current input sequence Zt. We can interpret them as the logits l (mi | Zt) of
the posterior probability of point pi being moving given the observed sequence Zt.

Fig. 3.3 illustrates the non-overlapping strategy in the upper part and our
proposed receding horizon strategy with a static state binary Bayes filter to fuse
multiple predictions in the lower part. We obtain the final prediction by convert-
ing the recursively estimated per-point logits l (mi | Z0:t) to a confidence using

p (mi | Z0:t) =
exp (l (mi | Z0:t))

1 + exp (l (mi | Z0:t))
, (3.5)

and consider a point being moving if the confidence is larger than 0.5 and non-
moving otherwise.
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Figure 3.3: Overview of our proposed static state binary Bayes filter. At t=5, the non-
overlapping strategy uses the five per-scan confidence predictions, whereas our receding horizon
strategy integrates the next observation at t=6 by shifting the temporal window. Our static
state binary Bayes filter then fuses multiple moving object confidence scores to improve the
prediction.

3.1.6 Implementation Details

During training, we optimize the model with a binary cross-entropy loss for all
points in the input sequence, a learning rate of 0.0001 and a weight decay of 0.0001
with the Adam optimizer [92]. If not stated differently in the experiments, our in-
put point clouds sequences contain M =10 input scans with a temporal resolution
of ∆t=0.1 s between scans. The spatial voxel size for quantization is ∆s=0.1m.

3.2 Experimental Evaluation

The main focus of this chapter is a method to segment currently moving objects
in 3D LiDAR data by exploiting consecutive scans online. Additionally, we carry
out the prediction using a receding horizon strategy and integrate new predictions
recursively in a static state binary Bayes filter.

We present our experiments to show the capabilities of our method and to sup-
port our three key claims: Our approach (i) segments moving objects in LiDAR
data more accurately compared to existing methods, (ii) generalizes well to unseen
environments without additional transfer learning techniques, and (iii) improves
the results by integrating new observations online.
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3.2.1 Experimental Setup
For our experimental evaluation, we train all models on the SemanticKITTI [16]
dataset. We follow the data split from the SemanticKITTI MOS benchmark [28]
and use sequences 00-07 and 09-10 for training, 08 for validation, and 11-21 for
testing. To increase the diversity of the training data and to avoid overfitting,
we follow the data augmentation strategy of Nunes et al. [132] and apply random
rotations, shifting, flipping, jittering, and scaling to all points in the same 4D
point cloud. We train all networks for less than 60 epochs and keep the model
with the best performance on the validation set. We follow the receding horizon
strategy presented in Sec. 3.1.4 and combine predictions with the static state
binary Bayes filter proposed in Sec. 3.1.5 using a prior of p0=0.25.

For the quantitative evaluation, we report the standard intersection over
union (IoU) metric [49] for the moving class given by

IoUMOS =
TP

TP + FP + FN , (3.6)

with true positive TP, false positive FP, and false negative FN classifications of
moving points.

To evaluate the generalization capability of our approach across environments,
we additionally test our method on another dataset without using transfer learn-
ing techniques. We follow the setup of Chen et al. [29] and use the Apollo-
ColumbiaParkMapData [113] dataset sequence 2 (frames 22300-24300) and se-
quence 3 (frames 3100-3600) annotated the same way as SemanticKITTI. Se-
manticKITTI and Apollo use Velodyne HDL-64E LiDAR scanners, but they are
mounted on different cars at different heights and record data in various envi-
ronments. This leads to a different distribution of point coordinates, such as the
relative distance from the sensor to the ground plane.

3.2.2 Moving Object Segmentation Performance
Our first experiment evaluates the performance of our model on the
SemanticKITTI [16] MOS benchmark [28]. The results support the first claim
about segmenting moving objects more accurately than existing published and
open-source methods. For a fair comparison, we follow the setup from
LMNet [28] and use the provided SemanticKITTI poses estimated with an
online SLAM system [17]. We report the result on the hidden test set
in Tab. 3.1 and compare it to additional baselines provided by Chen et al. [28].

One can see that a segmentation with SalsaNext [35] based on a single-scan
and predicting all movable classes as “moving” leads to low performance of 4.4%
IoUMOS. The same applies to estimating scene flow and thresholding the flow
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Approach IoUMOS [%]

SalsaNext [35] (movable classes) 4.4
SceneFlow [109] 4.8
SpSequenceNet [164] 43.2
LMNet [28] 58.3
KPConv [176] 60.9
Ours, M =10 Scans, ∆t=0.1 s, p0=0.25 65.2

LMNet+AutoMOS+Extra [29] 62.3

Table 3.1: Performance on SemanticKITTI [16] MOS benchmark [28]. Baseline results taken
from [29]. The best results are in bold.

vectors to determine if an object moves. The online multi-scan semantic segmen-
tation methods SpSequenceNet [164] and KPConv [176] as well as the projection-
based MOS approach LMNet [28] show improved results up to 60.9% IoUMOS,
see Tab. 3.1. Our method can outperform all baselines with an IoUMOS of 65.2%,
demonstrating our approach’s effectiveness. Our performance is also better than
LMNet+AutoMOS+Extra [29], which uses automatically generated moving ob-
ject labels for training, emphasizing the strength of our result.

3.2.3 Generalization Capabilities

The following experiment evaluates our method’s generalization abilities. It sup-
ports our second claim that the approach generalizes well on unseen data. We
test our model on the Apollo dataset without using transfer learning techniques
or re-training and compare it to baselines using different transfer learning types.
LMNet [28] uses the same SemanticKITTI [16] sequences for training, whereas
LMNet+AutoMOS [29] is LMNet trained on an automatically labeled training
set of Apollo. LMNet+AutoMOS+Fine-Tuned [29] is a model pre-trained on Se-
manticKITTI and fine-tuned on Apollo, see [29] for details. The results in Tab. 3.2
suggest that transfer learning like re-training or fine-tuning improves the results
with a maximum IoUMOS of 65.9% for the baselines. Our method yields the high-
est IoUMOS of 73.1% without any additional steps, which shows that the approach
can predict moving objects in an unknown environment.

We hypothesize that extracting moving object features in a sparse 4D occu-
pancy grid is advantageous since we do not use sensor-specific information like
intensity or RGB values. Operating in 4D space also avoids overfitting to a spe-
cific sensor location, as in range images, where moving objects are usually found
in certain areas of the image. We also do not use information about semantic
classes whose distribution can differ between environments.
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Approach IoUMOS [%]

LMNet [28] 16.9
LMNet+AutoMOS [29] 45.7
LMNet+AutoMOS+Fine-Tuned [29] 65.9
Ours, M =10 Scans, ∆t=0.1 s, p0=0.25 73.1

Table 3.2: Performance on Apollo [113] dataset. The best results are in bold.

3.2.4 Prior for Static State Binary Bayes Filter

This section backs up our third claim that the proposed receding horizon strategy
combined with a static state binary Bayes filter improves the MOS results by
integrating online new observations. We investigate the effect of using different
numbers of input scans M and temporal resolutions ∆t for prediction as well
as fusing with different prior probabilities p0 in the Bayesian fusion presented
in Sec. 3.1.5.

We compare models trained on M =2, M =5, and M =10 input and output
scans and a model that predicts a single output scan. Since the combination
of a receding horizon strategy and the Bayesian fusion of multiple beliefs allows
us to use information from a larger time horizon, we additionally compare to
two variant setups using M =5 input and output frames but with a different
temporal resolution. One uses a resolution of ∆t=0.2 s between scans, result-
ing in a total time horizon of 0.8 s, the other one processes 1.2 s of scans that
are ∆t=0.3 s apart. For comparison, the method using M =2 scans with a reso-
lution of ∆t=0.1 s has a time horizon of 0.2 s, the one with M =5 scans a horizon
of 0.4 s and the model using M =10 scans looks at 0.9 s of data. We visualize
each variant’s time horizons and temporal resolutions in Fig. 3.4 as colored dots
on a timeline sampled at 10 Hz.

The Bayesian prior p0 in Eq. (3.4) serves to compute the difference between
the new predicted logits and the initially expected logits. Therefore, modifying
the prior influences the contribution of newly observed moving objects to the
updated prediction. Fig. 3.4 shows the IoUMOS on the SemanticKITTI validation
set for different priors. With a small prior like p0=0.01, we fuse predicted moving
objects more aggressively, leading to more true positives but also an increased
number of false positives since inconsistent predictions are not filtered out. A
large prior like p0=0.99 results in a conservative fusion where we only predict
objects to move if all predictions agree. We found that a moving object prior
between 0.1 and 0.3 works better for the SemanticKITTI validation sequence.
We experienced that for many slowly moving objects in the scene, setting a lower
prior helps keep them in the final prediction even if we did not detect them as
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Figure 3.4: Comparison of IoUMOS on the SemanticKITTI [16] validation set using different
moving object priors for the static state binary Bayes filter. The colors indicate variants of
our approach using different time horizons and resolutions. The colored dots on the timeline
visualize which past scans we input to the model for prediction at time t.

“moving” from all available instances. We achieve the best result with a model
using M =10 input and output frames and a Bayesian prior of p0=0.25, which
is the setup for the experiments presented in Sec. 3.2.2 and Sec. 3.2.3.

In general, processing more scans and fusing multiple predictions with the
receding horizon strategy to achieve a larger time horizon results in better MOS
performance. Our approach also works with fewer scans but with a larger tem-
poral resolution, reducing computational effort. The models using M =5 input
scans with a larger temporal resolution of ∆t=0.2 s and ∆t=0.3 s between scans
outperform the model with the same number of processed scans but a smaller
resolution of ∆t=0.1 s, which is the sensor frame rate. This experiment shows
that a larger temporal resolution leads to better segmented slowly moving objects
since their motion is more visible in the sequence.

3.2.5 Parameter Study
To further support our third claim and show the effectiveness of individual pro-
posed components of our approach, we train different variants of our network
and evaluate their performance on the validation set. We train all models for up
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Variant # Inputs # Outputs Poses ∆t IoUMOS [%]

w/o BF w/ BF

[A] Five Scans 5 5 ✓ 0.1 s 69.1 74.5

[B] ∆t = 0.2 s 5 5 ✓ 0.2 s 71.8 75.6

[C] ∆t = 0.3 s 5 5 ✓ 0.3 s 71.6 74.9

[D] No Poses 5 5 7 0.1 s 35.6 39.9

[E] Single Output 5 1 ✓ 0.1 s 66.5 -
[F] Two Scans 2 2 ✓ 0.1 s 64.9 69.0

[G] Ten Scans 10 10 ✓ 0.1 s 74.3 77.2

Table 3.3: Parameter study on different variants of our approach with and without the proposed
receding horizon strategy and Bayesian fusion (BF) using a prior p0 =0.25. We denote the
temporal resolution between scans by ∆t. We underline the best result for each row, and the
best result among all is bold.

to 60 epochs and report the best IoUMOS on the validation set during training,
see Tab. 3.3. For all methods, we compare two prediction strategies: first, a
non-overlapping strategy that divides the input sequence into sub-sequences and
predicts each sub-sequence independently, see the upper part in Fig. 3.3. Second,
our receding horizon strategy proposed in Sec. 3.1.4, which generates multiple
predictions for the same scan and fuses them in a static state binary Bayes filter
(again using a prior of p0=0.25). We visualize this combination in the lower part
of Fig. 3.3.

We generally see an improvement of up to 5.4 percentage points of IoUMOS for
all models using the proposed receding horizon strategy. More precisely, using
the static state binary Bayes filter with model [A] reduces the number of false
negatives by 8.2% and the number of false positives by 18.9%. This result indi-
cates that the proposed approach successfully integrates more observations into
the estimation and is more robust to false predictions due to occlusions or noisy
measurements. If we compare the performance of model [A] using M =5 scans
which are ∆t=0.1 s apart to the networks trained with larger temporal resolu-
tions of ∆t=0.2 s [B] and ∆t=0.3 s [C], we again see that we can further improve
the results by considering a larger time horizon, see also Sec. 3.2.4. If we do not
transform the point clouds into a common viewpoint, the method [D] can still
infer moving objects but with a reduced performance of IoUMOS =39.9% with
Bayesian fusion. The network must infer both the sensor’s ego motion and the
objects’ relative motion. When only training to predict a single output scan [E],
the result is worse, and fusing more predictions is not possible since no additional
predictions are available. Next, our method can also achieve MOS only with
two scans ([F]) but with the worst performance. The best-performing model [G]
takes M =10 input scans with a temporal resolution of ∆t=0.1 s and fuses the
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Our ApproachProjection-based Method

True PositiveFalse PositiveTrue Negative False Negative

Figure 3.5: Qualitative comparison of segmentation accuracy. Left: Prediction by range image-
based LMNet [28] after k-nearest neighbor post-processing. Right: Our sparse voxel-based
approach without further post-processing. The figure is best viewed in color.

True PositiveFalse PositiveTrue Negative False Negative

Frame 245 Frame 250 Frame 255 Frame 260 Frame 265
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Figure 3.6: Change in MOS if an object stops moving. The figure is best viewed in color.

predictions resulting in an IoUMOS of 77.2%. The results show that we achieve a
better MOS after increasing the time horizon by processing more scans, increas-
ing the temporal resolution, and using the proposed receding horizon strategy
with a static state binary Bayes filter.

3.2.6 Qualitative Results
This section illustrates that our method predicts currently moving objects in
3D space without requiring geometric post-processing like clustering. We use
the model from Sec. 3.2.2 trained on M =10 scans with a temporal resolution
of ∆t=0.1 s. In Fig. 3.5, we show the segmentation of scan 1638 from the Se-
manticKITTI [16] validation sequence 08. We compare the range image-based
method LMNet [28] to our sparse voxel-based approach. One can see that de-
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Odometry SuMa [17] SuMa [17] CT-ICP [41] G-ICP [162]
Frame To
Model

Frame To
Frame

Frame To
Frame

IoUMOS [%] 77.2 76.9 76.5 76.3

Table 3.4: Influence of different odometry information sources on the IoUMOS performance of
our best method on the SemanticKITTI validation sequence 08.

spite the geometric-based k-nearest neighbor post-processing, the baseline still
shows artifacts and bleeding labels behind the moving car illustrated as red-
colored false positives. In contrast, our method directly predicts in the space
without boundary effects.

Next, Fig. 3.6 shows how the prediction changes for a scene in the validation
set where a vehicle stops moving. Since our method does not use semantic un-
derstanding of objects, it only reasons how the points move in space for the given
time horizon. Since the vehicle stops moving to yield at the intersection, our
method’s prediction changes from moving to static. We successfully classify the
bicyclist in the back as “moving”. Note that this results in a false negative indi-
cated in blue since the ground truth SemanticKITTI labels consider if an object
has moved throughout the data collection and not based on recent movement.

3.2.7 Odometry Sources
As shown in Sec. 3.2.5, our approach works best when expressing the points of
the LiDAR sequence in a common reference frame using estimated poses. In this
section, we investigate the effect of different odometry estimation approaches on
the performance on the SemanticKITTI validation sequence 08 and report the
results in Tab. 3.4. We compare with variants of SuMa [17] called “Frame To
Model” and “Frame To Frame”, CT-ICP [41] and G-ICP [162] with a “Frame To
Frame” error function. Note that for the SuMa “Frame To Model”, we estimate
the poses without loop closing since our method does not need global accuracy.
We take the odometry results for G-ICP from Vizzo et al. [185]. As we can see,
our approach also works well if provided with odometry estimated using different
methods.

3.2.8 Runtime
With our Pytorch implementation, the network requires on average 0.078 s for
predicting moving objects in 10 scans and 0.047 s for 5 scans both using an
NVIDIA RTX A5000 GPU. Note that we can further reduce the runtime by,
for example, clipping the points at a specific range because closer objects are
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usually of higher interest than far-away points. Our static state binary Bayes
filter only adds a small overhead of 0.008 s on average for fusing 10 predictions
and 0.004 s for fusing 5 predictions.

3.3 Related Work
The identification of dynamic objects in LiDAR data gained increasing interest
in research to obtain a static environment representation for various downstream
tasks. This section reviews related works from closely connected research fields to
give context for our proposed sequence-based MOS approach. In general, there
is no standard definition of moving objects, and it depends on the application
which entities we consider moving or dynamic to process them further.

Movable Object Segmentation. Segmentation approaches identify mov-
able objects based on their semantic appearance in a single LiDAR scan and reject
these for data association in SLAM [30, 142, 191]. For example, Wang et al. [191]
apply a graph-based bottom-up clustering approach to segment foreground ob-
jects that could move in 3D LiDAR data, like cars, pedestrians, and bicyclists.
More specifically, they compute point normals based on a principal component
analysis of neighboring point distances and represent the points as an undirected
graph. Next, they cluster the points into patches based on the similarity of the
normals. Lastly, the authors extract additional handcrafted features and classify
the patches using a support vector machine with non-linear radial basis function
kernels. They train multiple one-versus-all binary classifiers based on labeled
training data. The resulting segmentation only considers movable classes and
does not reason about the actual movement of the objects. Besides that, it is
restricted to the pre-defined classes on which the classifiers are trained.

Such a semantic segmentation of movable objects can help avoid wrong data
associations in SLAM, as shown by Chen et al. [30], who exploit the range image-
based semantic segmentation approach RangeNet++ [125] to get point-wise se-
mantic labels including movable objects. The authors enforce a semantic con-
sistency between new observations and the map and remove parts containing
inconsistent semantic labels. This allows the removal of moving objects and the
preservation of objects like parked cars, which are movable but remain static.
In contrast, our approach directly infers moving objects and does not require
additional consistency checks with a map to identify them.

Pfreundschuh et al. [142] further demonstrate the effectiveness of MOS in
LiDAR data for data associations in dynamic object aware LiDAR SLAM. They
build upon LOAM [214], a LiDAR odometry and mapping approach that esti-
mates the robot’s pose by aligning planar and edge features to a sparse feature
map. To avoid associations with dynamic objects, Pfreundschuh et al. [142] de-
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ploy a 3D-MiniNet [6] to predict the semantic labels of points within a single
scan. The authors additionally propose a labeling pipeline based on occupancy
grid mapping to generate moving labels for training the network. The data used
in the experiments only contains pedestrians, so it is unclear how the approach
performs with additional classes like cars or bicyclists. Besides that, the seg-
mentation module is again only capable of identifying movable objects because
it operates on a single scan.

The semantic class of the points is only sometimes of interest. For example,
Ruchti and Burgard [153] use a deep neural network to predict dynamic probabil-
ities for each point in a range image before fusing them with a map. The authors
infer the ground truth dynamic probability by projecting the laser scans into the
camera frames and transferring the semantic classes from labeled bounding boxes,
which are available for movable objects. We follow this idea not to classify the
individual semantics but to infer a dynamic state of the points – in our case, if
they currently move instead of just being movable.

So far, we mainly considered approaches inferring movable objects like cars,
pedestrians, or bicyclists. However, long-term changes like moved furniture or
opened and closed doors can influence the robot’s localization Thomas et al. [177]
propose a self-supervised method for classifying indoor LiDAR points into dy-
namic labels. The authors explicitly distinguish between short-term and long-
term movable objects to treat them differently in localization and planning. Other
researchers encode non-static objects like open and closed doors into the map by
maintaining clusters of possible world configurations and estimating multi-modal
states [171].

This thesis focuses on currently moving objects instead of being movable.
Knowing which objects are actively changing in the environment is critical for
online path planning, collision avoidance, or behavior prediction. We do not
further distinguish the objects’ semantic class, making it easier to obtain labeled
data, train the approach, and deploy it to new, unseen environments.

Projection-based Moving Object Segmentation. Online LiDAR MOS
aims at segmenting LiDAR scans into moving and non-moving points. In contrast
to the methods mentioned above, we are interested in objects that currently
move, independent of their semantic class. To do this, we can no longer rely on
a single scan but must consider multiple LiDAR scans. For example, Yoon et
al. [207] identify moving objects based on the residual between two scans, free
space filtering, and region growing post-processing. One drawback of such an
approach is that objects can be temporarily occluded, making it hard to identify
motion from two scans. Subsequent works extend the temporal horizon of past
information used for prediction. However, this comes at a higher computational
cost due to the large amount of data that has to be processed.
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Projection-based methods reduce the size of the 3D data stream by projecting
it to lower-dimensional representations like range images [28, 91, 172]. Chen et
al. [28] develop LMNet based on the previously mentioned RangeNet++ [125],
which performs semantic segmentation of a single range image. They extend
the network by adding additional residual range images as inputs to provide the
temporal information. The authors compute the residual images between the
current and previously received scans and transform them into the current frame
of the sensor. A high value in the residual image indicates a discrepancy between
both measured points and serves as a cue for the network to segment moving
objects in the image.

Recently, Mohapatra et al. [126] introduce a method using two successive
bird’s eye view images for MOS and achieve faster runtime but inferior perfor-
mance compared to LMNet. MotionBEV [216] further improves the performance
of bird’s eye view-based LiDAR MOS by leveraging the height differences of two
polar bird’s eye view grids to obtain the temporal information. Additionally, they
extract the appearance information of a query bird’s eye view image and combine
temporal and appearance features to get a final semantic segmentation. The ap-
proach shows a promising performance on SemanticKITTI but requires semantic
labels for training. Their experiments demonstrate that re-training is necessary
to outperform 4DMOS on the SipailouCampus dataset [216]. Our approach does
not require semantic labels or has to be re-trained when inferring moving objects
using a different sensor modality or environment.

In general, projection-based methods often suffer from information loss or
back-projection artifacts, called “label bleeding” for range image-based segmen-
tation [125]. Such methods usually require additional steps like k-nearest neigh-
bor clustering [28, 35, 50, 125] or additional point refinement modules [172]. In
contrast, we predict moving objects in the voxelized 4D space without prior pro-
jection to address the problem of label bleeding. We assume that the motion of
an object is visible within a limited time horizon of consecutive past scans, which
we aggregate to a sparse 4D point cloud. By shifting this temporal window, we
can refine the prediction of previous scans by fusing them in a point-wise static
state binary Bayes filter, effectively increasing the temporal information used for
prediction.

Spatio-Temporal Data Processing. Extracting temporal information
from sequential point cloud data is gaining more attention in research since it
increases temporal consistency for classification tasks or predicting future states
of the environment. To fuse independent semantic single-scan predictions,
Dewan and Burgard [45] use a static state binary Bayes filter by propagating
previous predictions to the following scan using scene flow. In contrast, Duerr et
al. [50] optimize a recurrent neural network to temporally align range image
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features from a single-scan semantic segmentation network. Some works project
the spatial information into 2D representations like range
images [28, 50, 91, 98, 120] or bird’s eye view images [114, 126, 198, 216] and
then apply 2D or 3D convolutions to reduce the computational burden of jointly
processing 4D data.

Point-based methods directly operate on the input point cloud without the
need for projection or voxelization [52, 53, 110]. Fan et al. [53] propose PointRNN,
which extends the RNN framework to operate on point clouds. The authors pro-
vide point-based versions of a gated recurrent unit and an LSTM. The main
drawback of such recurrent point-based methods is that they are not straightfor-
ward to train and are often only applied on smaller point clouds instead of large,
outdoor LiDAR scans like ours.

To alleviate the computational complexity of processing large, full-scale point
cloud sequences, researchers investigated the use of higher-dimensional convo-
lutions on sparse voxel grids. Representing point clouds as sparse tensors can
also circumvent the back-projection issue and makes it possible to apply sparse
convolutions efficiently. For example, Shi et al. [164] develop SpSequenceNet for
4D semantic segmentation, which processes two LiDAR frames with sparse 3D
convolutions and combines their temporal information with a cross-frame global
attention module. To apply convolutions across time, Choy et al. [32] propose
Minkowski networks for semantic segmentation using sparse 4D convolutions on
temporal RGB-D data.

Our architecture to segment moving objects in a sequence of LiDAR scans is
based on the MinkowskiEngine, enabling us to extract spatio-temporal informa-
tion using sparse convolutions efficiently.

Scene Flow Estimation. A related research field is scene flow estimation,
which aims to model how point clouds change over time. Previously, scene-
flow methods first classify moving points and then estimate separate flows for
static and moving objects between two point clouds [14, 60, 181]. In more detail,
Baur et al. [14] estimate the 3D scene flow between two point clouds composed
of a rigid body motion for static and a per-point flow for moving objects. Based
on the discrepancy between per-point flow and rigid body motion, they use a
self-supervised motion segmentation signal to train their network.

Even though MOS can be a by-product of scene flow estimation, most meth-
ods only consider two consecutive frames, which could be a too short time hori-
zon for classifying slowly moving objects. Since the resulting point clouds from
LiDAR scanners are irregularly sampled from the environment, there is no clear
correspondence between points of consecutive scans. We, therefore, focus on only
segmenting the scans instead of modeling the actual motion.
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3.4 Conclusion
This chapter presented a novel approach to segmenting moving objects from a
sequence of 3D LiDAR scans and directly addressed our first research question
of “What is moving?”. We built upon sparse spatio-temporal convolutions on a
sparse voxel grid to directly infer moving objects in the 3D space over time. In
contrast to previous methods, our approach does not require a data projection
to lower dimensional spaces, and we can apply it to large, outdoor LiDAR point
clouds. Our method jointly predicts moving objects for all scans in the input
sequence and operates using a receding horizon strategy.

We report improved performance on the SemanticKITTI MOS benchmark and
show that the approach generalizes well on unseen data. The experiments show
that fusing multiple predictions over a longer time horizon with our proposed
receding horizon strategy in combination with a static state binary Bayes filter
increases the robustness to false positive and false negative predictions. Since
our approach provides point-wise MOS predictions, we can build a static map by
only integrating non-moving points. However, once we integrate a point into the
map, we cannot recover it if it turns out to be a moving point. Besides that, we
currently estimate moving points based on a limited number of past frames. In
some scenarios, when objects are, for example, temporarily occluded, it is more
beneficial to consider all available past information.

In the next chapter, we aim to estimate moving objects based on a local map
that considers all past measurements. Additionally, we propose maintaining a
spatial belief model that allows us to integrate predictions to update our internal
representation of the dynamic environment.
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Chapter 4

Map-Based Moving Object
Segmentation

M obile robots that navigate in the real world often rely on a static
representation of their environment in the first place. Additionally,
they need to be constantly aware of the dynamic objects in their
surroundings as this is relevant information for mapping [153, 187],

localization [71, 142], planning [97], or occupancy prediction [73]. Thus, it is cru-
cial to reason about moving objects in the current observation while maintaining
an internal representation of the static world.

If the robot requires such a static map at runtime, one way to build such
a model is to segment each incoming scan into moving and non-moving points
and then integrate only the static parts into the map [28]. In this setup, the
robot would perform each segmentation independently of previous predictions
and add the non-moving points to the static map. The downside of such an
approach is that moving objects falsely classified as non-moving will remain in
the static map, and it is not straightforward to remove them. These so-called
“ghost artifacts” will negatively impact path planning based on such a model.
Consequently, mobile robots need to be able to re-estimate previously missing
moving objects and to correct their internal belief about the dynamic environment
to effectively answer the question of “What is moving?” introduced earlier.

In the previous Chap. 3, we presented 4DMOS to segment moving objects
in a sequence of LiDAR scans. Using our proposed receding horizon strategy,
we re-estimated moving objects in a scan after receiving more observations and
fused them in a static state binary Bayes filter. The experiments in Sec. 3.2.5
demonstrate two main findings: First, the length of the time horizon considered
for prediction is critical to segment moving objects successfully. Second, fusing
multiple predictions for the same points obtained at different timestamps leads
to a more robust estimation.

47



Non-Moving
Predictions

False
PositivesMoving Predictions

Volumetric
Belief

Figure 4.1: Our approach identifies moving objects (red) in the current scan (blue) and the
local map (black) of the environment. We maintain a volumetric belief map representing the
dynamic environment and fuse new predictions probabilistically. This fusion allows us to reject
false positive predictions that contradict our volumetric belief.

The main limitation of 4DMOS is that we can only improve the MOS if the
corresponding scan is within the limited buffer of past scans that 4DMOS and re-
lated approaches consider for prediction. In addition, we only fuse the predictions
on the point level, such that we treat points close to each other independently
– an assumption that works well for MOS, but we will revisit it in this chapter
for online static mapping. Lastly, using a limited window for MOS assumes that
we can identify the movement of an object from consecutive measurements. This
assumption usually holds for most rotating LiDAR scanners that scan the sur-
roundings with a regular scanning pattern at high frequency, but not for scanners
with a limited field of view or irregular sampling patterns [106]. Therefore, we
propose collecting more environmental measurements to segment moving objects.

In this chapter, we take inspiration from 4DMOS, but use all past information
available and do not restrict the estimation to a limited sequence of observations
as done in Chap. 3. To do this, we maintain a local map that contains information
from all point clouds we measured in our local neighborhood. We jointly estimate
moving objects in the current 3D LiDAR scan and this local map of the environ-
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ment. We use sparse 4D convolutions to extract spatio-temporal features from
the scan and local map and segment all 3D points into moving and non-moving.

To model the dynamic environment, we maintain a 3D volumetric belief about
which part of the space can contain moving objects as depicted in Fig. 4.1. We
update the belief online by fusing our predictions probabilistically to increase pre-
cision and recall of MOS similar to the static state binary Bayes filter in Sec. 3.1.5.
Our experiments show that our approach outperforms existing moving object seg-
mentation baselines and even generalizes to different types of LiDAR sensors. We
demonstrate that our volumetric belief fusion increases the precision and recall of
moving object segmentation and even corrects the estimation of moving objects
falsely classified as non-moving in an online mapping scenario.

4.1 MapMOS – Building Volumetric Beliefs
For Dynamic Environments

The main contributions of this chapter are two-fold. First, we propose an ap-
proach to predict moving objects in a local map constructed using all past LiDAR
measurements recorded in this area without limiting the time horizon. Second,
we build and maintain a volumetric belief map and fuse new predictions in a
voxel-wise static state binary Bayes filter to previous estimates online, which
increases robustness and corrects previously wrong predictions. In sum, we
make four key claims: Our approach, MapMOS, can (i) accurately segment
an incoming LiDAR scan into moving and non-moving objects based on a lo-
cal map of past observations, (ii) generalize well to new environments and sen-
sor setups while achieving state-of-the-art performance, (iii) increase the preci-
sion and recall of MOS by fusing multiple predictions into a volumetric belief,
(iv) recover from wrong predictions for online mapping through a volumetric be-
lief. The content of this chapter and our experimental evaluation back up these
claims. Our code, pre-trained models, and labels for evaluation are available at
https://github.com/PRBonn/MapMOS.

4.1.1 Overview
We propose segmenting moving objects based on the discrepancy between the
current LiDAR frame and a local map of the previously measured scans in that
area. Given the current LiDAR frame at time t, we first register it to our current
local map as explained in Sec. 4.1.2. Next, we jointly predict moving objects
in the aligned scan and the local map, see Sec. 4.1.3. After that, we fuse these
predictions into a probabilistic volumetric belief to maintain a representation of
the dynamic environment, see Sec. 4.1.4. We can query the volumetric belief for
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Figure 4.2: Current Scan and local map for two different times with our moving predictions
in red. Although our method initially failed to fully identify the moving pedestrian in the
beginning (left), we successfully predict it at a later point in time, and our method backtraces
the corresponding points in the local map (right).

a set of points as explained in Sec. 4.1.5 to obtain the current belief that these
points belong to moving objects.

4.1.2 Scan Registration with KISS-ICP
Our approach does not require given poses like 4DMOS presented in Chap. 3 or
even ground truth poses but only relies on sequential 3D LiDAR data. In contrast,
we compute the pose incrementally on the fly via scan matching, and our MOS
approach can directly operate based on this data. When a new measurement is
available, we register the scan to the previous ones stored in a map using KISS-
ICP [188]. This robust odometry pipeline generalizes well to varying motion
profiles and sensor platforms without changing parameters.

We use the map to store past measurements and represent it by a sparse voxel
grid as done in KISS-ICP. We remove points further away to reduce the memory
overhead and refer to it as local map. We maintain the original coordinates of
the points in the voxels to avoid discretization errors. In contrast to the original
KISS-ICP implementation, we additionally store the timestamp of the scan it
stems from for each point to maintain temporal information in the local map.
Our method uses this temporal information to predict moving objects for the
registered scan and the local map.

4.1.3 Map-Based Moving Object Segmentation
This section explains how to jointly predict moving objects after registering a new
LiDAR frame. We exploit two different mechanisms to segment moving objects.
First, we consider the spatial discrepancy between the current scan and the local
map. This information indicates if an object may have moved with respect to all
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previous measurements in that area. Second, we identify the motion of objects
based on the evolution of the timestamps given by the feature attached to each
point. This information allows us to segment both the current scan and the local
map into moving and non-moving parts.

In contrast to 4DMOS or other previous works [28, 91, 172], we do not restrict
our method to a fixed set of past scans. This is advantageous in cases where a
moving object is not fully visible within a short time horizon due to occlusion,
limited field of view, or an irregular shooting pattern of the LiDAR. In practice,
this makes a substantial difference.

Additionally, instead of predicting moving objects in the current scan or a
limited buffer of scans, we segment both the current scan and the local map.
Segmenting the local map enables us to identify traces of moving objects that
we did not segment in previous scan predictions. This backtracing of dynamic
objects allows us to correct initial false negative predictions as shown in Fig. 4.2.

Our local map is the voxel grid structure of KISS-ICP, but we store for every
point its 4D coordinate (position plus time). To maintain the ordering of scan and
local map during the convolutions, we organize them in a 4D tensor. We use the
timestamps as features for the points and normalize them based on the minimum
and maximum values since we are only interested in their relative difference. This
normalization avoids the model overfitting to the sequence lengths and, therefore,
the maximum timestamps it has seen during training.

At time t, we voxelize the 4D point cloud Pt of scan and local map and repre-
sent it as a sparse 4D tensor using the MinkowskiEngine [32]. Sparse tensors are
a more memory-efficient representation for 4D tensor data and allow direct ap-
plication of sparse convolutions. We jointly extract spatial and temporal features
with sparse 4D convolutions. Our network architecture is a 4D MinkUNet [32]
with 1.8 M parameters, see Sec. 2.4.2. This network first downsamples the points
and features in an encoder to extract high-level information and then upsam-
ples both to the original resolution in a decoder. Residual blocks and skip con-
nections help to maintain detailed information about the points and their cor-
responding features. The last layer predicts the logits St = {st,1, st,2, . . . , st,N}
with st,j ∈ R of N points from both the current scan and local map points being
moving. Fig. 4.3 depicts an overview of our approach.

4.1.4 Volumetric Belief Update
This section presents our approach to fusing per-point MOS predictions into a
probabilistic volumetric belief. We demonstrated in Chap. 3 that fusing multiple
independent per-point predictions over time can filter out prediction errors from
the neural network. Instead of fusing per-point predictions in this chapter, we aim
to model which parts of the environment have a higher probability of containing
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Figure 4.3: Overview our proposed MOS approach and volumetric belief fusion. At time t, we
predict moving objects in the current scan and local map using sparse 4D convolutions. Next,
we update our volumetric belief about which parts of the environment can contain moving
objects based on the previous volumetric belief at time t− 1 and our new predictions.

a dynamic object. In this case, we do not want to identify current dynamics but
rather determine which map portion is traversed by moving objects. We define
this property as dynamic occupancy.

We assume the binary state mi ∈ {0, 1} of dynamic occupancy for a voxel vi

does not change over time. Intuitively, this means that if a point falls into a
voxel previously occupied by dynamics, we assume that this point also belongs to
a moving object. On the other hand, if static points occupied a voxel, we do not
expect to observe a moving object in this volume. Note that this state definition
differs from occupancy grid mapping, where the world is assumed to be static,
and a fixed occupancy probability of a cell is estimated.

At time t, we predict N logits St = {st,1, st,2, . . . , st,N} with st,j ∈ R for N

points Pt= {pt,1,pt,2, . . . ,pt,N} with pt,j ∈ R4 as described in Sec. 4.1.3. It is
possible to fuse the logits for the current scan but also for the local map points.
We provide an experiment in Sec. 4.2.4 to showcase the results for different fusion
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strategies. Note that our volumetric belief is not restricted to our logits, but one
could integrate predictions from different sources. Our goal is to estimate the joint
probability distribution of the volumetric belief map state for all voxels M= {mi}
reading

p (M | P1:t) =
∏
i

p (mi | P1:t) , (4.1)

with P1:t = {P1,P2, . . . ,Pt} being the previously measured points up to time t.
After applying Bayes’ rule to the right-hand side probability distributions of

the voxels i, we can derive the recursive static state binary Bayes filter equations
according to Thrun et al. [178]. We use the log-odds notation l(x)= log p(x)

1−p(x)

resulting in

l (mi | P1:t) = l (mi | P1:t−1) + l (mi | Pt)− l(mi), (4.2)

for updating a single voxel cell belief l (mi | P1:t). Here, l (mi | P1:t−1) is the re-
cursive term currently stored in the voxel, which aggregates the previous predic-
tions, l (mi | Pt) is the update term for the voxel which integrates the predictions
at the current time t, and l(mi) is the logits of the prior probability p0. We do
not assume prior knowledge about the dynamic occupancy of a voxel vi and set
it to p0 = 0.5.

The remaining step is to get a per-voxel update l (mi | Pt) from the points Pt

and logits St. The prediction st,j ∈ St at time t for a single point pt,j with
index j indicates if it belongs to a moving object or not. Since multiple points
with different logits can end up in the same voxel, we need to aggregate their
information and take the arithmetic mean of logits inside a voxel vi, resulting in

l (mi | Pt) =

∑
j∈Vt,i

st,j

|Vt,i|
, (4.3)

where Vt,i = {j | pt,j ∈ vi} is the set of points falling into the voxel vi at time t

and |Vt,i| is the cardinality of the set. Taking the arithmetic mean of per-point
logits corresponds to the geometric mean of the individual likelihoods of a point
being moving. Likelihood aggregation using the geometric mean has been previ-
ously used in Monte-Carlo localization sensor model designs [218].

We implement our volumetric belief as a hash table, a more memory-efficient
representation than dense 3D arrays [130, 188]. Each 3D voxel vi stores the logits
belief l (mi | P1:t) about its dynamic occupancy state mi ∈ {0, 1} after integrating
predictions up to time t.

4.1.5 Volumetric Belief Query
For a given set of points, we can query our volumetric belief by indexing the
corresponding voxels vi and converting the logits beliefs l (mi | P1:t) to a pos-
terior probability p using p(x)= exp(l(x))

1+exp(l(x)) . We assume a point is moving if the
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probability is larger than 0.5. Note that the voxel size of our volumetric belief
needs to be appropriate since the underlying assumption is that all points inside
a voxel share the same dynamic occupancy state. This assumption is violated if
the voxel size is too large. Therefore, the voxel size indicates how close points
can be to share the same dynamic occupancy. However, the downside of a small
voxel size is the increased runtime and memory overhead.

4.1.6 Online Mapping

For online mapping, we are interested in accurately removing moving points. We
experienced discretization effects at the boundaries of moving objects, for exam-
ple, false negative predictions on the wheels of vehicles close to the ground. To
achieve sub-voxel accuracy and a high recall for identifying moving objects, we
combine the filtered voxel-wise volumetric belief with the point-wise scan predic-
tion for online mapping. We demonstrate this in an experiment in Sec. 4.2.5.

4.1.7 Implementation Details

We set the voxel size for downsampling and the local map in our odometry system
to 0.5 m, which is half the default value of KISS-ICP. This gives us a denser
local map for MOS and still runs reasonably fast. For the volumetric belief
map, we must trade-off between computational efficiency and accuracy due to
the discretization error by assuming that each voxel has a single dynamic state.
For our experiments, we set the voxel size to 0.25 m and clip the volumetric belief
map at 150 m to limit the memory footprint. We chose 0.25 m because we expect
the distance between moving and non-moving objects, for example, a pedestrian
and a wall or a vehicle and the ground, to be around this threshold.

4.2 Experimental Evaluation
The main focus of this work is an approach to identify moving objects in the
current LiDAR frame and a local map of aggregated past scans and to fuse these
predictions into a probabilistic volumetric belief map. We present our experi-
ments to show the capabilities of our method. The results of our experiments
also support our key claims, which are: Our approach (i) accurately segments an
incoming LiDAR scan into moving and non-moving objects based on a local map
of past observations, (ii) generalizes well to new environments and sensor setups
while achieving state-of-the-art performance, (iii) increases the precision and re-
call of MOS by fusing multiple predictions into a volumetric belief, (iv) recovers
from wrong predictions for online mapping through a volumetric belief.
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4.2.1 Experimental Setup
For the following experiments, we follow the official SemanticKITTI MOS bench-
mark setup for a fair comparison. Therefore, we train all models on the moving
labels of the SemanticKITTI [15, 16] training sequences 00-07 and 09-10 and use
sequence 08 for validation. We do not use the pose information provided by
the KITTI dataset since we register the scans using KISS-ICP [188] as described
in Sec. 4.1.2. We train our 4D CNN by supervising the prediction for scan and
local map points using the cross-entropy loss for 100 epochs and save the model
performing best on the validation set. Since some training set sequences do not
contain many moving objects, we skip a batch if the ratio between moving and
static points is less than 0.1 %. Next, we crop a rectangular patch of the scenes
and augment the batch by rotating, flipping, and scaling. Lastly, we randomly
drop points with a dropout rate sampled from the interval [0, 0.5] to vary the
density of the point clouds. One epoch takes less than 25 min on an NVIDIA
RTX A5000 GPU.

Besides the commonly used SemanticKITTI MOS benchmark [28] based on
the SemanticKITTI labels, we also evaluate and compare our approach on a la-
beled sequence from the KITTI Tracking [58] dataset recorded with the same
sensor setup in a street with a lot of moving pedestrians. We additionally report
results on a subset of the Apollo Columbia Park MapData [113] with labels pro-
vided by Chen et al. [29]. This data is recorded with the same sensor but in a
different city environment. To push the generalization capabilities of MOS ap-
proaches, we test the models trained on SemanticKITTI with 64 vertical beams
at 10 Hz frequency on the nuScenes [23] dataset, which has 32 vertical beams
at 20 Hz. We evaluate the MOS for nuScenes based on the moving labels from
the annotated keyframes of the 150 validation sequences.

We compare our method to our previous work 4DMOS presented in Chap. 3,
which also applies sparse 4D convolutions but on a limited buffer of aggregated
registered past scans. Additionally, we report results from the projection-based
baselines LMNet [28], MotionSeg3D [172], and RVMOS [91]. For MotionSeg3D,
we show the results without (v1) and with the proposed point refinement (v2),
see [172] for details. In all experiments, we assess the performance using the
commonly known IoU [49] of the moving points and additionally precision and
recall in Sec. 4.2.4.

4.2.2 Moving Object Segmentation Performance
In the first experiment, we evaluate how well our approach segments a scan into
moving and non-moving points using a local map of past observations. We show
the originally reported baseline results on the SemanticKITTI validation set and
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Method Test 11-21 Validation 08

LMNet [28] 58.3 66.4
MotionSeg3D, v1 [172] 62.5 68.1
MotionSeg3D, v2 [172] 64.9 71.4
4DMOS, delayed [121] 65.2 77.2
Ours, Scan 65.9 83.8
Ours, Volumetric Belief 66.0 86.1

RVMOS [91]∗ 73.3∗ 71.2∗

Table 4.1: Comparison of average moving IoU on the SemanticKITTI validation sequence 08
and the SemanticKITTI MOS benchmark [28]. The best results are in bold. The ∗ indicates
that the approach additionally exploits semantic labels and thus needs representative training
data from the domain.

the SemanticKITTI MOS benchmark. We only consider approaches trained and
validated on the original SemanticKITTI split to provide fair comparisons and
eliminate the positive bias of additional training data [29, 172].

We evaluate the predictions of the current scan (referred to as “Scan”) and
the volumetric belief with a delay of 10 scans (referred to as “Volumetric Belief”).
The choice of 10 scans is an initial estimate that trades off the ability to correct
previous wrong estimates and the required waiting time. Besides fusing all scan
predictions, we integrate only the local map points we predict to be moving. This
has two reasons: First, we are mainly interested in the moving objects in the local
map that we have falsely classified as non-moving in previous scan predictions.
Second, integrating all local map points reduces the runtime of the system. The
delay of 10 scans helps to get a more informed belief about the voxels with
additional local map predictions before querying their state.

One can see in Tab. 4.1 that our volumetric belief helps to improve the re-
sults on the validation sequence, whereas the effect is more negligible on the
test set. We further investigate the impact of the volumetric belief in Sec. 4.2.4.
Our approach outperforms 4DMOS, showing that not limiting past information
is beneficial for MOS. In general, we rank second best on the hidden test set.
We are only outperformed by RVMOS, which requires additional semantic labels
for training, while all other approaches use the moving object labels. Our ap-
proach using the volumetric belief achieves the highest result on the validation
set with 86.1 % IoU for the moving points.

Our MOS model runs at 12 Hz on the full SemanticKITTI MOS benchmark
test scans using an NVIDIA RTX A5000 GPU. We implemented the volumet-
ric belief update and querying in C++, and it runs at 44 Hz on an Intel Xeon
W-1290P CPU with multi-threading. Like 4DMOS in Sec. 3.2.8, we can fur-
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KITTI [58] Apollo [113] nuScenes [23]
Method Tracking 19 Validation

LMNet [28] 45.3 13.7 n/a
MotionSeg3D, v1 [172] 54,6 6.5 n/a
MotionSeg3D, v2 [172] 54,8 8.8 n/a
4DMOS, delayed [121] 75.5 70.9 44.8
4DMOS, online 71.1 68.7 34.6
Ours, Scan 77.0 79.2 36.8
Ours, Volumetric Belief 78.4 81.7 40.3

Table 4.2: Generalization capabilities of different methods on datasets outside the training
distribution. We report the average moving IoU. The best results are in bold.

ther reduce the runtime by reducing the voxelization resolution or limiting the
maximum range of the scans used for MOS.

4.2.3 Generalization Capabilities
The following experiment analyzes how well our approach generalizes to new en-
vironments and sensor setups. Since MOS is often a supervised task and labeling
is expensive, generalization is an important property. We provide an experiment
in Tab. 4.2 that realizes different domain shift levels and compares how well the
approaches generalize.

All baselines require external pose information. For a fair comparison, we
provide the poses computed with KISS-ICP. In the case of 4DMOS, we also report
the result of segmenting the most recent scan to compare the online performance
before refining with the originally proposed receding horizon strategy and static
state binary Bayes filter. Unfortunately, the code for RVMOS is not publicly
available, so we cannot evaluate its performance on additional datasets.

One can see that the projection-based approaches LMNet and MotionSeg3D
perform worse on the highly crowded KITTI Tracking sequence 19. Their per-
formance drops even further on the Apollo dataset. We believe this is because
they implicitly overfit to the calibration of the LiDAR sensor, such as mounting
location and intensity measurements.

In contrast, 4DMOS and our approach only use the temporal information of
the scans and therefore generalize well to a new sensor calibration. We again
obtain the best result using our volumetric belief with a delay of 10 scans (re-
ferred to as “Volumetric Belief”) and outperform 4DMOS. The performance of
our approach with and without the volumetric belief in terms of IoUMOS is close,
but we will investigate their differences with respect to the precision and recall
more closely in Sec. 8.2.5.
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For the nuScenes dataset, we cannot evaluate the pre-trained models for the
projection-based approaches in a fair comparison because the range image dimen-
sions change due to the different vertical resolutions of the sensors. Both 4DMOS
and our approach can still segment moving objects, but the average moving IoU
is lower. Here, the strategy of 4DMOS shows the best results. When comparing
the current scan predictions only, we achieve a better result in moving IoU.

4.2.4 Volumetric Belief
Next, we conduct experiments showing how our proposed volumetric belief can
improve moving IoU, recall, and precision. We compare the prediction of our
model for the current scan (referred to as “Scan”) to our volumetric belief after
fusing only the scan prediction (referred to as “Volumetric Belief, Scan Only”).

One can see from Tab. 4.3 that the probabilistic fusion using a static state
binary Bayes filter consistently increases the precision of our scan prediction by
rejecting false positives in previously predicted regions. At the same time, the
recall drops due to the discretization error between ground points and the bound-
ary of moving objects. Next, we additionally fuse the local map points that we
predict to be moving (referred to as “Volumetric Belief, No Delay”). The results
indicate that additionally fusing the local map predictions increases the recall
compared to the volumetric belief that only integrates scan predictions.

Our last setup (referred to as “Volumetric Belief”) first integrates 10 scan and
moving local map predictions into our volumetric belief before querying it for
evaluation as explained in Sec. 4.2.2. Again, this setup achieves the best result in
most sequences in terms of IoU since we can now use the local map predictions
to identify traces of moving objects and update the volumetric belief accordingly,
even if the previous scan-based prediction was static. In the case of Apollo, the
setup using the volumetric belief only fusing scan predictions is slightly better in
moving IoU. Since the recall of moving objects in the scan predictions is already
high for Apollo, we believe that the negative impact of discretization errors from
additionally fusing moving local map points is more dominant in the final IoU
than the improvement from correcting false negatives.

4.2.5 Online Mapping
Finally, we analyze how we can use our approach and the corresponding vol-
umetric belief for online mapping. We use the VDBFusion [187] library that
provides a reconstruction pipeline based on truncated signed distance functions
using the VDB data structure to build a final 3D model [128]. We show the re-
sults in Fig. 4.4 for the CYT_02 sequence from the Loam_livox dataset [106] (top
row) and for the KITTI Tracking sequence 19 (bottom row). The CYT_02 data
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Method IoU R P IoU R P IoU R P IoU R P

Scan 83.8 87.5 95.3 77.0 84.6 89.6 79.2 93.0 84.5 36.8 43.4 70.0
Volumetric Belief, Scan Only 84.0 86.4 96.8 76.7 80.3 94.4 82.1 92.3 88.6 36.6 40.8 81.1
Volumetric Belief, No Delay 83.9 86.7 96.3 76.9 81.8 92.8 81.3 92.4 87.7 36.9 41.7 79.4
Volumetric Belief 86.1 88.7 96.8 78.4 83.4 92.9 81.7 92.9 87.7 40.3 45.7 77.9

Table 4.3: Ablation study on average moving IoU, recall (R), and precision (P) in % for our scan-based prediction and different volumetric belief fusion
strategies.
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Figure 4.4: Reconstructed surfaces obtained with VDBFusion [187] for CYT_02 [106] using
a Livox MID40 scanner in the left column and KITTI Tracking [58] sequence 19 in the right
column. Top: Integrating both moving and non-moving points. Middle: Integrating static
points based on 4DMOS [121] predictions using the receding horizon strategy, see Chap. 3 for
further details. Bottom: Integrating static points using our volumetric belief after waiting 10
frames. Solid markers show remaining traces from moving objects in the map, and the dashed
marker indicates a static area that 4DMOS removed due to false positive predictions.
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was obtained with a Livox MID40 scanner, which has a smaller field of view and
an irregular sampling pattern compared to rotating 3D LiDARs. This makes it
harder to identify moving objects from a limited sequence of frames.

The first column shows the reconstructed surfaces from integrating all scans,
including moving points. The map shows traces of moving objects, which are
undesirable for planning.

The middle column shows the reconstruction after integrating the static pre-
dictions from 4DMOS using the receding horizon strategy. Although 4DMOS
removes most of the dynamic traces, some moving objects remain in the map, as
indicated by the solid markers in Fig. 4.4. When used with the Livox scanner,
4DMOS removes a lot of static points due to the irregular sampling pattern and
the limited number of past scans as encircled by the dashed marker in Fig. 4.4.
We show our final map in the right column.

Based on the high recall achieved in Sec. 4.2.4, we query the volumetric belief
after fusing 10 scan and local map predictions. To additionally handle the dis-
cretization error close to the ground as explained in Sec. 4.1.6, we only integrate
points for which both the map belief and the corresponding scan prediction are
static. Doing so can achieve sub-voxel accuracy and remove moving points near
the ground.

4.3 Related Work
In this chapter, we aim to segment moving objects and build and maintain a rep-
resentation of our dynamic environment. We already reviewed related approaches
for MOS in Sec. 3.3 and will focus in this section on how dynamic environments
are represented in the literature. In the past, researchers mainly focussed on
modeling the static parts of the environment.

Visibility-based Map Cleaning. When building maps for localization or
planning, previous works aim at identifying and removing points from objects that
have moved throughout the mapping process. Moving objects often lead to so-
called “ghost artifacts” in the map, which we can filter out based on their visibility
in a query scan: If a point measured in a query scan lies behind a point in the
map, the map point most likely originates from a moving object which is no longer
present in the query scan. Pomerleau et al. [144] propose a system based on this
idea that estimates the dynamic state of map points. Like our proposed 4DMOS
in Chap. 3, the authors fuse multiple predictions for the same point in a Bayesian
filter. Kim and Kim [90] further develop Removert to remove moving objects
in point cloud maps as a post-processing step. The core idea is to compare the
pixel-wise visibility of points in multiple rendered range images of a point cloud
map and a query scan. The central assumption is that moving objects will lead
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to discrepancies between the scan and the map, and the idea is inspired by prior
work on image-based change detection by Palazzolo and Stachniss [137]. However,
visibility-based approaches often suffer from ambiguities for large incidence angles
between the ray of a query point and the normal of the close-by map points. In
this example, far-away ground points can appear in front of a query point and are
falsely considered moving. Pomerleau et al. [144] address this issue by additionally
checking the incidence angles.

It is also possible to check the consistency between a query scan and a map
based on the traversability on the ground, assuming that moving objects are
usually moving on the ground. ERASOR [104] uses the height difference when
comparing the height of an object in the map to the height of the points at the
same location in a query scan. Recently, Chen et al. [29] propose a pipeline
to label moving objects offline automatically by further refining the dynamic
points identified with ERASOR. They cluster and track the initial moving point
candidates to reduce the number of false positives.

The mentioned map cleaning approaches usually require an existing envi-
ronment model and are often a post-processing step run offline. Instead, our
proposed approach does not require an initial map and runs online in unknown
environments.

Static Map Building. Other researchers focused on directly modeling the
static environment while building the map. For example, occupancy maps di-
vide the space into occupied, free, and unobserved areas [178]. The static belief
of voxels is updated by ray-tracing and recursive Bayesian estimation using an
inverse sensor model [178]. We can use the final map to decide if a new mea-
surement belongs to a dynamic object or not [194]. Stachniss and Burgard [171]
propose an approach for 2D grid-based localization in non-static environments by
clustering possible configurations of the changing environment, which improves
localization. To cover the full spectrum of environmental temporal changes, Biber
and Duckett [19] update a map based on different time scales.

To deal with 3D LiDAR data, Wurm et al. [199] and Hornung et al. [75]
introduce OctoMap, which extends occupancy grid mapping to the 3D space by
using an octree data structure. Ray-tracing approaches like OctoMap maintain a
volumetric representation of the free space, making it possible to remove dynamic
objects from a set of LiDAR scans [57, 156]. Pagad et al. [136] use an octree
to build an occupancy grid map by first detecting ground and object points and
then using ray-tracing to update voxel occupancy. They propose to use a different
voxel update strategy depending on the classification to improve the quality of the
occupancy map. In general, ray tracing in 3D is computationally expensive, and
its performance depends strongly on the voxel size. To reduce the computational
complexity, Arora et al. [9, 10] explore ground segmentation with ray-casting
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to remove dynamic objects in LiDAR scans coarsely. The ground segmentation
helps to reduce the number of points that are considered for ray-casting. Another
prominent example is Dynablox [157], which estimates the free space of voxels
based on ray-casting through a truncated signed distance grid and maintaining a
dynamic state for each voxel.

In contrast to these approaches, our proposed method is independent of ray-
casting because it can be computationally demanding for large, outdoor point
clouds. Instead, we rely on a segmentation of a query scan and a local map using
a sparse 4D convolutional neural network and integrate the estimated moving
points into a probabilistic representation of the dynamic environment.

Dynamic Environment Representation. Modeling dynamic environ-
ments has been addressed for different tasks in the related literature. Nuss et
al. [134] explicitly model the dynamic state of cells in a dynamic occupancy grid
map. This dynamic state contains, for example, the velocity estimate for a cell,
which we can further use to predict future occupancy [73]. Explicit modeling of
moving objects is also common for scene flow analysis. Huang et al. [79] target
the reconstruction of moving objects for 3D scene analysis by registering mul-
tiple point clouds and estimating offset vectors of previously classified moving
points. The accumulation of multiple point clouds is supposed to deal with the
sparse measurements from moving objects. Other approaches focus on long-term
environmental changes, for example, due to moved furniture. Panoptic Map-
ping [159] identifies changes in a map on the object level based on semantic
consistency. Recently, Khronos [158] demonstrates a spatio-temporal metric-
semantic SLAM framework for changing environments, targeting long-term and
short-term changes due to moving objects.

Instead of modeling the dynamic environment on the semantic object level,
this chapter aims to close the gap between point-wise online MOS and an offline
volumetric representation of the dynamic environment. We propose an approach
that segments the current scan and previously received measurements into moving
and non-moving points and fuses these predictions in a 3D volumetric represen-
tation. In contrast to most of the approaches mentioned above, we maintain
this belief online and use it to robustify the current prediction and retrieve mov-
ing objects we falsely classified as non-moving in previous estimations for online
mapping.

4.4 Conclusion
This chapter presented a novel approach for moving object segmentation that
operates in the current LiDAR scan and local map. We used a sparse 4D CNN to
jointly extract spatio-temporal features based on the discrepancy between scan
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and map and the relative timestamps between points. Additionally, we suggested
fusing our predictions into a probabilistic volumetric belief. This allowed us to
successfully segment moving objects and recover from false positive predictions,
an essential property of a spatio-temporal perception system that addresses the
question of “What is moving?”.

We evaluated our approach on different datasets with different sensor setups
and demonstrated its effectiveness and generalization capabilities. Compared to
other state-of-the-art methods, our approach showed a promising MOS perfor-
mance. Additionally, we provided a generalization study that investigated how
well different approaches translate to new environments and sensor configura-
tions. We could see that both 4DMOS from Chap. 3 and the proposed MapMOS
can successfully segment moving objects, whereas the projection-based baselines
did not work well or do not run at all. We carried out experiments to assess the
impact of our volumetric belief and showed that it improves the precision and
recall of our MOS and can be effectively used to construct a static representation
of the environment online. We demonstrated how we can query the updated vol-
umetric belief to maintain a static map of the environment, which can be used
for online path planning or localization.

A remaining challenge lies in the presence of points that represent long-term
changes like construction sites or vegetation. The localization can fail in those
cases because there will be no correspondence for these points in the map. We
will address this problem in Chap. 6 by segmenting moving points and generally
unstable points for tasks like localization. Additionally, our mapping experiment
using a Livox sensor shows that a sensor’s different field of view and scanning
patterns can affect the segmentation results. However, we cannot quantitatively
evaluate the MOS performance because no moving object labels are available for
that dataset. Therefore, we address the necessity of such a labeled dataset in the
next chapter.
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Chapter 5

Evaluating Moving Object
Segmentation Performance

M oving object segmentation using a 3D LiDAR sensor is crucial
for scene understanding and identifying moving objects. Despite
the availability of various types of 3D LiDAR sensors in the
market, MOS research predominantly focuses on 3D point clouds

from mechanically spinning omnidirectional LiDAR sensors. Meanwhile, diverse
3D LiDAR sensors have been developed, including rotating prism, solid-state,
frequency-modulated continuous wave, and flash types.

In Chap. 4, we demonstrated qualitatively that our approach works well with
a Livox scanner with an irregular scanning pattern. However, evaluating the per-
formance quantitatively was impossible because no labels were available. Conse-
quently, the community lacks a dataset with MOS labels for point clouds from di-
verse LiDAR sensors to properly evaluate existing approaches with respect to their
applicability to different scanning patterns and fields of view. Spatio-temporal
perception systems should not only be able to answer the “What is moving?”
question but also be robust to the type of LiDAR sensor.

We see that existing public datasets have two limitations in assessing the
generalization capabilities of MOS across heterogeneous LiDAR sensor setups.
First, the aforementioned heterogeneous LiDAR datasets mainly focus on evalu-
ating place recognition [84] or pose estimation [150] approaches without provid-
ing point-wise MOS labels. Second, while multiple datasets that provide point-
wise MOS labels [16, 138] exist, these datasets are only acquired by a single
omnidirectional LiDAR sensor. Thus, we still lack publicly available datasets
with point-wise MOS labels for heterogeneous LiDAR setups.

This part of the thesis is based on joint work with Hyungtae Lim and Seoyeon
Jang from KAIST, Republic of Korea, who were the lead researchers. I con-
tributed to the conceptual design of the dataset and the experimental setup and

65



5.1. HeLiMOS – A Dataset for Moving Object Segmentation Evaluation

Livox Avia Aeva Aeries II

Ouster OS2-128Velodyne VLP-16

Figure 5.1: Qualitative examples of our dataset, called HeLiMOS. Our dataset provides point-
wise MOS annotations for point clouds acquired by heterogeneous 3D LiDAR sensors from the
HeLiPR dataset [84]. Red points indicate the annotated points from moving objects. The figure
is best viewed in color.

evaluation of 4DMOS from Chap. 3 and MapMOS from Chap. 4 with the labeled
heterogenous LiDAR data. We present the entire work resulting in a dataset
paper [103] for the thesis to be self-consistent.

5.1 HeLiMOS – A Dataset for Moving Object
Segmentation Evaluation

The main contribution of this chapter is HeLiMOS, a new dataset for training
and evaluating MOS approaches with heterogeneous sensors with different fields
of view and scanning patterns. We tackle the insufficiency of MOS labels for het-
erogeneous LiDAR sensors and build upon the existing HeLiPR dataset [84]. We
provide MOS labels that enable the evaluation of MOS across four heterogeneous
LiDAR sensor setups and visualize exemplary scans with the new moving object
labels in Fig. 5.1. Furthermore, following the state-of-the-art automatic MOS
labeling framework AutoMOS [29], we propose a novel instance-aware automatic
labeling framework to substantially reduce the time needed for manual labeling.
Finally, we set up initial benchmarks for evaluating MOS from a sensor-centric
perspective and static map building from a map-centric perspective.
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Pedestrians CarBicyclist and
Pedestrian Truck

Aeva
Aeries II

Livox
Avia

Ouster
OS2-128

Velodyne
VLP-16

Figure 5.2: We show examples of moving objects in our dataset as red points. From top to
bottom, these examples show the zoomed point clouds captured by Aeva Aeries II, Livox Avia,
Ouster OS2-128, and Velodyne VLP-16. Note that even though we show the same objects,
they have different patterns owing to the difference in scanning techniques and sensors’ fields
of view. MOS labels of (a) a bicyclist and pedestrian, (b) crowded pedestrians, (c) a car, and
(d) a truck. The figure is best viewed in color.

We provide experimental results regarding our previously presented 4DMOS
from Chap. 3 and MapMOS from Chap. 4 on HeLiMOS. These results emphasize
the need for a new research direction for a sensor-agnostic MOS, which generally
works regardless of the type of LiDAR sensors used to capture 3D point clouds.
Our dataset is available at https://sites.google.com/view/helimos.

In summary, we make three main claims: This work (i) provides point-wise
annotations for a sequence of the HeLiPR dataset, which are captured by real-
world multiple heterogeneous LiDAR sensors, (ii) evaluates state-of-the-art MOS
approaches with heterogeneous LiDAR sensor setups as initial benchmarks, and
(iii) proposes an efficient instance-aware automatic labeling framework by em-
ploying an instance-aware static map building approach, ERASOR2 [105], and
tracking-based false label filtering [81].

Our aim is that this dataset will stimulate further research, suggest new re-
search directions, and enable reliable evaluation of novel algorithms. We also
make our MOS labeling tools publicly available.

5.1.1 Overview
We base our dataset on the KAIST05 sequence of HeLiPR [84], which contains
various moving objects, such as buses, pedestrians, bicyclists, and cars. The
dataset is acquired by four LiDAR sensors simultaneously: Velodyne VLP-16,
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Scans and Poses

(g) Labels For Each Scan

(a) Synced Scans Pt

π−1

(f) Labels for Synced Scans

Automatic Labeling Framework

(e) Human Refinement

(b) Topology-based
Trajectory Clustering

(c) Scan-wise Annotation
Using ERAOSOR2

(d) Tracking-based
False Label Filtering

Clusters {C}

MOS Labels

π

Figure 5.3: Overview of our merging-and-splitting-based labeling framework. (a) Synchroniza-
tion of the point clouds from the four LiDAR sensors at a software level. (b) Next, we segment
trajectories into multiple clusters. (c) For each trajectory cluster C, we apply an instance-aware
static map building, ERASOR2 [105], that produces initial scan-wise annotated labels. (d) We
use tracking-based false label filtering to reduce false positive and false negative MOS labels.
(e) Afterwards, we manually correct these labels. (f)-(g) Finally, we backpropagate the refined
labels of synchronized scans to individual point clouds, which we denote by π−1. Red points
indicate the annotated dynamic points. The figure is best viewed in color.

Ouster OS2-128, Livox Avia, and Aeva Aeries II. The Velodyne VLP-16 outputs
a sparse point cloud, whereas the Ouster OS2-128 provides a dense output with
eight times more beams. Both sensors are omnidirectional because of internally
mechanically rotating parts that enable scanning 360 degrees of the environment.
The other two scanners are directional, resulting in a limited field of view. The
Livox Avia scans the environment with a non-repetitive but sparse and irregu-
lar scanning pattern in contrast to the Aeva Aeries II, whose pattern offers a
high density. For brevity, we denote these sensors as Velodyne (V ), Ouster (O),
Livox (L), and Aeva (A) in this chapter, respectively.

We aim to provide a label for each point in all scans of the different LiDAR sen-
sors. Thus, we propose a merging-and-splitting-based efficient automatic MOS la-
beling framework, which we illustrate in Fig. 5.3. Our approach to labeling mainly
consists of four steps. First, by transforming them into the Ouster frame, we ac-
cumulate four point clouds from the four LiDAR sensors whose timestamps are
closest to each other. By doing so, we synchronize the point clouds of these four
LiDAR sensors at a software level, resulting in the accumulated point cloud Pt.
Second, we cluster the accumulated scans based on their topology, such as inter-
sections, and refine the individual poses as explained in Sec. 5.1.2. In the same
step, we obtain initial MOS labels using a static mapping approach as presented
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Frames corresponding to Cluster A

(a) (b) (c)

(d)

Cluster A

C1 C2 C3 C4

Time step t

Figure 5.4: Procedure of our topology-based trajectory clustering. The black trajectory indi-
cates unclustered frames; each color represents a different cluster. The figure is best viewed
in color. (a) First, we prioritize intersections because these scenes will likely have multiple
revisits. The colors indicate different clusters. (b) Next, we cluster the frames from revisited
places that are not intersections and consecutive frames without revisits but with sufficiently
large intervals, as indicated by the black dashed circles. (c) We merge each unclustered frame
into the adjacent cluster with the closest frame interval. (d) For an exemplary cluster A, we
visualize the frames along the time axis with their corresponding cluster C = {C1, C2, C3, C4}.

in Sec. 5.1.3 and correct the labels using multi-object tracking in Sec. 5.1.4. Third,
we refine the labels under human supervision. In the last and fourth step, we
backpropagate the refined MOS labels to the individual point clouds. We explain
the details in the following subsections.

5.1.2 Trajectory Clustering and Pose Correction
In recent static map building approaches [104, 105], discrepancies in geometry
or occupancy between individual scans and the map have often been used to
estimate the dynamic points in the scans. However, these approaches heavily
rely on the assumption that the given poses are accurate and, thus, the scans are
sufficiently aligned with each other. Unfortunately, although reference poses are
provided, undesirable errors exist in the poses for revisited scenes, i.e., loop-closed
scenes. These pose errors probably stem from global navigation satellite system
errors or sensor odometry drift. In our particular case, pose errors also arise
from the initial alignment of the four point clouds because the point clouds were
not initially synchronized at the hardware level. Consequently, these errors make
automatic labeling incorrectly classify static points as dynamic points, leading to
false positives and negatives. To address this issue, we divide the trajectory with
poses corresponding to Pt with t being the timestamp of the scan into multiple
clusters and correct their poses to align their reference frames.

We propose a topology-based trajectory clustering that prioritizes revisited
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sections, likely to have inherent pose errors owing to the time differences between
scans captured during initial visits and those upon revisiting. Time discrepancies
can lead to pose drift, which may not be fully minimized even after a pose graph
optimization. As illustrated in Fig. 5.4, our trajectory clustering follows three
steps. First, we identify areas, such as intersections or places where left/right
turns occur, by examining the yaw differences within the trajectory and grouping
neighboring frames into a cluster based on their locations. Second, we cluster the
frames from revisited places that are not intersections and consecutive frames
without revisits but with sufficiently large intervals, respectively. Finally, we
merge the remaining unclustered frames into the adjacent cluster with the closest
frame index.

Formally, let C be a cluster of the trajectory and the i-th consecutive frame
set (or a subcluster) in C be Ci, which satisfies C=

⋃Nc

n=1 Ci, as visualized
in Fig. 5.4 (d); Nc ≥ 1 denotes the number of the subclusters. We correct the
poses corresponding to frames within the same cluster to minimize errors
between the reference frames for each subcluster. Based on the assumption that
the poses in Ci are locally consistent, we use a reference frame fi for each
subcluster Ci. We can express each frame ft in the cluster relative to its
reference using the transformation matrix fiTft . Then, we define the i-th
submap Mi, which corresponds to Ci, as follows:

Mi = ν

(⋃
t∈Ci

ν
({

fiTftp | p ∈ Pt

}))
, (5.1)

where ν(·) denotes a voxel downsampling function with the voxel size νmap, Pt is
the synchronized scan whose origin is the local frame ft, and fiTftp means that
we transform a homogeneous point p expressed in the local frame ft into the
reference frame fi.

Finally, to locally unify the coordinate system into the reference frame
of M1, i.e., frame f1, we perform a submap-to-submap iterative closest point
alignment between M1 and Mi to estimate the relative transformation f1T̂ fi .
We update the transformation matrix for each local frame ft in Ci
as f1T̂ ft =

f1T̂ fi
fiTft , respectively. Thus, we perform the iterative closest point

algorithm [18] Nc − 1 times for each cluster.

5.1.3 Instance-Aware Initial Data Annotation
Next, we take the corrected poses and corresponding synchronized scans of C as
inputs and run our instance-aware annotation pipeline to generate initial scan-
wise MOS labels by utilizing instance segmentation information [105], which cor-
responds to Fig. 5.3 (c). The previous automatic labeling approach by Chen et
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(c)(b)(a)

Figure 5.5: The annotation results in our proposed labeling framework. Red points denote the
annotated dynamic points, while gray points represent points estimated to be static. The figure
is best viewed in color. (a) The initial result obtained by using ERASOR2. (b) Refined anno-
tation through our tracking-based filtering. Orange dashed circles indicate that we successfully
rejected false positive points. (c) Final annotation after human supervision. Purple dashed
circles highlight the refined areas by a human labeler.

al. [29] employed ERASOR [104] to initially annotate MOS labels, and then clus-
tering was applied, which was referred to as the detect-then-cluster scheme. As
ERASOR does not account for instance information, it potentially fails to iden-
tify all dynamic points from a moving object, considering some partial dynamic
points as static.

In contrast, ERASOR2 [105] is a cluster-then-detect approach. It first per-
forms instance segmentation, followed by dynamic point removal at the instance
level by checking geometrical discrepancies between each scan and the map cloud
to determine which regions are temporarily occupied. Doing so can generate more
accurate and reliable MOS labels.

5.1.4 Tracking-Based False Label Filtering and Human
Refinement

The static map building approach-based automatic labeling will likely remove
dynamic points aggressively because static map building approaches were ini-
tially designed to preserve definite static points for performing localization or
navigation. We show this in Fig. 5.5 (a), where many static points are wrongly
classified as dynamic points at the scan level. To address this issue, we leverage
multi-object tracking-based filtering [81] similar to Chen et al. [29], who also em-
ploy tracking-based filtering primarily to reject false positive points. However,
we propose a bounding box augmentation that reduces the number of false nega-
tive points. We augment additional bounding boxes in the frames where tracking
is temporarily lost by interpolating the centroids of bounding boxes tracked in
the previous frame and next frame. Subsequently, we also classify points within
these augmented bounding boxes as dynamic. As a result of our tracking-based
filtering, we obtain more refined MOS labels without human effort, as shown
in Fig. 5.5 (b). Nevertheless, these procedures do not ideally reject all false
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Figure 5.6: Ratios of labeled dynamic points over the total points in the t-th scan and labeled
subclusters corresponding to C1, C2, C3, and C4 from Fig. 5.4 (d). We visualize the points from
all sensors in different colors and show the labeled moving objects in red. All clusters belong
to the same physical location, which has been visited multiple times in the sequence and shows
different moving objects. Note the varying dynamic point ratio over time, which differs between
sensor types and clusters. The figure is best viewed in color.
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Figure 5.7: Comparison of the ratio of dynamic points with other datasets. The numbers
on the bars represent the average ratios, while the black error bars indicate the standard
deviations. We counted the points labeled as moving objects to calculate the dynamic points
ratio of SemanticKITTI [16]. As shown in Tab. 5.5, the SemanticPOSS [138] wrongly classifies
parked vehicles as moving objects. Thus, we filter them out for a fair comparison using our
tracking-based filtering and only use the actual moving objects for the dynamic points ratio
calculation.

positives and false negatives. Therefore, as a final stage, we perform a human-in-
the-loop refinement process to enhance the quality of the MOS labels, as depicted
in Fig. 5.5 (c).

5.1.5 Data Statistics and File Structure

Our dataset provides a total of 12,188 labeled point clouds. Each MOS label fol-
lows the SemanticKITTI MOS benchmark format, so it consists of three classes:
unlabeled, static, and dynamic. The point clouds in our dataset are from the He-
LiPR dataset, initially designed for place recognition tasks to evaluate whether a
robot revisits the same location. For this reason, our HeLiMOS inherits charac-
teristics of the HeLiPR dataset and thus leverages two notable attributes: (a) the
inclusion of several revisited scenes and (b) a substantially higher ratio of dynamic
points.

As shown in Fig. 5.6, dynamic point ratios and patterns vary substantially
over time, even though scans are acquired in the same place. For instance, in
the previously mentioned subclusters, C3 and C4 contain more moving objects
and more complex trajectory patterns, resulting in higher dynamic points ratios
compared with C1 and C2. In addition, the appearance of static scenes differs
due to each sensor’s different fields of view, which measure various parts of the
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Figure 5.8: File structure of our dataset, which follows the SemanticKITTI format [16]. Despite
being misleading, we keep the folder name velodyne instead of scans to be compatible with other
datasets, such as SemanticPOSS [138]. Pose information is from the original dataset [84].

environment depending on the driving direction, which is visible in Fig. 5.6.
Because it is crucial for MOS approaches to robustly distinguish moving objects
regardless of changes in the dynamic points ratios or moving object trajectory
patterns, our dataset can provide an opportunity to evaluate the generalization
capabilities of MOS across diverse patterns in the same scene.

Furthermore, note that the most distinctive feature of our dataset is that it
not only has higher dynamic points ratios than existing MOS datasets but also
has MOS labels of four heterogeneous LiDAR sensors. As presented in Fig. 5.7,
our dataset shows consistently higher average dynamic points ratios across all
LiDAR sensors compared with the SemanticKITTI [16] and SemanticPOSS [138]
datasets.

Therefore, using our dataset, researchers can evaluate the generalization
capabilities of MOS approaches in an environment not seen during training and
with different LiDAR sensors. As presented in Fig. 5.8, the file structure of our
dataset follows the SemanticKITTI format [16] to support compatibility with
existing SemanticKITTI dataloaders. We deskewed all the laser scans and then
saved them by utilizing the HeLiPR Pointcloud Toolbox available at
https://github.com/minwoo0611/helipr-Pointcloud-Toolbox.

To provide a fixed setup for training and evaluating MOS approaches, we
split the dataset into training, validation, and test sets with ratios of 68%, 16%,
and 16%, respectively. Note that we do not randomly sample the frames; instead,
we designate specific sequential frames from the revisited scenes, for example, C3
or C4 in Fig. 5.6, for the validation and test sets.
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5.2 Experimental Evaluation

This work mainly focuses on providing point-wise MOS labels for evaluating the
generalization capabilities of MOS in heterogeneous LiDAR sensor setups. In ad-
dition, we can use our dataset to evaluate the performance of static map building
approaches. Thus, we present three experiments utilizing our dataset to support
our three essential claims, which are: We (i) provide point-wise annotations for a
sequence of the HeLiPR dataset, which are captured by real-world multiple het-
erogeneous LiDAR sensors, (ii) evaluate state-of-the-art MOS approaches with
heterogeneous LiDAR sensor setups as initial benchmarks, and (iii) propose an
efficient instance-aware automatic labeling framework by employing an instance-
aware static map building approach, ERASOR2 [105], and tracking-based false
label filtering [81].

To back up the first and second claim, we will evaluate the MOS performance
of the models from Chap. 3 and Chap. 4 which we trained on the SemanticKITTI
dataset [16] on our new labeled data in Sec. 5.2.2. To further test their general-
ization capabilities, we train and evaluate them on different sensor setups across
heterogeneous LiDAR sensors in Sec. 5.2.3. Lastly, we back up our last claim
in Sec. 5.2.4. We demonstrate our automatic labeling performance to support
the rationale behind our choice to use ERASOR2 and the presented tracking-
based filtering. We could not evaluate these novel experiments using existing
datasets, which shows the necessity of our heterogeneous LiDAR MOS dataset
and our automatic labeling framework.

5.2.1 Experimental Setup

In the first experiment, we use our MOS models from Chap. 3 and Chap. 4, which
we trained on the SemanticKITTI dataset [16]. A 64-channel omnidirectional
LiDAR sensor captured the training data, and we quantitatively evaluated their
inference results on HeLiMOS using all the labels. In the second experiment,
we train our MOS approaches on one type of LiDAR sensors and then test on
heterogeneous LiDAR sensors, i.e., training with point clouds from directional
LiDAR and testing with those from omnidirectional LiDAR sensors, or vice versa,
to examine performance variations across different LiDAR types. We use the
mean IoUMOS for MOS [121] as a quantitative metric.

For the third experiment, we evaluate the modules of our labeling frame-
work and existing approaches by computing the preservation rate (PR), rejection
rate (RR), and F1 score [104, 105] using the synchronized scans, i.e., Pt, as inputs.
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Method
Directional Omnidirectional

Total
L A O V

4DMOS, online 52.08 54.01 64.17 4.69 43.74
4DMOS, delayed 58.99 58.30 70.44 5.41 48.28
MapMOS, Scan 58.93 63.15 81.43 4.33 51.96
MapMOS, Volume 62.70 66.58 82.87 5.77 54.48

Table 5.1: Mean IoUMOS of MOS approaches trained on the SemanticKITTI dataset to evaluate
generalization capabilities in terms of both environmental changes and LiDAR sensor variations
(L: Livox Avia, A: Aeva Aeries II, O: Ouster OS2-128, and V: Velodyne VLP-16).

We define the metrics as

PR =
# of preserved static voxels

# of total static voxels (5.2)

RR = 1− # of remaining dynamic voxels
# of total dynamic voxels (5.3)

F1 = 2
PR · RR
PR + RR , (5.4)

where higher results are better. Note that the terms preservation and rejection
rate in Eq. (5.2) and Eq. (5.3), respectively, were originally introduced in [104],
and we can interpret them as the recall rate of the voxel-wise static and dynamic
classification, respectively. We use the original notation for the sake of complete-
ness. For simplicity, we refer to each sensor type used in our dataset as L, A, O,
and V, respectively, as described in Sec. 5.1.

5.2.2 Environmental Changes and LiDAR Sensor
Variations

First, we evaluate the generalization capabilities of MOS approaches in environ-
ments not seen during training and to different types of LiDAR sensors. We em-
ploy our previously presented 4DMOS from Chap. 3 and MapMOS from Chap. 4,
which we can directly apply to other LiDAR setups and which have shown strong
generalization capabilities. For 4DMOS, we report the results for an online predic-
tion where we take the prediction for the current scan as the final prediction and
the delayed version, which fuses multiple predictions as explained in Sec. 3.1.5.
In the case of MapMOS, we report both the result for the current scan’s segmen-
tation and the performance using our volumetric belief as explained in Sec. 4.2.2.
We use KISS-ICP [188] to estimate the odometry and to align the scans in a
standard coordinate frame for both approaches.
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Method
Training Directional Omnidirectional

Total
Data L A Avg O V Avg

4DMOS
(Delayed)

L+A 72.82 81.58 77.20 71.50 47.65 59.58 68.39
O+V 64.74 72.73 68.74 80.50 56.09 68.30 68.52
All 73.72 84.80 79.26 82.70 57.64 70.17 74.72

MapMOS
(Volume)

L+A 71.84 83.65 77.75 77.06 25.62 51.34 64.54
O+V 72.16 80.71 76.44 86.74 49.13 67.94 72.19
All 73.82 85.60 79.71 84.93 32.00 58.47 69.09

Table 5.2: Mean IoUMOS of MOS approaches when trained solely on data from specific LiDAR
sensors. The bold texts denote the best performance among all trials, and the underlined num-
bers indicate the best results for each method across different training data scenarios (L: Livox
Avia, A: Aeva Aeries II, O: Ouster OS2-128, and V: Velodyne VLP-16).

The results in Tab. 5.1 suggest that all approaches are robust to environmental
changes due to the excellent performance on the Ouster data O, which is the
most similar sensor to the 64-channel sensor used to acquire SemanticKITTI and
train the approaches. In contrast, we observe a performance degradation for
the directional LiDARs L and A compared to the O results. Third, when using
sparser point clouds as inputs, the performance of our MOS approaches degrades
more, as shown for V in Tab. 5.1, because these MOS approaches heavily depend
on the pose estimation of KISS-ICP to use temporal information from LiDAR
sequences. Consequently, once the estimated poses are imprecise owing to the
sparse point clouds, the MOS performance becomes worse.

5.2.3 Performance Across Heterogeneous LiDAR Sensors

The following experiment evaluates the performance changes caused by domain
shifts across different LiDAR sensor types within the same environments.
The MOS models showed substantial performance improvements across all
sensors after training with our dataset, as presented in Tab. 5.2 and Fig. 5.9.

In general, Fig. 5.9 qualitatively demonstrates how the segmentation results
improve when training on target domain data. After training with all sensors,
MapMOS successfully predicts previously missed moving objects as dynamic and
is more robust against false positives.

Next, we investigate in Tab. 5.2 how well different training setups influence
the results on the various sensor setups. Interestingly, unlike 4DMOS, whose per-
formance for each test sensor type improves as we provide more diverse training
data, the performance of MapMOS for Ouster OS2-128 and Velodyne VLP-16 is
better when training exclusively on data from these sensors. We believe the ap-

77



5.2. Experimental Evaluation

Trained on SemanticKITTI

Trained on HeLiMOS

Figure 5.9: Qualitative comparison of MapMOS [123] across all sensors after training with
SemanticKITTI data and with our dataset using all sensors. Green, red, and blue points
indicate true positives, false positives, and false negatives, respectively. The fewer red and blue
points there are, the better. The figure is best viewed in color.

proach slightly overfits the target domain in this case. Overall, MapMOS shows
better results due to better generalization capabilities [123] by taking both a lo-
cal map and a current scan as inputs. In particular, we employ the local map
to reduce the geometrical differences between each scan from different sensors
by accumulating scans over time. Unfortunately, scans from V are too sparse
to estimate the relative poses precisely. Therefore, an error in the pose estima-
tion leads to an inconsistent local map, resulting in performance degradation,
whereas 4DMOS only considers a limited time horizon. As a result, MapMOS
showed lower IoUMOS with V in Tab. 5.2. Nevertheless, MapMOS was on par with
4DMOS regarding total mean IoUMOS and showed the highest performance in L,
A, and O. These two experiments imply that there is still room for improvement
in making existing MOS methods operate sensor-agnostic.

5.2.4 Automatic Labeling Performance
Finally, we demonstrate the superiority of our automatic labeling framework. A
direct comparison to the baseline AutoMOS [29] is unfair, because AutoMOS re-
lies on ERASOR [104], which ERASOR2 [105] outperforms, see Tab. 5.3. There-
fore, we separately evaluate the performance of (a) static map building approaches
for initial MOS labeling and (b) tracking-based filtering. We use the final ground
truth labels after the human refinement for evaluation.

First, to explicitly show the performance differences in static map building,
we conducted experiments on the three most crowded scenes, which we visualize
in Fig. 5.10 and for which we report the quantitative results in Tab. 5.3. We can
see in Tab. 5.3 that ERASOR2 shows a substantially higher F1 score compared
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(a) Removert [90] (b) ERASOR [104] (c) ERASOR2 [105]
Figure 5.10: Qualitative comparison of static map building results produced by state-of-the-art
methods on our dataset using synchronized scans. Green, red, and blue points indicate true
positives, false positives, and false negatives, respectively. The fewer red and blue points there
are, the better. The figure is best viewed in color.

with Removert [90], a range image-based approach. We can also see this from the
large portion of false positives and negatives in Fig. 5.10 (a). The MOS labeling
module ERASOR, initially used in AutoMOS, also shows a lower PR and RR
than ERASOR2. The reason is that ERASOR directly subtracts the estimated
dynamic points from the map cloud without considering instance information, in-
correctly estimating static points as dynamic while leaving some dynamic points
on the map, as shown in Fig. 5.10 (b). In contrast, by leveraging instance infor-
mation, ERASOR2 precisely rejects traces of moving objects in the map cloud
while preserving most static points, as presented in Fig. 5.10 (c). This implies
that ERASOR2 consistently labels the dynamic points within each scan.
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Frame range Method PR [%] RR [%] F1 score

2,250-2,500
Removert [90] 85.072 47.170 0.607
ERASOR [104] 95.325 82.490 0.884
ERASOR2 [105] 99.522 95.339 0.974

8,600-8,800
Removert [90] 80.581 71.965 0.760
ERASOR [104] 91.610 84.290 0.878
ERASOR2 [105] 99.530 93.740 0.965

11,070-11,300
Removert [90] 82.852 81.301 0.821
ERASOR [104] 93.969 89.955 0.919
ERASOR2 [105] 99.676 97.175 0.984

Table 5.3: Comparison of static map building approaches for the most crowded frame sequences
in our dataset (PR: Preservation Rate, RR: Rejection Rate).

Method IoUMOS

ERASOR2 [105] 21.8
ERASOR2 + Tracking-based filtering in AutoMOS [29] 53.4
ERASOR2 + Our tracking-based filtering 61.2

Table 5.4: Mean IoUMOS before and after applying tracking-based filtering approaches.

Second, as shown in Tab. 5.4, the tracking-based filtering in AutoMOS shows a
substantial increase in performance, which indicates that it substantially reduces
the number of false positive points. However, as described in Sec. 5.1.4, it cannot
reduce the same number of false negatives. In contrast, by introducing augmented
bounding boxes, our approach can further suppress the impact of false negative
points. By doing so, our developed filtering shows the highest IoUMOS.

We conclude that the combination of ERASOR2 and our proposed tracking-
based filtering is a suitable automatic labeling framework to help human labelers
reduce the time needed for manual labeling.

5.3 Related Work
Over the past decade, numerous impactful datasets and benchmarks for au-
tonomous vehicles have been released. A renowned one is the KITTI dataset [58],
which provides both odometry and various perception benchmarks. Influenced by
this, existing datasets have evolved in two main directions in terms of (a) odom-
etry and place recognition and (b) perception, as we present in Tab. 5.5.

Odometry Datasets and Benchmarks. From the viewpoint of odome-
try and place recognition, the KITTI dataset has a few loop-closing situations
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and environmental changes, with only a single omnidirectional LiDAR sensor
for a short data collection span. To provide more challenging environments for
odometry and place recognition tasks [205], Carlevaris et al. [25], Lu et al. [113]
and Jeong et al. [82] propose the NCLT, Apollo-SouthBay, and Complex Urban
datasets, respectively, acquired by multiple 2D and 3D omnidirectional LiDAR
sensors. Kim et al. [88] release the MulRan dataset focusing on multi-modal
long-term mapping and place recognition by employing a 3D LiDAR sensor and
an omnidirectional radar sensor.

As a further study, Carballo et al. [24] come up with the LIBRE dataset,
consisting of point clouds from ten LiDAR sensors. However, all the deployed
sensors are omnidirectional, implying that all the sensors have similar scanning
patterns and fields of view due to the same measurement principle. Thus, this
dataset is unsuitable for testing whether an algorithm generally works well in a
heterogeneous LiDAR sensor setup. To tackle this problem, Qingqing et al. [150]
release the TIERS dataset, which consists of three omnidirectional LiDAR sensors
and three directional LiDAR sensors. Similar to the TIERS dataset, Jung et
al. [84] propose the HeLiPR dataset, which is acquired by two omnidirectional
LiDAR sensors and two directional LiDAR sensors, including under-researched
channels, i.e., reflectivity, near-infrared, and radial velocity. Unfortunately, these
datasets only aim to evaluate odometry and place recognition without any point-
wise MOS labels, as summarized in Tab. 5.5. Therefore, we cannot directly use
them to evaluate the performance of MOS approaches.

Perception Datasets and Benchmarks. Behley et al. [16] release the Se-
manticKITTI dataset, a pioneering work that first provides point-wise semantic
and instance labels for 3D sequential point clouds. Since the semantic labels dif-
ferentiate between moving and non-moving semantic classes, Chen et al. [28]
remap them into moving and non-moving and proposed the SemanticKITTI
MOS benchmark. Inspired by SemanticKITTI, Pan et al. [138] come up with
the SemanticPOSS dataset, which shares the same labeling protocol with Se-
manticKITTI to support compatibility with existing SemanticKITTI dataload-
ers. While these datasets provide abundant point-wise labels, the SemanticKITTI
and SemanticPOSS are only captured by a single omnidirectional LiDAR sensor.

Caesar et al. [23] publish the nuScenes dataset, which supports perception
tasks in 1,000 short sequences of 20 seconds duration using an omnidirectional 32-
beam LiDAR. It is possible to remap the labels of annotated keyframes into
moving and non-moving as we did in Sec. 4.2.3, but these are not available for
all scans. The same holds for the DOALS [142], which provides moving object
labels only for a few keyframes.

Xiao et al. [201] and Chen et al. [27] release the PandaSet and WOMD-LiDAR
datasets, respectively, which contain point clouds from multiple heterogeneous
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Dataset Year Multiple Hetero- Point-wise
LiDARs geneous MOS labels

O
do

m
et
ry

KITTI [58] 2012 7 7 7

NCLT [25] 2016 7 7 7

Oxford Robotcar [116] 2017 3 7 7

Complex Urban [82] 2019 3 7 7

Apollo-SouthBay [113] 2019 7 7 7

MulRan [88] 2020 7 7 7

LIBRE [24] 2020 3 7 7

TIERS [150] 2022 3 3 7

HeLiPR [84] 2023 3 3 7

Pe
rc
ep

tio
n

KITTI [58] 2012 7 7 7

SemanticKITTI [16] 2019 7 7 3

SemanticPOSS [138] 2020 7 7 4
nuScenes [23] 2020 7 7 3

DOALS [142] 2021 7 7 3

PandaSet [201] 2021 3 3 7

WOMD-LiDAR [27] 2023 3 3 7

Table 5.5: Comparison between existing 3D point cloud datasets and our proposed dataset.
The term “Heterogeneous” indicates whether a dataset comprises mechanically spinning om-
nidirectional and directional LiDAR sensors. We consider 2D and 3D omnidirectional LiDAR
sensors to be homogeneous to each other. The symbol 4 indicates that the dataset provides
point-wise labels; however, it incorrectly labels parked vehicles as moving objects by naïvely
considering all pedestrians and vehicles as in motion.

LiDAR sensors. However, these datasets are also unsuitable for evaluating the
performance of MOS in the heterogeneous LiDAR sensor setups because they
do not provide point-wise MOS labels. Therefore, to our knowledge, we pro-
pose a point-wise MOS dataset for heterogeneous LiDAR sensors, enabling the
evaluation of MOS and static map building tasks across diverse LiDAR sensor
setups.

Automatic Labeling Framework. We also propose an efficient instance-
aware automatic labeling framework to substantially lessen a human labeler’s
annotation burden. It is challenging and time-consuming for human labelers to
discern moving objects in the 3D point clouds owing to the sparse character-
istics of 3D point clouds [56]. To account for this, Kim and Kim [90] develop
Removert, which is a range image-based scan-wise MOS labeling approach. Fur-
thermore, Chen et al. [29] propose an automatic labeling framework called Auto-
MOS. The main idea of AutoMOS is to identify dynamic candidate points using
the static map cleaning approach ERASOR [104]. Similar to our presented an-
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notation scheme, these points are clustered, and bounding boxes are extracted.
The authors track these bounding boxes using a multi-object method developed
by Weng [195].

In contrast to these prior approaches, we take instance information into ac-
count to reduce the number of false positives and thus minimize the need for man-
ual corrections by a human labeler. Therefore, we propose instance-aware MOS
annotation using ERASOR2 while accounting for the pose uncertainty in the re-
visited scenes via a topology-based trajectory clustering approach to obtain label
information effectively.

5.4 Conclusion
In this chapter, we presented a novel moving object segmentation dataset for het-
erogeneous LiDAR sensors. To successfully depoly MOS approaches in real-world
scenarios to answer the question of “What is moving?”, they need to generalize to
new environments and sensor configurations, or we need to re-train them based
on labeled data of the target domain.

Our dataset provides point-wise MOS labels for four different LiDAR sensors,
which mainly differ in their field of view and scanning pattern. Furthermore, we
proposed a novel instance-aware automatic labeling framework to reduce a human
labeler’s time, cost, and effort when annotating LiDAR scans in large-scale scenes.

In our experimental evaluation, we trained and evaluated our previously
presented approaches 4DMOS from Chap. 3 and MapMOS from Chap. 4
for MOS. More specifically, we investigated the ability of models trained on the
SemanticKITTI dataset to generalize to the different sensor types in our
proposed HeLiMOS. The experiments suggested that our approaches work well
with new sensors with different fields of view or scanning patterns but also
depend on the odometry for aligning the scans. Next, we also demonstrated
how different training, validation, and test configurations across the
heterogeneous sensors affect the MOS performance. Lastly, we provided insight
into the performance of our automatic labeling approach with different
variations of initial candidate identification methods and tracking modules.

In sum, we demonstrated the necessity of a heterogeneous LiDAR moving ob-
ject segmentation dataset by suggesting new research directions toward sensor-
agnostic segmentation, enabling better evaluations in this field of research. Al-
though our dataset currently covers a single sequence, our proposed framework
can be further used in the future to label additional sequences of HeLiPR or
additional datasets to push further the availability of labels for evaluating the
generalization of MOS approaches.
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Chapter 6

Segmentation of Stable Points
For Localization

M obile robots increasingly operate in real-world environments that
are subject to change over time. Accurate and robust localization in
these environments is crucial for effectively operating autonomous
mobile systems to perform path planning and obstacle avoidance

tasks. Global navigation satellite system-based outdoor localization is the go-to
solution that can operate without a prior map. However, sufficient connection to
satellites may not always be available in specific environments due to, for exam-
ple, tree foliage or large buildings. Map-based mobile robot localization utilizes
onboard sensors [146, 206] like cameras or LiDARs for vehicle pose estimation by
matching the sensory data with the robot’s prior belief about the environment in
the form of a map.

A standard method for LiDAR-based pose estimation in a given map is to use
scan matching algorithms [18, 20]. In contrast to LiDAR odometry approaches
like KISS-ICP that estimate a relative odometry from data within the same ses-
sion, localization in a previously built map is sensitive to additional environmental
changes. These changes are not only short-term, like moving objects, but also
long-term, like structural changes due to construction sites or changed vegeta-
tion. Due to these changes, localization systems may fail since some scan points
may not have correspondences in the map, thus leading to failure in the accurate
localization of the vehicle.

One possibility to improve scan matching performance in changing environ-
ments is to segment the LiDAR scan into stable and unstable points and to utilize
only the stable points for localization. Stable points typically represent elements
of a stable object, such as walls, poles, light posts, and tree trunks. One approach
to isolate these points is to employ handcrafted features for segmentation based
on the shape of the object [155, 169]. However, such methods’ robustness can be
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Figure 6.1: Our method segments stable and unstable points in 3D LiDAR scans, exploiting
the discrepancy of scan voxels and overlapping map voxels (highlighted as submap voxels). We
showcase two LiDAR scans captured during separate localization sessions within an outdoor
vineyard. The scan on the left depicts the vineyard state in April, while the scan on the right
reveals environmental changes in plant growth in June.

compromised by the varying density of point cloud data, leading to errors in the
segmentation of stable points, thus causing a failure in the localization.

An alternative is to employ deep learning approaches [50, 125, 177] to learn to
segment stable points from LiDAR scans. Despite the potential of deep learning,
these methods often demand substantial amounts of manually annotated data
and frequently struggle to generalize effectively to new, unseen data. To address
the labeling issue, LTS-NET [77] implicitly learns the inherent stable structure in
the environment in a self-supervised fashion and utilizes this structure as a land-
mark to improve vehicle localization in changing environments. Self-supervised
training avoids an expensive manual labeling process. However, the generaliza-
tion capabilities in novel scenes are poor.

In this chapter, we tackle the challenge of developing a generalizable segmen-
tation of LiDAR data into stable and unstable points for long-term localization
in environments not seen during training based on scan-to-map matching. This
work goes further than the previous chapters by not only addressing the “What is
moving?” question but also integrating the knowledge into a localization pipeline
to improve the performance in dynamic environments. In this case, “moving”
refers to points that belong to parts of the environment that have moved with
respect to a prior map.

Our primary objective is to enhance the reliability of mobile robot localization
in dynamic environments. To obtain a strong generalization capability of the
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segmentation of stable points, we follow the previous Chap. 4 and exploit the
discrepancy between scan and map points by applying sparse 4D convolutions on a
joint sparse voxel grid that encompasses both scan voxels and their corresponding
map voxels. This allows us to segment scan points into stable and unstable points
based on a predicted long-term stability confidence score for each scan point,
see Fig. 6.1.

In contrast to the task of moving object segmentation discussed in Chap. 3
and Chap. 4, the segmentation of stable points in 3D LiDAR scan data can
segment both present dynamic entities like walking humans and stationary objects
that may undergo positional or perceptual alterations in subsequent instances
such as plant vegetation. Furthermore, unlike supervised semantic segmentation,
our method does not require multiple classes to supervise the learning, and we
can train it in a self-supervised manner with no manual annotation by leveraging
previous observations.

Our experiments demonstrate that utilizing the stable points for localization
improves the performance of scan-matching algorithms, especially in environ-
ments where changes in appearance are frequent. In line with the results of our
generalization experiments in Sec. 3.2.3 and Sec. 4.2.3, our segmentation of stable
points generalizes to new, unseen environments using a similar architecture.

The presented work is a joint collaboration with Ibrahim Hroob, to which we
contributed equally. More specifically, I developed the segmentation pipeline and
integrated MapMOS from Chap. 4 to segment stable points, whereas Ibrahim
Hroob was responsible for the localization part and the experimental evaluation.
For completeness, we present the entire work resulting in the joint paper [76] in
this thesis.

6.1 Generalizable Scan-to-Map Stable Point
Segmentation

The main contribution of this chapter is a novel real-time approach for segment-
ing stable points from a 3D LiDAR scan. Using these stable points for localiza-
tion, our approach can enhance scan-to-map matching in changing environments.
We achieve this by training a 4D sparse convolutional neural network in a self-
supervised manner, allowing it to predict spatio-temporal features in the current
scan by exploiting discrepancies between the scan and the map data.

In sum, we make two key claims: Our approach can (i) segment scan points
into stable and unstable points and utilize the stable points to increase the ac-
curacy of robot long-term localization and (ii) generalize across diverse and un-
seen environments, including settings not encountered during training, leading to
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Figure 6.2: Initially, we transform the scan using an initial pose estimate. Next, we voxelize
both scan and map points and extract overlapping map voxels, so-called submap voxels. We
represent the scan and map voxels as a 4D sparse tensor, with the fourth dimension denoting
time t. We then apply sparse 4D convolutions on a joint sparse voxel grid encompassing both
the scan and submap points, leading to the prediction of long-term stability scores for the scan
points.

improved localization performance while being suitable for online mobile robot
operation. The chapter and our experimental evaluation back up these claims.

6.1.1 Overview
In this chapter, we propose a generalizable segmentation of stable points filter
to increase the robustness of pose estimation for scan-matching algorithms in
changing environments. We illustrate the pipeline in Fig. 6.2. To this end, we
first transform the scan into the global map frame using an initial pose estimate,
see Sec. 6.1.2. Then, we employ 4D sparse convolutions across scan and map
voxels to exploit their discrepancy and increase the network’s generalization ca-
pability as outlined in Sec. 6.1.3. In contrast, to Chap. 4, the local map used for
localization can be large and of high density. Therefore, we do not use all map
voxels, only those that overlap with scan voxels based on the initial guess. We call
these map voxels “submap voxels”. We train the 4D sparse CNN self-supervised,
leveraging prior environmental observations to generate training labels with long-
term stability, as described in Sec. 6.1.4.

6.1.2 Map-Based 3D LiDAR Localization
When estimating the robot’s pose MTt ∈ SE(3) in a given map M and sensor
reading zt at time t, the most used localization algorithm is Monte Carlo lo-
calization [40]. It can achieve both local and global localization. Alternatively,
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scan-matching algorithms such as iterative closest point [18] or normal distribu-
tions transform [20] can achieve accurate robot localization within a known map.
However, unlike Monte Carlo localization, they can estimate smoother robot tra-
jectories but require a strong guess of the initial pose and are less robust [4].
In this work, we focus on scan-matching algorithms. We proceed with the as-
sumption of an initial estimate being available. This assumption holds for many
robotics applications targeting repeated missions such as data recording and site
inspection missions, where the mobile robot typically starts its operations from
a fixed initial pose.

The concepts presented in this work are versatile and applicable to both the it-
erative closest point and normal distributions transform algorithms. However, we
cannot directly use KISS-ICP from our previous chapters because it is a LiDAR
odometry approach that registers each scan to a local map, which we build incre-
mentally online. In this chapter, we aim to localize a map already built during
a previous session. Therefore, we use the normal distributions transform lo-
calization framework [93], which performs unscented Kalman filter-based pose
estimation [178]. The estimated pose provides a strong initial estimate for the
algorithm during scan registration. We define the sensor transformation matrix
to estimate at time t as follows:

MTt=

[
Rt tt
0 1

]
, (6.1)

where tt ∈ R3 is the position and Rt ∈ SO(3) is the rotation matrix of the sensor
with respect to the origin of the point cloud map M. The normal distributions
transform aims to find MTt of the current scan Pt that maximizes the likelihood
that Pt overlaps with the reference map M. Without loss of generality, we omit
the superscript t since all the processes occur at the current timestamp t. We
estimate the transformation matrix MT∗

t as follows:

MT∗
t = argmax

MTt

∑
i

exp
(
−(p′

i−µi)
TΣ−1

i (p′
i−µi)

2

)
, (6.2)

where we obtain the transformed query points p′
i in homogeneous

coordinates p′
i =

MTtpi by applying the transformation matrix MTt on the
homogeneous query point pi. The expressions Σi and µi are the covariance
matrix and the mean of the corresponding normal distributions transform voxel
for the point p′

i looked up in the normal distributions transform voxels of the
map M.

In a non-static environment, the LiDAR scan measurements are taken from
both stable and unstable objects, expressed as

P =Ps ∪ Pu. (6.3)
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Here, Ps denotes the subset of points that we measure from stable objects,
while Pu encompasses the points we associate with unstable objects. Unstable
points are characterized by their lack of corresponding points in the map. Filter-
ing out these unstable points enhances the accuracy of scan-matching algorithms
by improving the data association between the current scan and the map.

6.1.3 Segmentation of Stable Points
Similar to the moving object segmentation in Chap. 4, we aim at exploring the
spatio-temporal discrepancy between the LiDAR frame and a point cloud map
to decide which points are stable, therefore enabling a generalizable setup that
does not rely on additional information such as semantics. The main difference
is that we do not build the point cloud map on the fly, but it is a given map our
robot should use for localization.

To find the discrepancy between the scan and map point, we first start by
transforming the LiDAR scan Pt= {p1,p2, . . . ,pN} into the global map frame
utilizing the initial pose prediction from the unscented Kalman filter MT′

t, result-
ing in P ′. Then we add a timestamp t to the scan and map points to form a
4D tensor with each point represented as pi = [xi, yi, zi, ti]

T, where we use a fixed
time tm for the map points and a fixed time ts for the transformed scan points P ′.
The motivation is mainly to distinguish between scan and map points falling in
the same voxels at later steps.

Subsequently, we discretize the scan and map 4D tensors into sparse 4D ten-
sors, utilizing a predefined spatial resolution. We denote the scan and map sparse
voxel grid coordinates as follows: CS ∈ R4×n and CM ∈ R4×m. Here, n and m

are the numbers of scan and map voxels, respectively. We represent each voxel
coordinate using its central Cartesian position. It is important to note that we
preserve the original point coordinates within their respective voxels to recover
a per-point segmentation. We follow the setup from Chap. 3 and use a constant
feature of 0.5 for each voxel to extract the spatio-temporal information only from
the non-empty voxels represented by the sparse 4D coordinates.

Next, we merge the scan and map 4D tensors into a unified tensor. Given
that scan and map voxels share the same coordinate frame, this merging process
highlights the discrepancies between the scan and map voxels, revealing three
possible scenarios for a voxel. Firstly, if a voxel encompasses both scan and map
timestamps, it suggests an association with a stable object. Secondly, a spatial
voxel exclusively containing the scan timestamp indicates a potential association
with an unstable object. Lastly, if a voxel solely has the map timestamp, it
suggests it is beyond the scan range or obscured by another object.

We employ a sparse CNN designed for stability inference through regression
to estimate the stability confidence score for each point. This involves applying
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sparse convolution to the unified scan and map sparse 4D tensor. We derive our
sparse CNN based on the MinkUNet32 [32] from Sec. 2.4.2, which we also used
in Chap. 4. We repurpose this network as a regression model with a specific
modification to the final layer. In this adaptation, we utilize the sigmoid function
to predict confidence scores for stable points, ensuring the values range between 0
and 1 for each point.

In Chap. 4, we estimate moving objects based on the scan and a local map.
We use this local map for odometry estimation and clip it based on the sensor’s
maximum range to reduce the memory and runtime overhead. However, in this
chapter, we aim to localize in a given map, which can be at a large-scale level
depending on the environment, resulting in a large unified tensor. To reduce the
computational cost of the 4D convolutions, we prune the unified sparse tensor by
eliminating sparse voxels that exclusively contain the map timestamp. We keep
only the voxels that contain at least the scan timestamp as illustrated in Fig. 6.3.
This decision stems from our specific interest in inferring stability confidence
scores only for the scan points, and we argue that far-away map voxels without
corresponding scan voxels do not influence the stability.

Finally, we segment the stable points Ps from the current scan P based on
the predicted stability confidence scores assigned to P , where we apply a fixed
threshold ϵ for segmenting the stable points. Unlike prior work [77], our approach
leverages this scan-map discrepancy effectively in segmenting stable points, con-
tributing to the network’s robust generalization performance.

6.1.4 Training Labels for Sparse Convolutions
In contrast to moving object labels, which are available, for example, in the Se-
manticKITTI [16] dataset, stable and unstable points are usually not explicitly
labeled. Therefore, we generate the training labels for the sparse CNN in an
unsupervised fashion based on prior work [77]. This avoids the manual labeling
process as it is time- and resource-consuming. We consider a point stable if we
have at least two observations of its environment. We first build point cloud
maps of the observations denoted as {M}k0 using a simultaneous localization and
mapping system such as FAST-LIO [203], where k is the number of observations
of the environment, along with their associated occupancy grid OctoMaps [75].
We refer to the work by Hroob et al. [77] for further details.

Assuming the point cloud maps are roughly aligned, we fine-align them using
the iterative closest point algorithm. The labeling procedure starts with selecting
a reference map Mi. For each point p ∈Mi, we assign a spatio-temporal stability
label based on the maximum spatial distance d to the nearest point in all other
maps while accounting for occlusions by querying the occupancy of the point
location in the query map.
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Figure 6.3: Possible occupancy combinations for scan and map voxels. Our method prunes
map voxels without scan correspondence, substantially improving performance by eliminating
unnecessary voxels. In this simple example, the map depicts a wall corner, and the illustrated
scan voxels reveal the occlusion of some map voxels caused by an obstacle. We show the resulting
voxel coordinates C before and after pruning and indicate the map and scan timestamps as tm
and ts, respectively.

We transform this distance value into a unitless value using the cumulative
distribution function of an exponential function: F (d)= 1− exp(−d). This trans-
formation bounds the continuous value between 0 and 1, effectively representing
long-term spatio-temporal stability, where a value close to 0 suggests a stable
point, whereas a value approaching 1 indicates an unstable point.

6.1.5 Implementation Details

We set the quantization size for the sparse voxel grid to 0.1 m so as not to lose
details of the features. We train our 4D sparse CNN self-supervised by using the
auto-generated stability labels as explained in Sec. 6.1.4 and use the root mean
square error (RMSE) loss L to supervise the training on scan data only.

6.2 Experimental Evaluation
This work focuses on segmenting stable points from LiDAR scans and using them
to improve the localization performance of scan-matching algorithms in chang-
ing environments. We present our experiments to show the capabilities of our
method. The results of our experiments also support our key claims, which are:
(i) increasing the robustness of robot long-term localization and (ii) generalizing
well to different environments without model re-training.
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6.2.1 Experimental Setup
We demonstrate our method’s effectiveness in learning to segment stable points
and improving long-term localization using the Bacchus Long-Term (BLT)
dataset [143]. This dataset was collected in semi-structured agricultural
environments over several months. Additionally, we assess our approach’s
generalization by employing two more datasets: Riseholme, which is a vineyard
at the Riseholme campus and is also part of BLT and a parking lot from the
North Campus Long-Term (NCLT) dataset [25], which has diverse objects not
found in BLT, thus challenging our model’s generalization capabilities.

We compare our approach to different baselines that all rely on the same
localization method but differ in the preceding segmentation and filtering of the
scan points. For all experiments, we use the normal distributions transform
localization framework from Koide et al. [93], because it offers a flexible open-
source implementation of 3D LiDAR-based localization in a given map. We use
the following baselines: (i) Raw, which uses the unfiltered scans for localization,
(ii) Mask, which takes the scan points that fall into the masked submap voxels,
and (iii) LTS-NET [77], which filters stable points based on long-term stability
labels but does not leverage the scan-map discrepancy. To assess the influence of
moving objects on the localization performance, we also provide a baseline (iv)
for which we filter out moving objects using 4DMOS from Chap. 3.

We train the presented approach and LTS-NET on the labels automatically
generated from the BLT dataset. We do not train 4DMOS on this dataset for two
reasons. First, 4DMOS generalizes well in new unseen environments, and second,
the auto-generated labels from the BLT dataset will not work with 4DMOS since
the labels do not indicate if the object is currently moving. To generate the train-
ing data, we utilize the BLT dataset with sequences from April 20th and June 1st
for training and sequences from June 8th for validation. The model undergoes
training for 60 epochs, and we save the best-performing model based on its perfor-
mance on the validation dataset. Additionally, we augment the training batches
by applying random flipping, rotating, and scaling transforms from Chap. 3. Af-
ter predicting long-term stability confidence scores with our method, we use a
fixed threshold of ϵ = 0.84 for filtering stable points, which we chose based on
the localization performance on the training and validation set.

6.2.2 Localization Performance in Agricultural
Environments

In this section, we conduct experiments to support our first claim and evaluate the
ability of our method to localize in changing environments using the segmented
stable points only.
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Method Raw Mask 4DMOS [121] LTS-NET [77] Ours
Seq/Metric RMSE Rts RMSE Rts RMSE Rts RMSE Rts RMSE Rts

April-20th* 0.133±0 100±0 0.385±0.03 64.8±12 0.132±0 100±0 0.093±0 100±0 0.128±0 100±0
June-1st* 0.352±0 72±0 0.777±0.10 8.8±2 0.546±0 100±0 0.3±0 100±0 0.288±0 100±0
June-8th** 0.382±0 100±0 0.697±0.08 8.2±4 0.366±0 100±0 0.272±0 100±0 0.281±0 100±0
June-29th 0.483±0 8.8±0 0.610±0.01 8.2±1 0.451±0 8.8±0 0.469±0 100±0 0.528±0.02 90.7±0
July-13th 0.281±0.03 75±0 0.663±0.02 12.2±0.04 0.201±0 73.7±0 0.416±0 11.1±0 0.350±0.06 87±0

Table 6.1: Averaged localization performance comparison between baseline methods and our proposed approach (Ours) from five experiments, including
standard deviations. We report RMSE results in meters and Rts values in percentage. The * indicates the training sequences of the segmentation of stable
points, and the ** indicates the validation sequence.
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To evaluate the performance of improving the accuracy of scan-to-map lo-
calization in changing environments through stable scan points, we first build a
reference map using earlier sequences of the BLT dataset. We mainly use the
April 6th sequence of an early growth stage of crops, which contains only sta-
ble objects. Subsequently, we utilize the data from the later sessions to perform
localization within the reference map.

For the quantitative evaluation, we use the RMSE of the absolute trajectory
error (ATE) [65]. However, it is essential to note that the localization algorithm
might fail to estimate a reliable pose and provide inaccurate poses. To account for
this, we consider the localization failed if the ATE exceeds a specific threshold τ ,
which is 1.5 m in our use case. We excluded estimated poses beyond this point
from the evaluation. We employ the trajectory duration ratio metric [36] to
conduct a fair trajectory evaluation. It represents the ratio between the duration
of the estimated trajectory ∆test and the total duration of the ground truth
trajectory ∆tgt. Specifically:

Rts =
∆test

∆tgt
, (6.4)

where a value closer to 100 % indicates a more reliable estimation. We summarize
the localization performance of all methods in Tab. 6.1.

In the initial vineyard stages on April 20th, when the environment was rela-
tively stable, most methods show a similar localization performance, with a slight
advantage for LTS-NET. However, the mask baseline fails when the robot rotates
at the end of a row. Subsequent sessions show degradation and eventual failure
in the localization performance of both raw scans and 4DMOS-segmented scans,
particularly in the June 29th sequence. This is due to 4DMOS’ limitation in
segmenting only dynamic objects, such as pedestrians, while neglecting unstable
objects like overgrown vegetation. As illustrated in Fig. 6.1, these unstable points
will not have a map correspondence, thus causing scan matching failure. Con-
versely, our method and LTS-NET consistently deliver competitive performance
across various sequences and metrics.

An interesting observation is the results for the July 13th session, where LTS-
NET initially tracks only about 11% of the trajectory, while our method ex-
hibits a more robust performance, tracking 87% of the entire trajectory. In
addition to RMSE and Rts, we visualize the empirical cumulative distribution
function [145] to evaluate the robustness of the system and to assess the regis-
tration accuracy between the reference map and the LiDAR scan. We show the
cumulative distribution function plots for the test sequences in Fig. 6.4. The
closer the curve is towards the upper left corner, the smaller the expected errors
and the more robust the system. The results verify that the proposed approach
is more robust than the baselines.

95



6.2. Experimental Evaluation

CDF of Seq: June-29th

Error [m] Error [m]

CDF of Seq: July-13th
1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0
1.00.80.60.40.20.0 1.00.80.60.40.20.0

C
um

ul
at

iv
e

Pr
ob

ab
ili

ty

Ours

Raw

LTS-NET

Mask

4DMOS

Ours

Raw

LTS-NET

Mask

4DMOS

Figure 6.4: Plots of the cumulative distribution function of the translational localization error
for the BLT sequences June-29th and July-13th using an off-the-shelf localization method with
different point filters.

Method

Dataset Raw 4DMOS LTS-NET Ours

Riseholme 0.264 0.263 0.290 0.261
NCLT-115 0.165 0.166 0.165 0.157
NCLT-202 0.163 0.160 0.167 0.157
NCLT-219 0.170 0.164 0.158 0.156

Table 6.2: Generalization performance of the proposed method compared to the baselines in
new environments. We report the RMSE of the estimated trajectory in meters.

The mask baseline consistently fails in all sessions. The reason behind this
failure is that this baseline relies on the accuracy of the initial pose prediction
from the unscented Kalman filter to segment the scan points associated with map
voxels; thus, a misalignment between the scan and the map larger than the size
of the voxelization can fail to correctly segment the scan points, thus causing a
failure in the localization.

6.2.3 Generalization Capabilities
Next, we assess our second claim about the proposed method’s generalization
capability to segment the stable points and enhance long-term localization in new
and diverse environments. We conducted experiments in two environments. The
first environment is a vineyard located at the Riseholme campus of the University
of Lincoln, while the second setup is a parking lot from the NCLT dataset. We do
not re-train the models or use transfer learning techniques in both cases. Further,
we employ a reference map representing the static structure. In the vineyard, we
observe changes due to plant growth, while the parking lot poses two distinct
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Figure 6.5: Comparison of the generalization ability of our method to multiple baselines. Rise-
holme is recorded in an agricultural environment with walking persons and changing vegetation,
whereas NCLT is a parking lot with parked cars.

challenges: alterations in the parking lot shape based on the number of cars and
the presence of plant vegetation, as well as moving objects in the sequence. For
the NCLT dataset, we use data from the sequences 2012-01-15, 2012-02-02, and
2012-02-19, denoted as NCLT-115, NCLT-202, and NCLT-219, respectively.

Tab. 6.2 summarizes the method’s localization performance compared to the
baseline. The reported results are the averages of five runs. The deviation of the
runs is not presented since the results were consistent. Additionally, we do not
report the Rts metric and only report the RMSE of the ATE since the localizer
effectively tracks the robot throughout the entire trajectory for all methods. We
exclude the mask baseline from these experiments as it consistently fails in all
trials due to initial pose misalignment. The results in Tab. 6.2 support our
second claim. Notably, the localization performance of raw and segmented scans
from 4DMOS exhibit similarities, suggesting that dynamic objects such as moving
pedestrians or cars have minimal impact on the localization performance. To back
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Sequence Method IoU Precision Recall F1

4DMOS 0.039 0.554 0.039 0.072
LTS-NET 0.643 0.836 0.738 0.779June-8th**
Ours 0.727 0.861 0.827 0.839

4DMOS 0.065 0.47 0.068 0.105
LTS-NET 0.637 0.878 0.701 0.775June-29th
Ours 0.784 0.924 0.836 0.877

4DMOS 0.006 0.541 0.006 0.012
LTS-NET 0.611 0.846 0.687 0.755July-13th
Ours 0.78 0.875 0.881 0.875

Table 6.3: Performance of segmenting stable points for the validation and test sequences of the
BLT dataset. We report the average over all scans in the corresponding sequence. We compute
all metrics for the unstable points. The best results are in bold. The ** indicates data used to
validate the segmentation of unstable points.

this up, we manually labeled the dynamic objects and found their proportion to
be 0.73 % of all points in the three sequences, and 4.22 % of the points belonging
to movable objects like pedestrians and cars. This indicates that the majority of
movable and, therefore, unstable points are not dynamic. We hypothesize that the
utilization of stable points substantially influences the localization performance.

Furthermore, utilizing both scan and submap voxels as an indication of dis-
crepancy allows us to segment and utilize stable points in new and diverse en-
vironments, as shown in Fig. 6.5. The proposed method successfully segments
stable elements in the Riseholme dataset, including humans and vegetation. In
contrast, the NCLT dataset accurately identifies parking cars and pedestrians as
unstable objects, a task where both 4DMOS and LTS-NET fail. Possible reasons
are that 4DMOS segments stable points based on their current motion and LTS-
NET based on object shapes seen during training, an agricultural environment
in this experiment.

6.2.4 Filtering of Unstable Points
The previous experiments suggest that our approach successfully localizes in
changing environments by segmenting and filtering unstable points. To provide
more detailed reasoning as to why our system improves upon existing methods,
we provide a quantitative evaluation of the classification performance of unsta-
ble points. We report standard metrics such as IoU, precision, recall, and F1
score [49] for unstable points on the validation and test set of BLT and NCLT.
We focus on evaluating unstable points since their removal is more critical than,
for example, keeping all static points. It is important to note that we use the
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Sequence Method IoU Precision Recall F1

4DMOS 0.113 0.359 0.139 0.174
LTS-NET 0.054 0.269 0.07 0.099115
Ours 0.262 0.382 0.483 0.391

4DMOS 0.198 0.649 0.23 0.302
LTS-NET 0.152 0.601 0.167 0.251202
Ours 0.585 0.684 0.785 0.721

4DMOS 0.115 0.446 0.129 0.174
LTS-NET 0.075 0.277 0.096 0.132219
Ours 0.502 0.616 0.717 0.638

Table 6.4: Performance of segmenting stable points for the NCLT dataset. We average the
reported results over all scans and compute all metrics for the unstable points. The best results
are in bold.

Dataset LiDAR 4DMOS LTS-NET Ours

BLT 16-beams 0.052 s (19.1Hz) 0.095 s (10.5Hz) 0.037 s (27.3 Hz)
NCLT 32-beams 0.048 s (20.7Hz) 0.101 s (9.9Hz) 0.036 s (27.8 Hz)

Table 6.5: Average inference time for localizing a 3D LiDAR frame using different segmentation
approaches.

auto-generated labels from Sec. 6.1.4 for evaluation, as no ground truth labels are
available. The results in Tab. 6.3 and Tab. 6.4 illustrate the system’s effectiveness
in segmenting unstable points compared to the baselines. Our approach achieves
the highest recall and removes more unstable points than the baselines, result-
ing in better localization in Sec. 6.2.2 and Sec. 6.2.3. Additionally, the results
in Tab. 6.4 again confirm the ability of our proposed method to segment unstable
points across novel and unseen environments. Note that the performance gap
for 4DMOS is due to the fact that 4DMOS segments moving objects only, which
is only a subset of the moving points.

6.2.5 Runtime

We summarize the inference time of our method compared to 4DMOS and LTS-
NET in Tab. 6.5 on an NVIDIA GeForce GTX 1080 Ti GPU. The results demon-
strate that the proposed approach can run sufficiently fast for mobile robots.
Furthermore, our approach shows a smaller GPU memory demand of 1047 MB
compared to 1703 MB for 4DMOS, and 9487 MB for LTS-NET.
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6.3 Related Work

We can distinguish between local and global localization when dealing with lo-
calization based on a given map. The latter aims to determine the robot’s pose
in a map without prior pose information. In local localization, also called pose
tracking, the robot starts from a known pose and updates the pose as time pro-
gresses. This work addresses local localization using 3D LiDAR data in a changing
environment, commonly known as long-term localization.

LiDAR Map-Based Localization. Probabilistic and feature-based meth-
ods are popular approaches for robot LiDAR localization in a pre-built map.
Examples of probabilistic methods include Kalman filters [178] and Monte Carlo
localization [40], which are widely used for robot localization [4, 31, 117]. For in-
stance, Chen et al. [31] exploit Monte Carlo localization to estimate the vehicle’s
local and global pose within a pre-built mesh-based map representation utilizing
range images derived from 3D LiDAR data. On the other hand, feature-based
methods such as scan matching techniques [18, 20] estimate the robot pose by
aligning the current sensor readings (raw laser scans or visual features) with a pre-
built map [93, 129, 151]. Some techniques even combine grids and features [200].
In contrast to the probabilistic methods, scan-matching methods need a good
guess of the robot’s initial pose. However, they often estimate a smoother trajec-
tory. Therefore, we focus on scan-matching systems to improve their performance
in dynamic environments.

Localization in Dynamic Environments. Regarding long-term localiza-
tion, the environment may gradually or suddenly change over time, impacting the
robot’s pose estimation accuracy for scan-matching algorithms [39]. Therefore,
researchers explore incorporating new information into the map. If the current
observations do not align with the static map, failing pose tracking, a temporary
map is generated. This temporary map is later fused with the static map for
subsequent localization runs. For instance, Biber and Duckett [19] introduce a
dynamic map that represents short and long-term changes. They address the
stability-plasticity dilemma, which describes the trade-off in life-long learning of
adapting to new observations while remembering old patterns. The proposed
map consists of multiple sub-maps, updated based on different timescales like
hours, days, or weeks. This allows for tracking the state of the environment
at different timescales and then using the timescale for localization that fits the
sensor’s observations best.

Instead of modeling the temporal changes, Stachniss and Burgard [171] aim
at identifying different configurations of the dynamic environment represented by
multiple sub-maps. The robot is then localized by estimating the current con-
figuration from previously clustered grid maps. Walcott et al. [190] propose a
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dynamic pose graph for SLAM that incorporates low-dynamic changes by remov-
ing inactive scans and adding new scans. To deal with a more extensive variety
of dynamics, Tipaldi et al. [180] develop a hidden Markov model to represent
the dynamics of the environment and estimate both the robot’s pose and the
environment’s state.

However, all these approaches operate on 2D laser data in mostly indoor
environments. Using them with large-scale and outdoor 3D point clouds is not
straightforward. For 3D data, cleaning the map in a post-processing step is
common by removing points from dynamic objects. For example, Removert [90]
removes map points based on their visibility in a query scan. We already discussed
the generation of static 3D maps and refer the reader to Sec. 4.3 for further details
on related work.

In contrast to the abovementioned methods, our approach does not require a
complex map update process since it uses the initial environment map. We do not
remove map points measured from moving objects but instead, filter out points
that are generally inconsistent with the map. This also covers measurements from
vegetation that changed between runs, for example.

Deep Learning-based Localization. Several methods exploit deep neu-
ral networks and semantic information for long-term localization. For example,
Tinchev et al. [179] propose a learning-based method for segment-matching trees
and localizing in diverse environments. The input point cloud is first segmented
into individual objects based on the point distance, then a CNN computes a
descriptor for each segment. This descriptor is matched against the existing seg-
ments in the map to estimate the final pose with PROSAC [33], a robust matching
method based on random sample consensus [54].

At the same time, Kim et al. [87] present a long-term localization method
based on a point cloud descriptor called Scan Context Image based on the Scan
Context [89] descriptor developed for loop closure detection. The authors train
a convolutional neural network to localize on a grid map by classifying the cor-
responding grid cell.

Zimmerman et al. [218] aim to overcome the discrepancy between the sensory
data and the static map by leveraging human-readable cues. The cues stem from
spotted text, such as room numbers, and help to guide the localization filter to
areas where the text is expected to be seen. This increases robustness to low
dynamic changes.

Recently, Wiesmann et al. [197] propose to learn a neural distance field from
sensor data and demonstrate how to localize in such an implicit representation
of the environment. The authors do not handle dynamic changes explicitly but
rely on a robust kernel to weigh down the influence of moved objects in the
environment during the scan registration.
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While those methods avoid map updates and work on the sensory data, they
are bound to indoor environments, rely on handcrafted features, or need super-
vised training. In contrast, our method learns the features in a self-supervised
fashion. We develop a novel self-supervised segmentation of stable points method
by exploiting 4D sparse convolutions. Our method can improve long-term local-
ization performance by using stable points for localization. Using sparse repre-
sentations allows us to achieve a segmentation in real-time.

6.4 Conclusion
In this chapter, we presented a novel approach to increase the accuracy of scan-
to-map-based localization in dynamic environments and demonstrated how we
can further use the knowledge about dynamics after answering the “What is
moving?” question. Our approach segments the scan points into stable and
unstable points based on their long-term stability, and we demonstrated how to
use only the stable points for localization. The backbone of our method is a
modified MinkUNet32 [32], a sparse 4D sparse CNN, that we trained in a self-
supervised fashion.

In our experimental evaluation, we initially trained and evaluated our method
using the BLT dataset and then assessed its generalization capabilities on two
additional datasets. The outcome indicated improved localization performance,
successful generalization to unseen data, and a runtime suitable for mobile robots,
which supported all claims made in this chapter.

Despite the effectiveness of our proposed approach, we rely on an accurate
relative pose estimate for the initial alignment of the scan with the map to accu-
rately determine discrepancies between scan and map data. This relative align-
ment should be a reasonable initial guess to avoid wrong segmentation leading to
a localization failure.
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Spatio-Temporal Prediction
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Chapter 7

Supervised Trajectory Prediction

T he ability to identify moving objects in dynamic environments as pre-
sented in the previous chapters and predict their future movement is
a subconscious and effortless skill for humans and the key to safe au-
tonomous navigation. Humans anticipate possible maneuvers of other

agents and react accordingly in advance. Especially with varying numbers and
types of moving objects in dynamic and complex environments, predicting the
intentions of others can become a challenging task. Humans refined this skill
over time, typically outperforming technical systems. Interdependencies between
agent behaviors and the multimodal nature of future intentions in a dynamic and
complex environment render trajectory prediction a challenging problem. Intel-
ligent systems require a reliable perception of the driving environment over time
and space to make medium- or even long-term predictions. They have to answer
this thesis’s second main research question about an observed object, which is
“Where is an object moving to?”.

Since predicting future behavior is not straightforward, we will first focus on
trajectory prediction for autonomous vehicles. In contrast to pedestrians and
bicycles, these vehicles are more restricted in motion due to larger inertia, traffic
rules, and road geometries. Inertia makes vehicle movements better predictable,
especially in structured driving scenarios like highway driving.

Despite these favorable properties, challenges arise due to the dynamic in-
teractions among vehicles. Particularly, lane change maneuvers require special
attention for surrounding objects. Given a target vehicle for which one wants
to predict the future trajectory, neighboring vehicles influence but also restrict
the possible maneuvers, such as accelerating or changing a lane. The situation
depicted in Fig. 7.1 illustrates such a scenario. If the black vehicle (T) is faster
than the truck in front (F), it must slow down or change lanes. We show possi-
ble scenarios as colorized trajectories. Their likelihood strongly depends on the
positions, velocities, and accelerations of the neighboring vehicles F, L, R, RL,
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Figure 7.1: The goal is to predict the future maneuver and trajectory of the black target
vehicle (T). We estimate the different future motions depending on the neighbors’ states, such
as position, velocity, and acceleration. Colors indicate possible maneuvers with corresponding
trajectories. Gray arrows denote velocity vectors, and their lengths indicate speed.

and FL. The example illustrates the inherent interdependencies among vehicle
behaviors for a time horizon of several seconds. This chapter proposes a method
to tackle these challenges by paying attention to the other road users and their
dynamics and explicitly estimating the driver’s maneuver intention in advance.

In this chapter, we propose a new, data-driven approach for predicting the
motion of vehicles in a road environment. The model allows for inferring future
intentions from the past interaction among vehicles in highway driving scenarios.
Using our neighborhood-based data representation, the proposed system jointly
exploits correlations in the spatial and temporal domain using a CNN. Our system
considers multiple possible maneuver intentions and their corresponding motion
and predicts the trajectory for five seconds into the future. We implemented our
approach and evaluated it on two highway datasets taken in different countries
and can achieve a competitive prediction performance.

This chapter is a joint work with Thomas Höllen, and the initial idea is based
on his master thesis. My contribution was refining, developing, and implement-
ing the approach and conducting the experimental evaluation for the published
paper [122].

7.1 Maneuver-Based Trajectory Prediction
Using 2D Convolutions

The main contributions of this chapter towards vehicle motion prediction are two-
fold. First, we present a novel semantic neighborhood representation of the scene
around a target vehicle for joint aggregation of higher-level features in prediction
tasks. The memory-efficient and dense 3D tensor encodes the time, neighbor po-
sitions, and past vehicle states as dynamic context. Second, we propose using two
2D CNNs for joint spatio-temporal feature extraction from the proposed input
representation. Our approach explicitly uses convolutions across time and the
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space of neighboring vehicles. To this end, we classify a target vehicle’s future
lane change intention with respect to a lateral motion and then predict a trajec-
tory based on the classified lane change intention. Using a spatio-temporal CNN
for sequence prediction leads to a simpler and more compact architecture than
recurrent network approaches, resulting in fewer parameters to train but compet-
itive prediction performance.

This yields an approach that can (i) successfully classify lane change maneu-
vers and predict a corresponding trajectory for real-world scenarios by (ii) per-
forming joint spatio-temporal feature aggregation with 2D CNNs, (iii) and out-
perform state-of-the-art methods. The chapter, our experimental evaluation, and
an ablation study support these three main claims.

7.1.1 Overview

The key idea of our approach is to first classify the lane change maneuver of a
target vehicle for each step into the future and then predict the corresponding
trajectory with the classification result as an additional input.

At the current timestamp t=0, the goal is to predict the sequence of P

future positions {(x1, y1), . . . , (xP , yP )} from H past states S = {s0, . . . , sH−1}.
Each past state st consists of multiple channels like position, acceleration, and
velocity of the target vehicle and its neighbors, which we transform into a 3D
tensor as described in more detail in Sec. 7.1.2. We pre-define the lane change
maneuvers, which cover sequences of straight driving, left, and right lane changes,
see Sec. 7.1.6. The classification and regression parts rely on exploiting past state
sequences with spatio-temporal 2D convolutions, which we explain in Sec. 7.1.3.
Based on the CNN features, the classification module predicts a discrete maneu-
ver (straight driving, left lane change, or right lane change) for each prediction
step 1, . . . , P into the future, see Sec. 7.1.4. We pass the classified sequence to the
regression module as an additional input to predict a trajectory based on the ma-
neuver as outlined in Sec. 7.1.5. Both modules share the same convolution-based
architecture. When training on common, publicly available highway datasets,
lane changes are usually underrepresented since the vehicles drive straight most
of the time. We found that training a single network with two heads and a
joint multi-task loss for classification and regression is hard to tune due to the
imbalance of lane change labels. Therefore, we propose to use partitioned mod-
els for each task, which makes it easier to train them separately without shared
parameters.
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7.1.2 Neighborhood-Based Input Representation
We consider the target vehicle’s direct neighborhood to predict a trajectory from
past data. Close neighbors influence the possible actions a vehicle can take.
For example, a leading vehicle with a lower velocity requires deceleration or a
lane change of the target vehicle. Still, the corresponding neighboring lane must
be free for a safe lane change maneuver. Whereas the short-time prediction of,
for example, the next state is mainly restricted by the inertia of the vehicle,
we assume that longer prediction horizons, including the neighborhood, lead to
better predictions, which we also back up by our experiment in Sec. 7.2.4. We
define a semantic neighborhood consisting of up to seven vehicles around the
target inspired by the work of Hu et al. [78]. As mentioned, the vehicles in
front (F) and on the left (L) and right (R) play an important role. We further
discretize the remaining neighborhood in front left (FL) and right (FR) as well
as rear left (RL) and right (RR) vehicles. This results in a maximum number
of eight considered vehicles, including the target. We illustrate the semantic
neighborhood in Fig. 7.2.

For each vehicle i, we represent its state sit at time t with the xi
t and yit

position, velocity vit, and acceleration ait,

sit =
[
xi
t, y

i
t, v

i
t, a

i
t

]T
. (7.1)

Note that the publicly available highway datasets provide these quantities for
this work. Otherwise, a previous detection and tracking module must estimate
the positional, velocity, and acceleration. We normalize the data beforehand to
guarantee a consistent input scaling. Note that our approach is not restricted to
these channels, and our multi-channel design makes it easy to add new informa-
tion channels useful for prediction.

Next, we concatenate these states for all neighboring vehicles, resulting in a
state st at time t. We store the neighbors and channels per time t along the
third, temporal dimension, see Fig. 7.2. This results in an image-like 3D tensor
with the spatial neighbor information as the height and the time as the width
of an image with the given input channels. We use three seconds of input data
to compare with existing methods and predict the maneuvers and positions for
the following five seconds. This results in an input tensor of dimension 4× 8× 30

with four channels, eight neighbors, and 30 frames of history sampled at 10 Hz.
If a neighbor is not present, we set the entries to zero, which is a state that is

not naturally present in the input data due to the choice of the reference location.
The concatenation order of neighbors can be chosen randomly but needs to be
consistent for training and evaluation. We experienced that keeping neighbor
positions close to each other in the data representation is advantageous. Based
on our experiments in Sec. 7.2.4, we hypothesize that the convolutional network
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Figure 7.2: Left: At each timestamp, we discretize the neighborhood around the target vehicle
into seven neighbor positions. Right: For each neighbor, we extract the input channels x and y

positions, velocity v, and acceleration a for each timestamp t resulting in 2D tensors St and
concatenate them to a 3D input tensor.

can learn a notion of absolute position and discriminates between neighbors.
We discuss this further in Sec. 7.1.3. In contrast to the previous chapters and
other approaches in Chap. 3 to Chap. 6 that encode the whole scene into a
grid structure [43], our neighborhood representation is more dense and memory-
efficient, since we do not take all vehicles into account.

7.1.3 Spatio-Temporal Convolutional Neural Network

In the previous works presented in Part I, we used a modified off-the-shelf 4D
sparse CNN for the segmentation task. In this chapter, existing convolutional
architectures are unavailable, and we therefore design our own. With our efficient
dense representation of the data proposed in Sec. 7.1.2, we can process the data
with 2D convolutions to predict a future maneuver and corresponding trajectory.

As done in the previous chapters, we apply convolutions along the time di-
mension to detect local correlations between states in the history sequence. In
addition to that, we extend the temporal convolution along the spatial neighbor
dimension, resulting in 2D convolutions. We use four convolutional layers for
feature aggregation. The hierarchical stacking of multiple layers ensures that the
low-level features from the input data can be combined in the subsequent layers
for higher-level representations. We conclude that higher layers learn to interpret
the convolution along the neighborhood dimension and, therefore, account for the
absolute position of the neighbor. This assumption is backed up by Kayhan et
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Figure 7.3: Two spatio-temporal convolutional networks aggregate features parallelly from the
neighborhood-based 3D input tensor. The tensor from Fig. 7.2 contains the x and y positions,
velocity v, and acceleration a for all eight vehicles at the past timestamps. The upper module
classifies a maneuver for each prediction step and passes the result to the lower regression
module to predict the offsets between the future trajectory and the current position. For each
layer, we provide the output dimensions.

al. [85], who claim that CNNs can encode absolute spatial locations from bound-
ary effects. Since we use zero padding and our spatial dimension is only eight,
we can expect to use the boundary effects during training.

It is worth pointing out that the learning process of all vehicles’ temporal
and spatial relations happens jointly. This makes the prediction fast since, in
contrast to recurrent models commonly used for temporal prediction, we do not
need to compute intermediate hidden states. We briefly review recurrent models
in Sec. 7.3 for more details. Analogously to vision-based 2D convolutions with
multiple image channels, the filter depth matches the number of feature channels.

Stacking multiple convolutional layers increases the receptive field of the CNN.
For temporal convolutional networks, the receptive field determines the number
of past timestamps that influence a single output. This is an important factor
for prediction performance, especially for longer input sequences. Besides deep-
ening the architecture by adding layers, increasing the size of the convolution
kernels is possible. However, since all techniques increase the number of training
parameters and the model complexity, we use dilated convolutions. A dilated
convolution expands the receptive field without reducing the resolution or cov-
erage, as pointed out by Yu and Koltun [209]. We implement dilations along
the temporal dimension by adding zeros between kernel entries depending on the
dilation rate. We provide an experiment on the improvement by using dilated
convolutions in Sec. 7.2.4.

We illustrate the complete network architecture in Fig. 7.3. Each convolu-
tional layer uses a leaky rectified linear unit activation function [115]. At the first
layer, we convolve the input tensor of size 4× 8× 30 with 24 filters with a kernel
size of 5× 10 and dilation of one. Each output in the resulting feature map of
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size 24× 4× 12 has a receptive field of 4× 5× 19. Furthermore, we carry out a
dilated convolution with 40 filters of size 3× 3 resulting in a size of 40× 2× 8.
The third layer applies 56 filters of size 2× 3 with dilation, which leads to a map
with 56× 1× 4 features. Finally, the last convolutional layer reduces the channel
dimension with 24 1× 1 kernels to 24 feature channels and a final receptive field
of 4× 8× 27.

7.1.4 Maneuver Classification
When only using a regression module to predict the trajectory, the model must
capture multiple possible maneuvers as motivated in Fig. 7.1. Mozaffari et
al. [127] point out that this can lead to predictions that are averaged over all
possible modes. We first classify the target vehicle’s future maneuver and predict
a trajectory that depends on the estimated maneuver.

To classify the future maneuver of the vehicle with our spatio-temporal CNN
defined in Sec. 7.1.3, we flatten the output of the last convolutional layer with
a size of 24 · 4=96 and pass it to a fully connected layer with a leaky rectified
linear unit activation function and a hidden dimension of 40. A final fully con-
nected layer processes the hidden feature vector of length 40. The output layer
predicts the class logits, which we can normalize to a probability for each of the
three maneuvers “straight”, “left”, and “right” at each prediction step, resulting
in an output vector of size 5× 3. Selecting the indices of the maneuvers with the
highest predicted probability results in an estimated maneuver intention vector
of size 5× 1 containing values between 0 and 2. Based on the three possible ma-
neuvers at each of the P =5 prediction steps, there are in total 35=243 maneuver
sequences the classification network can model. During training, we optimize the
network parameters by minimizing the sum of negative log-likelihoods at each
prediction step reading

Lclass =
P∑
t=1

− log p(ct), (7.2)

with p(ct) denoting the predicted probability for the ground truth class ct at times-
tamp t. We analyze the improvements in the prediction performance achieved by
our classification module in Sec. 7.2.4.

7.1.5 Trajectory Regression
We feed the classified maneuver sequence directly to the regression module to
make maneuver-based predictions. As discussed above, there are 243 possible
combinations of maneuver predictions for a given input tensor. We concatenate
the resulting vector of size 5× 1 containing the indices of the five most likely
maneuvers at each timestamp with the flattened CNN output vector, resulting
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in 101 features. We pass this vector to a fully connected layer with the same
architecture as in the classification module. The corresponding hidden vector of
size 40 is the input for the final output layer with a linear activation function,
which then predicts a vector of size 5× 2 containing the x and y positions at each
of the five prediction steps. During training, we use the ground truth maneuvers
as input for the regression module, whereas during evaluation, we use the ma-
neuvers predicted by the classification module. The training aims at minimizing
the batch-wise RMSE reading

Lreg =

√√√√ 1

P

P∑
t=1

‖x̂t − xt‖2, (7.3)

with predicted locations x̂t and ground truth locations xt for each timestamp t,
where each location consists of the x and y positions.

With the proposed architecture, the temporal and spatial information of the
highway scene around a target vehicle is jointly encoded by applying 2D con-
volutions. As Bai et al. [12] point out, the temporal convolution avoids a long
backpropagation path, resulting in a more compact model, which is easier to
train compared to RNNs. Also, we can carry out the prediction in parallel due
to the temporal convolutional structure resulting in faster inference. The total
amount of trainable parameters for the design depicted in Fig. 7.3 is 65,721. For
comparison, the convolutional social pooling approach [43] has 194,954, and the
multiple futures prediction approach [175] has 1,073,644 trainable parameters.

7.1.6 Output Parameterization and Ground Truth
Generation

The number of predicted future positions P depends on the output size of the
last dense layer in the classification and regression heads in Fig. 7.3 and is only
limited by the resolution of the dataset used for training. We choose to predict
and evaluate the future for the next 5 s represented via 5 positions being 1 s apart
in time. This sampling rate is commonly used for assessing the performance of
trajectory prediction methods [43, 166, 215]. Note that we still process the input
data at 10 Hz, unaffected by the output resolution. Furthermore, a higher output
rate can be easily added.

A ground truth maneuver output with three classes (straight, left lane change,
right lane change) is of size 5× 3, and we compute it from the lane IDs. The lane
ID is provided by the datasets and not part of the input data. If the lane ID of
a vehicle changes between consecutive frames, we assume a lane change with a
duration of 2 s before and after the corresponding frames and infer the maneuver
direction from the lane IDs. The regression layer outputs trajectory offsets that
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describe the difference between the predicted position and the initial position
at t=0 of the target vehicle. This improves the training since we can achieve
the identity mapping from input to output by predicting zero offsets. We de-
normalize the model’s output at inference time and add them to the target’s
current position.

7.1.7 Implementation Details

We train the classification and regression modules with the Adam optimizer [92]
and a learning rate of 7 · 10−5. Additionally, we augment the training set by
overlapping the input data by 20 frames, resulting in more training examples.
This leads to better coverage of different lane change maneuvers in the training
data.

7.2 Experimental Evaluation

This chapter mainly focuses on predicting a vehicle’s lane change maneuver and
corresponding future trajectory based on past information about states, including
the neighborhood. We present our experiments to show the capabilities of our
method and to support our key claims made about our work, which are: (i) Suc-
cessfully classifying lane change maneuvers and predicting a corresponding tra-
jectory for real-world scenarios by (ii) performing joint spatio-temporal feature
aggregation with 2D CNNs, (iii) and outperforming state-of-the-art methods.

7.2.1 Experimental Setup

We consider two datasets to train and evaluate our proposed approach in real-
world scenarios. The highD dataset [94] contains 110,000 vehicle trajectories
from 60 highway recordings. The highways are located in Germany and have 2
to 3 lanes. To show that our approach works well with different driving behaviors
and highway structures, we also use the NGSIM dataset [69] with 9,206 vehicles
driving on two US highways with 5 to 6 lanes. Both datasets provide access to
position, velocity, and acceleration. For each dataset, we use 70% of all vehicle
trajectories for training, 10% for validation, and 20% for testing. We use the
same vehicle trajectories for testing as Song et al. [166] for a better comparison.

The total training time for each module of our approach is 17.5 h with 300
epochs on an Intel Xeon W-2133 CPU and an Nvidia Quadro RTX 5000 GPU.
It takes around 0.3 ms on average to classify the future maneuver sequence and
to predict the corresponding trajectory.
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Figure 7.4: Two scenarios with predictions for the black target vehicle (T). Left: The original
scene with a dashed red line as ground truth. The solid line represents the first seconds of
the predicted future trajectory. The length of the gray velocity vectors depicts the velocity of
neighboring vehicles. Our approach successfully classifies a left lane change (blue) since the
vehicle in front (F) is slower. Right: If we modify the neighborhood by removing the vehicle in
front, the prediction changes to a straight driving maneuver (black).
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Figure 7.5: Three scenarios with modified environments. Top: In the original highD scene, the
target cannot change the lane and needs to decelerate. Middle: Removed leading vehicle; the
target does not need to decelerate, resulting in a longer trajectory. Bottom: Removed left rear
neighbor; a left lane change (blue) is now possible and, therefore, predicted. Note that the
length of the gray velocity vectors depicts the velocity of neighboring vehicles.

7.2.2 Qualitative Analysis

The qualitative experiments evaluate the prediction results on real-world data
and support the claim that our modular approach of classification and regression
results in reasonable predicted maneuver-based trajectories. We show that the
prediction relies on the spatio-temporal encoding of the target vehicle’s surround-
ings by modifying the neighborhood, which leads to different results. We take
the original scenes from recording 56 of the highD dataset.

In Fig. 7.4, we consider two possible scenarios for the same highway scene
and depict the original neighborhood on the left. A slower vehicle (F) is in front
of the black target vehicle (T), forcing it to change lanes or decelerate. In this
case, the target will let the left center (L) vehicle pass and change lanes. Our
approach successfully classifies a left lane change maneuver indicated by the blue
color and predicts a trajectory that matches the ground truth depicted in red.
To demonstrate the influence of the semantic neighborhood on the prediction, we
remove the leading vehicle (F) by replacing the corresponding entries in the input
data with zeros. Based on the new neighborhood, our model predicts a straight
driving maneuver since there is no longer a need to change lanes.
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The second example in Fig. 7.5 demonstrates a more advanced highway scene.
The black target vehicle (T) faces a slower vehicle in front (F) again. Additionally,
two vehicles at the rear and center of the left lane (RL and L) hinder the target
from changing lanes. Our approach predicts that the vehicle will stay on the lane
and slow down. We show the ground truth in dashed red, which confirms our
prediction. In the middle part of Fig. 7.5, we removed the truck in front (F)
from the spatio-temporal input representation. One can see that the predicted
trajectory is still straight but longer compared to the previous case. We can
reason that there is no longer a slower leading vehicle that forces the target
vehicle to decelerate. In a third scenario, we keep the truck in front (F) and
remove the vehicle on the rear left (RL). The classification module now outputs a
lane change maneuver to the left (blue), and the corresponding trajectory moves
to the left lane. All three examples show that our approach can predict reasonable
maneuver intentions and trajectories from the neighborhood of the target vehicle.

7.2.3 Quantitative Analysis

We present a second experiment to support the claim that our approach out-
performs existing state-of-the-art methods for trajectory prediction. For a fair
comparison, we evaluate our approach on the same test sets for each dataset as
done by Song et al. [166]. We report the RMSE for each prediction step, a common
trajectory prediction metric. We compare the results with the baseline methods
S-LSTM [5], CS-LSTM [43], S-GAN [67], MATF [215] and PiP-noPlan [166]. In
the case of S-GAN and MATF, which are stochastic models, we take the best root
mean squared error among three sampled trajectories. We refer to the PiP-noPlan
implementation since the planning coupled module in PiP uses the ground truth
future trajectory of the target vehicle to predict the future trajectory of neigh-
boring vehicles, which would result in an unfair comparison.

We show the final results in Tab. 7.1. Our method generally shows better re-
sults for both datasets at the prediction steps. Especially for the highD dataset,
our proposed approach outperforms other state-of-the-art methods at larger pre-
diction horizons. All methods show larger RMSE values for the NGSIM dataset,
which we can explain by larger noise in the data as pointed out by Krajewski et
al. [94]. This noise leads to smaller performance improvements between the base-
lines and explains why our method achieves a smaller margin than the evaluation
on the highD dataset. We conclude that noise, for example, in the vehicle speed,
heavily influences the prediction due to the high average speed on highways.
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Dataset Time S-LSTM [5] CS-LSTM [43] S-GAN [67] MATF [215] PiP-noPlan [166] Ours

NGSIM

1 s 0.60 0.58 0.57 0.66 0.55 0.53
2 s 1.28 1.26 1.32 1.34 1.20 1.17
3 s 2.09 2.07 2.22 2.08 2.00 1.93
4 s 3.10 3.09 3.26 2.97 3.01 2.88
5 s 4.37 4.37 4.40 4.13 4.27 4.05

highD

1 s 0.19 0.19 0.30 - 0.18 0.10
2 s 0.57 0.57 0.78 - 0.53 0.21
3 s 1.18 1.16 1.46 - 1.09 0.41
4 s 2.00 1.96 2.34 - 1.86 0.78
5 s 3.02 2.96 3.41 - 2.81 1.34

Table 7.1: Comparison of the root mean squared error at each prediction step evaluated on the NGSIM [69] and highD [94] datasets. Bold numbers indicate
the best results. The baseline results are reported by Song et al. [166]. For the stochastic models S-GAN and MATF, we report the best root mean squared
error among three sampled trajectories. Note that for PiP, we refer to the PiP-noPlan implementation for a fair comparison since the planning coupled
module in PiP partially uses ground truth information.
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Only Input Without Shuffled Without Without Random Full
Time x and y Neighborhood Neighborhood Dilation Maneuver Maneuver Approach

1 s 0.24 0.08 0.15 0.15 0.14 0.14 0.10
2 s 0.64 0.18 0.25 0.30 0.26 0.33 0.21
3 s 1.24 0.39 0.43 0.52 0.47 0.62 0.41
4 s 2.02 0.83 0.82 0.90 0.87 1.04 0.78
5 s 3.00 1.52 1.40 1.45 1.48 1.60 1.34

Table 7.2: Ablation study with the root mean squared error at each prediction step evaluated using the highD dataset [94]. Bold numbers indicate the best
results.
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7.2.4 Ablation Study

Finally, we conduct an ablation study to evaluate how much each proposed com-
ponent of our method contributes to the performance reported in Tab. 7.1. Since
the data is more accurate, we re-train and evaluate our approach with several
modifications on the highD [94] dataset. We show the results in Tab. 7.2.

In a first ablation experiment, we re-train our method only using x- and y-
position as input channels. The result shown in Tab. 7.2 indicates that adding
velocity and acceleration as inputs leads to a major performance improvement,
which justifies the multi-channel design of the proposed 3D input tensor.

Suppose we ignore the local neighborhood defined in Sec. 7.1.2 for prediction
as done by Nikhil and Morris [131]. In that case, the prediction performance is
slightly better for short-term predictions but worse for larger prediction horizons.
This indicates that the behavior of other traffic participants mainly influences the
future trajectory at larger horizons, and we should not ignore it. Furthermore,
we re-train our approach with a shuffled neighborhood order, and the competitive
result for prediction steps larger than 1 s indicates that the CNN is able to learn
the absolute position across the vehicle dimension independent of the ordering.

We conduct an additional ablation study to investigate the effect of dilated
convolutions to increase the receptive field and reduce the number of parameters.
If we do not use dilated convolutions, we need to increase the size of the dense
layers in Fig. 7.3 to account for the resulting larger feature maps at the output
stage of the CNN. This results in a model with 90,681 parameters. Our exper-
iment shows that using dilated convolutions leads to better performance while
having fewer parameters to train.

The last ablation study investigates the effect of our maneuver-based pre-
diction. First, we do not use maneuvers, and the performance degrades. We
hypothesize that the regression module alone cannot capture all maneuvers and
that a prior classification improves distinguishing between these modes. Finally,
we show that our classification module can predict different maneuvers based on
the previous input by comparing it to a model randomly sampling a maneuver
sequence from the training distribution. One can see that the sampled maneuvers
lead to worse performance than our trained classification module.

7.3 Related Work
Brown et al. [21] break down the task of estimating and predicting human driver
behavior into state estimation, intention estimation, trait estimation, and motion
prediction. In this chapter, we focus on predicting the future motion of a vehicle
based on the estimated driver intention and organize the related work according
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to their level of interaction awareness, intention estimation, and finally, different
strategies to process spatio-temporal data for prediction.

Interaction-aware Prediction. Inferring the future motion of a vehicle
from past data has been approached from different perspectives. Closed-loop ap-
proaches roll out a control policy in a forward simulation for all target vehicles up
to the prediction time, which results in interaction-aware trajectories. Schulz et
al. [160] model the evolution of a traffic scene as a Markov process. Using a par-
ticle filter, they jointly estimate a hierarchical set of variables such as kinematic
state, route intentions, maneuver intentions, and actions for all traffic agents.

Interaction awareness between different traffic participants is deepened with
game-theoretic approaches [173], which condition an agent’s future motion on
the predicted motion of others. Peters et al. [140] infer the parameters of cost
functions of other agents from partial state observations and use these objectives
in a dynamic game theoretic framework for trajectory prediction. Since this
dependency increases the computational complexity and can become intractable,
other approaches model the future behaviors of vehicles to be independent of
each other. Among these, physics-based models solely use kinematic and dynamic
properties and apply filter- or sampling-based methods [99].

Other approaches aim to learn interactions from data. Mozaffari et al. [127]
differentiate data-based prediction approaches based on input representation,
output type, and prediction method. If we only use the target’s trajectory history
for prediction, we cannot consider interdependencies between surrounding vehi-
cles [139, 202]. In contrast, adding information about neighboring agents [38, 44],
stacking different sources of spatial information in bird’s eye view [37, 73] or using
raw sensor data of the target’s surroundings makes interaction-awareness between
past states possible [26, 101].

Deo and Trivedi [43] combine these ideas and develop a so-called “social ten-
sor”. This tensor consists of a bird’s eye view image of the scene and is augmented
by pre-processed temporal features. They use a combination of LSTMs for tem-
poral feature extraction for each vehicle trajectory and CNNs for processing the
resulting grid representation. An LSTM decoder generates the final trajectory
for each maneuver.

This chapter extended this idea by defining a spatio-temporal representation
in advance and then jointly aggregating spatial and temporal features for predic-
tion instead of processing them separately [43].

Intention Estimation. A common goal of motion prediction is the estima-
tion of maneuver intentions. These methods provide a high-level understanding
of future behavior, usually defined for specific scenarios like intersections [219] or
highway lane changes [47]. To predict low-level future motion, we can use an occu-
pancy grid map containing the occupancy probabilities at future timestamps [73].
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This output representation also allows for predicting multiple future modes but
lacks accuracy for large grid cells, resulting in less consistent trajectories.

Another possibility is to predict trajectories directly, either in a uni- or multi-
modal fashion. Unimodal predictions come with a lower computational cost but
tend to converge to a mean of different behavior modes [38, 114]. Maneuver-based
predictions fix this problem by outputting multiple motion hypotheses incorpo-
rating different maneuvers. We can formulate these models in a probabilistic
framework, meaning they model or sample from a multimodal distribution con-
ditioned on the input data [67, 175, 215].

Other approaches estimate intention modes in advance and use them to pre-
dict a trajectory [166, 202] based on the maneuver. Song et al. [166] propose PiP
to inform the prediction pipeline with the planned trajectory of the ego-vehicle.
The paper suggests that conditioning the prediction module with planned tra-
jectories improves the forecasting. However, the experimental evaluation is not
trivial because a plan without ground truth information is usually unavailable.

Casas et al. [26] perform a multi-class classification with eight intention classes
using CNNs on a voxelized LiDAR scan and a dynamic map containing road
structures and traffic lights. The generated intention scores are then further
processed to condition the trajectory estimation.

In contrast to these approaches, we define an intention space with three lateral
motions and classify a maneuver at each step. Combining these motions at each
step results in more maneuvers during the prediction.

Spatio-Temporal Prediction. Different methods have evolved for process-
ing the spatial and temporal dependencies to predict future behavior. RNNs can
predict time series by maintaining a hidden state while processing temporal in-
formation. However, they can be difficult to train for larger time series due to
vanishing or exploding gradients caused by their recurrent structure. Therefore,
more advanced recurrent models like gated recurrent units [34] or LSTMs [72]
have been proposed and applied for trajectory prediction [5, 7, 67, 86].

Since only extracting temporal information does not account for dependencies
between traffic participants, Alahi et al. [5] develop Social LSTM, which processes
the past states of each agent with a separate LSTM and predicts future trajec-
tories for all agents in the scene. To also encode social interaction, the authors
propose a social pooling layer, which shares the hidden state of the encoders of
spatially close agents.

CNNs have also been widely implemented for spatial information aggrega-
tion [26, 37, 73, 74]. Other methods are fully connected [78] or graph neural net-
works [46]. Generative adversarial networks proposed by Goodfellow et al. [62]
have also been considered for trajectory prediction [67, 96, 215]. For example,
Gupta et al. [67] encode the trajectories of agents with LSTMs and then employs a
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pooling module to share information between agents, similar to Social LSTM [5].
The approach called SGAN [67] uses a generative adversarial network to output
multi-model trajectories that look socially acceptable. Zhao et al. [215] propose
to fuse the information from multiple single-agent LSTM encoders. The resulting
MATF architecture fuses the information from multiple agents and encodes the
scene context. It allows the prediction of all agents’ future trajectories in a single
forward pass. Other combinations of the presented approaches can be found for
trajectory prediction [13, 154].

Our main difference is that we solely use a convolutional architecture for
jointly encoding temporal and spatial information and decoding the resulting
features for prediction without recurrent structures. This results in a simpler
architecture that is easier to train and faster to run.

The use of CNNs instead of RNNs for sequence modeling has been proposed by
Bai et al. [12]. They argue that such temporal convolutional neural networks can
outperform recurrent models for specific tasks while being more straightforward
to train. In addition, temporal convolutional neural networks can process the data
in parallel, making them faster at inference. Nikhil and Morris [131] propose to
use CNNs for pedestrian trajectory prediction and show superior performance
and speed compared to LSTM-based models. However, their method does not
consider neighboring agents since they only use 1D convolutions along the time
dimension. Temporal convolutions inspire the approach developed in this work
and provide, in contrast to Nikhil and Morris [131], a joint aggregation of spatial
and temporal features from the proposed novel tensor input representation.

7.4 Conclusion
This chapter presented a novel approach to classify a target vehicle’s future lane
change maneuver and predict the corresponding trajectory. Our model operates
on a 3D spatio-temporal input representation encoding the neighborhood infor-
mation around the target. We exploit the local correlations in neighboring state
sequences with spatio-temporal 2D convolutions, resulting in a simple, memory-
efficient architecture with fast inference. This allowed us to successfully account
for different possible driving maneuvers that we can use to make more informed
predictions for all agents in the scene.

We implemented and evaluated our approach on two datasets taken at differ-
ent locations with respect to the RMSE between the predicted and ground truth
trajectories. Further, we provided comparisons to other existing techniques, and
the experiments suggested that our approach can successfully predict maneuver-
based trajectories and estimate trajectories closer to the ground truth compared to
state-of-the-art methods. Finally, we carried out an ablation study to investigate
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the impact of different parts of the architecture on the prediction performance.
Our experimental evaluation backed up all claims made in this chapter.

The presented approach provided an answer to the question “Where is an
object moving to?”, but only for structured environments like highways and given
previously detected and tracked trajectories of other vehicles. In the next chapter,
we aim to omit these restrictions to obtain a method that predicts a future state
of the surroundings independent of the environment and prior perception outputs.
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Chapter 8

Self-Supervised Point Cloud
Prediction

E xploiting past 3D LiDAR scans to predict future point
clouds is a promising method for autonomous mobile systems to
realize foresighted state estimation, collision avoidance, and planning.
Estimating the future scene on the sensor level requires no preceding

steps as in localization or tracking systems. We can train our point cloud
prediction self-supervised without the need for expensive labeling and evaluate
its performance online in unknown environments since the following incoming
LiDAR scans always give the ground truth data.

In contrast to most approaches, which predict, for example, future locations
of traffic agents as demonstrated in Chap. 7, point cloud prediction does not
need any preceding inference steps such as localization, detection, or tracking to
predict a future scene. Running an off-the-shelf detection and tracking system on
the predicted point clouds can yield future 3D object bounding boxes as demon-
strated by recent approaches for point cloud forecasting [111, 196]. Besides that,
our approach presented in Chap. 7 uses an explicit neighborhood encoding for
structured environments like highways, which does not work for general scenarios.

This chapter addresses the problem of predicting large and unordered future
point clouds from a given sequence of past scans, as shown in Fig. 8.1. This idea
provides a more general answer to the “Where is an object moving to?” question
by reasoning about the future evolution of a scene solely based on the geometric
information from a point cloud sequence. This idea aligns with our initial works
on MOS presented in Part I, which have shown to be robust to the dynamic
environment and agnostic to the semantic class of moving objects.

High-dimensional and sparse 3D point cloud data render point cloud pre-
diction a challenging problem not yet fully explored in the literature. We can
estimate a future point cloud by applying a predicted future scene flow to the
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Pre-

diction

T−P+1 T T+1 T+F

Moving

Moving

Figure 8.1: Given a sequence of N past point clouds (left in red) at time T , the goal is to predict
the F future scans (right in blue). Note that all point clouds are in the sensor’s coordinate
system. The figure is best viewed in color.

last received scan or by generating a new set of future points. This chapter fo-
cuses on generating new point clouds to predict the future scene. In contrast
to existing approaches [111, 196], which exploit recurrent neural networks for
modeling temporal correspondences, we take inspiration from video prediction
approaches [3] and use spatio-temporal convolutions to encode the spatial and
temporal information jointly. We propose an end-to-end approach that exploits
a 2D range image representation of each 3D LiDAR scan and concatenates a se-
quence of range images to obtain a 3D tensor. Based on such tensors, we develop
an encoder-decoder architecture using dense 3D convolutions to jointly aggregate
spatial and temporal information of the scene and estimate a future range image
and per-point scores for being a valid or an invalid point for multiple future time
steps. This allows us to predict detailed future point clouds of varying sizes with
fewer parameters to optimize, resulting in faster training and inference times.

Furthermore, our approach is also fully self-supervised and does not require
manual data labeling. We evaluate our method on multiple datasets, and the
experimental results suggest that our method outperforms existing point cloud
prediction architectures and generalizes well to new, unseen environments with-
out additional fine-tuning. Our method operates online faster than the common
LiDAR frame rate of 10 Hz using a consumer-grade GPU.

8.1 3D Spatio-Temporal Convolutions For
Point Cloud Prediction

The main contribution of this chapter is a novel range image-based encoder-
decoder neural network to process spatio-temporal information from points clouds
using 3D convolutions jointly. Our method can obtain structural details of the
environment using skip connections and horizontal consistency using circular
padding. Ultimately, it provides more accurate predictions than other state-of-
the-art approaches for point cloud prediction. We make three main key claims:
Our approach can (i) predict a sequence of detailed future 3D point clouds from
a given input sequence by a fast joint spatio-temporal point cloud processing
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Spatio-Temporal
3D CNN

Spherical
Projection

PT

PT−1

PT−N+1

P̂T+2

P̂T+F

Range Valid Point
Mask Range

P̂T+1

Spherical
Projection

Spherical
Projection

Mask and
Re-project

Mask and
Re-project

Mask and
Re-project

Figure 8.2: Overview of our approach. At time step T , the past point clouds are first pro-
jected into a 2D range image representation and then concatenated. After passing through
our proposed spatio-temporal 3D CNN network, the combined predicted mask and range are
re-projected to obtain future 3D point cloud predictions.

using temporal 3D CNNs, (ii) outperform state-of-the-art point cloud predic-
tion approaches, and (iii) generalize well to unseen environments and operate
online faster than a typical rotating 3D LiDAR sensor frame rate of 10 Hz on
a consumer-grade GPU. This chapter and our experimental evaluation back
up these claims. The open-source code and the trained models are available at
https://github.com/PRBonn/point-cloud-prediction.

8.1.1 Overview
Our approach aims to predict a future sequence of F full-scale LiDAR
points {PT+1, . . . ,PT+F} given a sequence of N past scans {PT , . . . ,PT−N+1}
with Pt = {pi ∈ R3}. As illustrated in the overview of our method in Fig. 8.2,
we first project each past 3D point cloud into a range image representation and
concatenate the 2D images to obtain a 3D spatio-temporal tensor, see Sec. 8.1.2
for details. Second, we pass this tensor to our encoder-decoder architecture to
extract the spatial and temporal correlations with 3D convolutional kernels as
described in Sec. 8.1.3. We use skip connections and circular padding to
maintain details and horizontal consistency of the predicted range images,
see Sec. 8.1.4. We provide details on the training procedure in Sec. 8.1.5.

8.1.2 Point Cloud Sequence Representation
This section provides details on our range image representation. We convert each
3D LiDAR point p= [x, y, z]T to spherical coordinates and map them to image
coordinates [u, v]T resulting in a projection Π : R3 7→ R2[

u

v

]
=

[
1
2
(1− arctan(y, x) π−1)W

(1− (arcsin(z r−1)+ fup) f−1)H

]
, (8.1)
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with (H,W ) as the height and width of the range image and f= fup + fdown ∈ R
is the vertical field of view of the sensor. Each range image pixel stores the
range value r= ||p||2 of the projected point or zero if no projected point exists
in the corresponding pixel. If multiple points project to the same pixel due to
rounding, we keep the closer one since closer points are more important than
far-away points. We re-project a range image pixel with coordinates u and v and
range r solving Eq. (8.1) using pitch θ= arctan(y, x), yaw γ= arcsin(z r−1), and
computing

[x, y, z]T = [r cos(θ) cos(γ), r cos(θ) sin(γ), r sin(θ)]T . (8.2)

In contrast to the existing work using range images [30, 125], we found that
additionally using x, y, z, and intensity values did not improve the performance
of point cloud prediction. We concatenate the range images along the temporal
dimension to obtain the input 3D tensor with a size of N ×H ×W , which is
further processed by our encoder-decoder network.

8.1.3 Spatio-Temporal Encoder-Decoder Architecture
Our approach first converts the 3D LiDAR points into spherical coordinates and
maps them to image coordinates. This results in a dense 2D range image from
which we can recover the 3D information, see Sec. 8.1.2. The main task of the
encoder-decoder architecture illustrated in Fig. 8.3 is to jointly extract spatio-
temporal features from the input sequence and output future range image predic-
tions. Compared to a multilayer perceptron architecture that disregards spatial
and temporal dimensions, convolutions impose an inductive bias of having local
correlations along these dimensions. Convolutional networks usually require less
trainable parameters and are less prone to overfitting. Note that we could also
use a sparse 4D representation introduced for 4DMOS in Chap. 3 for this task.
However, the prediction task is more complex than segmentation because we need
to generate a sequence of new point clouds, which is not straightforward for such
an architecture. We, therefore, take inspiration from video prediction and use 2D
projections over time, resulting in a dense 3D tensor.

When using range images for point cloud prediction with 3D convolutions, we
require sufficient receptive fields along the spatial and temporal dimensions be-
tween the encoder and decoder to capture the motion of points in the past frames
and to propagate their locations into the future range images. The encoder takes
the 3D input tensor N ×H ×W , containing N range images with height H and
width W , and first standardizes the range values based on mean and standard
deviation computed from the training data. We pass the standardized tensor
through a 3D convolutional input layer with C kernels to get a C-channel feature
representation of size C ×N ×H ×W . Inspired by FutureGAN [3], the encoder
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block receives a tensor of size Cl ×Nl ×Hl ×Wl at each encoder stage l, applies
a combination of 3D convolution, 3D batch normalization [80], and the leaky
rectified linear unit activation function [115] while maintaining the size of the
tensor. A strided 3D convolution follows resulting in a downsampled tensor of
size Cl+1× (Nl−pl) × Hl

hl
× Wl

wl
where hl and wl are predefined downsampling fac-

tors for the spatial feature size and pl redces the temporal feature dimension.
We batch normalize the resulting tensor and apply a leaky rectified linear unit
activation function. The kernel size is pl ×hl ×wl and the stride (1, hl, wl) to
achieve the desired downsampling. The downsampling compresses the sequential
point cloud feature representation and forces the network to learn meaningful
intermediate spatio-temporal features.

To predict future range images for F future time steps, the decoder subse-
quently upsamples the feature tensor to the final output size 2×F ×H ×W .
Note that we fix the number of future range images in the architecture. Still,
we can achieve longer prediction horizons by re-training with a larger output size
or in an auto-regressive manner by sequentially feeding back the predicted range
images as the input tensor. This work will only focus on predicting a fixed num-
ber of future point clouds. The decoder architecture is a mirrored version of the
encoder. First, a transposed 3D convolutional layer with kernel size pl ×hl ×wl

and stride (1, hl, wl) increases the feature map. We insert a 3D batch normaliza-
tion and leaky rectified linear unit activation layer before a second 3D CNN, 3D
batch normalization, and leaky rectified linear unit follows. Finally, we pass the
output tensor C ×F ×H ×W through a 3D CNN output layer with two kernels
of size 1× 1× 1 and stride (1, 1, 1) and apply the final sigmoid function to get
normalized values between 0 and 1. The first output channel maps to a prede-
fined range interval, resulting in future range predictions. As done by Weng et
al. [196], the second channel contains a probability for each range image point to
be valid for re-projection. The re-projection mask keeps all points with a prob-
ability above 0.5. This makes it possible to mask out, for example, the sky for
which no ground truth points are available.

8.1.4 Skip Connections and Horizontal Circular Padding
We use strided 3D convolutions and downsample the range images as described
in Sec. 8.1.3. The reduced feature space size causes a loss of details in the pre-
dicted range of images. We address this problem by adding skip connections [152]
between the encoder and decoder to maintain details from the input scene. As
shown in Fig. 8.3, the feature maps bypass the remaining encoding steps, and
the mirrored decoder stage concatenates them with the previously upsampled
feature volume along the channel dimension. Concatenation enables the network
to account for the temporal offset between encoder and decoder feature maps.
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Figure 8.3: Our spatio-temporal architecture using a 3D CNN with feature map
sizes Ci ×Ni ×Hi ×Wi. Solid and dashed arrows indicate information flow and skip connec-
tions, respectively. Details of each block are in the colorized boxes with kernel sizes K, stride
S, and padding P (if used). The figure is best viewed in color.

A combination of 3D convolutions, 3D batch normalization, and leaky rectified
linear unit follows to merge the features to the original number of channels while
maintaining the temporal and spatial dimensions. We investigate the effect of
skip connections in Sec. 8.2.2 and Sec. 8.2.5 and show that they maintain details
in the predicted point clouds.

Another challenge when using range images for 3D point cloud prediction is
maintaining spatial consistency on the horizontal borders of the range images.
Range images obtained by rotating LiDAR sensors, such as a Velodyne or an
Ouster sensor, are panoramic images with strong horizontal correlations between
the image borders. For example, if the ego vehicle is rotating along the vertical z
axis, an object passing the left border of the range image will appear on the right
border. To consider this property, we introduce circular padding for the width
dimension. We pad the left side of each feature map with its right side and vice
versa. We pad the vertical dimension with zeros. We provide an experiment on
the effectiveness of this padding in Sec. 8.2.2.
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8.1.5 Training
When training the network, we project the ground truth point clouds into the
range images H ×W , which allows for the computation of 2D image-based losses.
We slice the data into samples of sequences consisting of N past and F future
frames, where subsequent samples are one frame apart. We train our architecture
with a combination of multiple losses. We define the average range loss LR,t at
time step t between a predicted range image {r̂i,j}t ∈ RH ×W and a ground truth
range image {ri,j}t ∈ RH ×W as

LR,t =
1

HW

∑
i,j

∆ri,j, with ∆ri,j =

{
‖r̂i,j − ri,j‖1, if ri,j > 0

0, otherwise
, (8.3)

such that we only compute the range loss for valid ground truth points. We train
the mask output at time step t with predicted probabilities {m̂i,j}t ∈ RH ×W

with a binary cross-entropy loss

LM,t =
1

HW

∑
i,j

−yi,j log(m̂i,j)− (1− yi,j) log(1− m̂i,j), (8.4)

where yi,j is 1 if the ground truth point is valid and 0 otherwise. Both losses only
consider the predicted 2D range images and not the re-projected point clouds,
which makes them fast to compute. However, we also need to ensure 3D consis-
tency of the predicted point clouds with the corresponding ground truth ones. A
common metric for comparing 3D point clouds is the Chamfer distance [51]. There
are different definitions of the Chamfer distance, and we will use the squared ver-
sion from Fan et al. [51]. At time step t, we re-project the masked range image
into a 3D point cloud P̂t = {p̂ ∈ R3}, |P̂t| = N, and compare it with the ground
truth point cloud Pt = {p ∈ R3}, |Pt| = M, by computing

LCD,t =
1

N

∑
p̂∈P̂t

min
p∈Pt

‖p̂− p‖22 +
1

M

∑
p∈Pt

min
p̂∈P̂t

‖p̂− p‖22. (8.5)

The computation of the Chamfer distance is generally slow due to the search
for nearest neighbors. A fast-to-compute image-based loss using LR,t and LM,t is
about 2.5 times faster compared to a loss including the 3D Chamfer distance. We
propose a training scheme with only range and mask loss for pre-training. This
results in a good initialization for fine-tuning, including a Chamfer distance loss.
We provide an experiment on the training scheme in Sec. 8.2.5. Given a current
time step t=T , our total loss function for F future time steps is given by

L =
T+F∑
t=T+1

LR,t + αMLM,t + αCDLCD,t, (8.6)

with tunable weighting parameters αM and αCD.
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8.1.6 Implementation Details
For the loss weights, we experienced that setting αM =1.0 and αCD =0.0 for pre-
training and αM =1.0 and αCD =1.0 for fine-tuning worked best. We train our
network parameters with the Adam optimizer [92], a learning rate of 10−3, and
accumulate the gradients for 16 samples. We use an exponential decaying learning
rate schedule. All models require less than 50 epochs to converge.

8.2 Experimental Evaluation
This work presents a self-supervised point cloud prediction approach using spatio-
temporal 3D convolutional neural networks. We present our experiments to show
the capabilities of our method and to support our key claims, which are: (i) pre-
dicting a sequence of detailed future 3D point clouds from a given input sequence
by a fast joint spatio-temporal point cloud processing using temporal 3D con-
volutional networks, (ii) outperforming state-of-the-art point cloud prediction
approaches, and (iii) generalizing well to unseen environments and operating on-
line faster than a typical rotating 3D LiDAR sensor frame rate of 10 Hz on a
consumer-grade GPU. We follow the experimental setting of MoNet [111] with
the KITTI Odometry dataset [58] and predict the next five frames from the past
five LiDAR scans captured at 10 Hz.

8.2.1 Experimental Setup
We follow the experimental setup of MoNet [111] and train the models on se-
quences 00 to 05 of the KITTI Odometry dataset [58], validate on sequences 06
and 07, and test on sequences 08 to 10. We project the point clouds from the
Velodyne HDL-64E laser scanner into range images H ×W =64× 2048 accord-
ing to Eq. (8.1). As explained in Sec. 8.1.3, we map the normalized output values
of the network to a predicted range interval defined before training. Based on the
minimum and maximum range values of the training data, we set the minimum
predicted range to 1 m and the maximum range to 85 m for KITTI Odometry [58]
and to 110 m for the Apollo dataset [113] used in the generalization experiment
in Sec. 8.2.6.

8.2.2 Qualitative Results
The first experiment supports our claim that our model can predict a sequence of
detailed future 3D point clouds using a temporal convolutional network. We show
the re-projected point clouds for all steps of a scene from the KITTI Odometry
sequence 08, which was not used during training in Fig. 8.4. Our method can
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estimate the ego motion of the vehicle, resulting in an accurate prediction of
the environment. The moving bicyclist in front of the ego vehicle is consistently
predicted in all five future frames, demonstrating that our predicted range images
preserve details in the scene. For a more detailed inspection, we provide a cutout
of the predicted and ground truth range and mask images and the combined
masked prediction for the last prediction step in Fig. 8.5. One can see that our
approach successfully predicts the correct range for close and far-away points as
well as the moving bicyclist in front of us. Additionally, our mask prediction
manages to mask out the sky at the top and the shadow from the ego vehicle at
the bottom.

T+3

T T+1

T+2

T+4 T+5

Figure 8.4: Last received point cloud at time T and the predicted next five future point clouds.
We show ground truth points in red and predicted points in blue. The scene is from the KITTI
Odometry sequence 08, which we did not use during training.

131



8.2. Experimental Evaluation

Masked Prediction

Predicted Range

GT Mask

Predicted Mask

GT Range

Moving Bicyclist

Figure 8.5: Ground truth and predictions of range image and re-projection mask at the last
prediction step. The range is color-coded with increasing range from blue to yellow. We show
invalid points in dark blue. Yellow indicates a valid point for the mask, whereas dark blue
represents invalid points. The masked prediction is the combination of the predicted range and
re-projection mask.

8.2.3 Quantitative Results

We compare the quantitative results to multiple baselines to support the claim
that our method outperforms state-of-the-art point cloud prediction approaches.
Lu et al. [111] operate and evaluate on sub-sampled point clouds, whereas our
approach can predict full-size point clouds. To account for this, Tab. 8.1 (left)
shows the performance of our method on sub-sampled point clouds with two dif-
ferent sampling rates used in MoNet [111]. Our method achieves a better result
for larger prediction steps for both samplings. However, sampling points from the
original point clouds for evaluation strongly affects the Chamfer distance of our
full-sized prediction. Thus, we provide an evaluation on full-scale point clouds
to investigate the performance of our approach in Tab. 8.1 (right). We compare
our results to an Identity baseline that takes the last received scan as a con-
stant prediction for all future time steps. The Constant Velocity and Ray Tracing
baselines use the transformation between the previous two received scans from
a SLAM approach [17] for a constant velocity prediction of the sensor. The Con-
stant Velocity baseline transforms the last received point cloud according to the
predicted motion at each prediction step, and the Ray Tracing baseline aggre-
gates all transformed past points to render a denser range image. Since many
points in the scene are static, these baselines work well for constant ego motion.
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Sampled Point Clouds Full-scale Point Clouds

Prediction PointLSTM Scene Flow MoNet Ours Ours Identity Const. Vel. Ray Tracing Ours
Step [53] [111] [111] 32,768 pts 65,536 pts Baseline Baseline Baseline

1 0.332 0.503 0.278 0.367 0.288 0.271 (0.144) 0.105 (0.067) 0.158 (0.095) 0.254 (0.124)
2 0.561 0.854 0.409 0.446 0.352 0.719 (0.448) 0.217 (0.221) 0.253 (0.246) 0.310 (0.188)
3 0.810 1.323 0.549 0.546 0.428 1.216 (0.798) 0.385 (0.443) 0.388 (0.460) 0.378 (0.262)
4 1.054 1.913 0.692 0.638 0.509 1.727 (1.169) 0.604 (0.711) 0.556 (0.719) 0.448 (0.370)
5 1.299 2.610 0.842 0.763 0.615 2.240 (1.156) 0.852 (0.968) 0.751 (0.971) 0.547 (0.487)

Mean (Std) 0.811 1.440 0.554 0.552 0.439 1.235 (1.192) 0.433 (0.641) 0.421 (0.627) 0.387 (0.331)

Table 8.1: Chamfer distance results on KITTI Odometry test sequences 08 to 10 in
[
m2
]
with sampled (left) and full-scale (right) points clouds. We use

the Chamfer distance defined in Eq. (8.5). We first train our model on range and mask loss and then fine-tune, including a Chamfer distance loss for 10
epochs as described in Sec. 8.1.5. The best mean results are in bold for sampled and full-scale point clouds. For full-scale point clouds, we report the
standard deviation of the Chamfer distance in parentheses. See Sec. 8.2.4 for a more detailed statistical analysis.
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The results in Tab. 8.1 show that our method outperforms all baselines at
larger prediction steps. Our approach can reason about the sensor’s ego motion
and the motion of moving points, while all three baselines do not consider points
belonging to moving objects. The standard deviation of the Chamfer distance
indicates that the results of our approach are more consistent throughout the test
set. In contrast, the baseline results suffer from outliers in the case of moving
objects or non-linear ego motion.

8.2.4 Statistical Analysis
For a more detailed quantitative analysis for full-scale point cloud prediction,
we compare box plots for all prediction steps in Fig. 8.6. Each plot shows the
median (orange line), minimum (lower bar), maximum (upper bar), first quar-
tile (lower colorized rectangle), and third quartile (upper colorized rectangle) of
the Chamfer distances computed between the predicted and ground truth point
clouds for the test set. As previously discussed, the constant velocity baseline
achieves the lowest median Chamfer distances for short prediction horizons. Since
all baselines ignore moving objects for the prediction, our method outperforms
them for larger time steps, resulting in lower median and interquartile ranges.
The statistical results support our claims made in this chapter.

8.2.5 Ablation Study
In this experiment, we provide a more detailed analysis of the effect of the model
architecture and the proposed training scheme. We average the metrics over all
validation samples and time steps as shown in Tab. 8.2. We always report the
Chamfer distance, but it is only used during training if specified. First, we modify
the size of the network by decreasing (Small) or increasing (Large) the number
of channels of our model by a factor of two. The larger model predicts slightly
better-masked range images but requires four times more parameters.

All losses increase without skip connections (Skip Con.), and many objects
are not predicted due to the large feature compression. The effect of circular
padding (Circular Padding) is not visible quantitatively because of the small
number of affected points. Finally, we show that our fine-tuned model (Ours)
achieves similar performance on the validation set compared to a model optimized
with the Chamfer distance loss from the beginning (CD Loss). Our proposed
training scheme with pre-training on fast-to-compute image-based losses gives a
good pre-trained model for fine-tuning with the 3D Chamfer distance loss while
reducing training time.

The situation in Fig. 8.7 from test sequence 08 shows an ego-vehicle finishing
a left turn while passing a vehicle. This scenario is challenging because of the dif-
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Figure 8.6: Comparison of Chamfer distance results for each prediction step.

ferent scales of close and far objects and the ego motion of the car. Our approach,
pre-trained on range and mask loss only, predicts the future point clouds across
five time steps and maintains details in the scene. Small objects are lost without
skip connections due to the compression (green circle). Without circular padding,
the points belonging to the car in the back of the ego vehicle (black circle) are
not consistently predicted since they span across the range image borders.
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Property Small Large Skip
Con.

Circular
Padding

CD
Loss

Pre-
trained

Ours

4M Parameters 7

17M Parameters 7 7 7 7 7

68M Parameters 7

Skip Connections 7 7 7 7 7 7

Circular Padding 7 7 7 7 7 7

Loss Weight αCD 0 0 0 0 1 0 0→ 1

LR [m] 0.867 0.741 1.258 0.801 0.805 0.798 0.858
LMask 0.309 0.288 0.337 0.297 0.300 0.299 0.301

LCD
[
m2
]

1.110 0.714 2.759 0.885 0.487 0.985 0.480

Table 8.2: Evaluation of models with varying architectures, padding, and training schemes
on the KITTI Odometry validation sequences 06 and 07. Each variation (columns) is given
by a combination of different design decisions (rows) indicated by crosses (7), for example,
variation Large is a model with 68M parameters using skip connections and circular padding.
The arrow (→) indicates a pre-training and fine-tuning with two different loss weights αCD as
discussed in Sec. 8.1.5. The best results are in bold.

8.2.6 Generalization

Finally, we aim to support our claim that our method generalizes well to new,
unseen environments. We first evaluate a model fine-tuned on KITTI Odometry
on the Apollo-SouthBay ColumbiaPark [113] test set. Note that this data is
from an unseen, different environment (collected in the U.S.) with a different
type of car setup, compared to the training data (collected in Germany). Our
model achieves a mean Chamfer distance of 0.934 m2 on the Apollo test set. The
performance gap compared to the results in Tab. 8.1 is because the training data
has a maximum range of 85 m, but the Apollo test data contains points up to a
range of 110 m. Thus, we fine-tune the model on the Apollo-SouthBay Columbia-
Park [113] training set for a single epoch. This yields a mean Chamfer distance
of 0.426 m2 and demonstrates the generalization capability of our approach and
the advantage of self-supervised training.

We provide an additional experiment on the effect of using more training
data in Sec. 8.2.7. Fig. 8.8 shows that the fine-tuned model reduces the Chamfer
distance by predicting more accurate shapes and more distant points. Compared
to Fig. 8.7, the different sensor mount causes a changed pattern of invalid points
around the car. Our approach can correctly predict the re-projection mask.
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Figure 8.7: Qualitative comparison of our pre-trained method and two ablated models with
predicted (blue) and ground truth (red) point clouds from test sequence 08. Given a past
sequence of five point clouds at time T , the upper row shows the first predicted frame at T+1,
and the lower row shows the last predicted frame at T+5. The green circle encloses an area
where details are lost without skip connections, and the points in the black circle demonstrate
that circular padding maintains spatial consistency at the range image border. The figure is
best viewed in color.

8.2.7 Amount of Training Data

This experiment demonstrates the advantage of a large amount of data for train-
ing our point cloud prediction method. Since the approach is self-supervised,
data obtained from the LiDAR sensor can be directly used for training without
expensive labeling. Fig. 8.9 shows the total validation loss on sequences 06 and 07
after 50 epochs with respect to the number of training iterations. Note that the
final number of training iterations within 50 epochs depends on the total amount
of samples in the training data.

We show the validation loss with the previously explained experimental setting
in Fig. 8.9 on the left (yellow). If we train a model on a larger dataset containing
the KITTI sequences 00 to 05 plus 11 to 15, the validation loss decreases faster and
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Figure 8.8: Predicted (blue) and ground truth (red) future point clouds on the Apollo-SouthBay
ColumbiaPark [113] test set at prediction step 5. Top: Model only trained on KITTI odometry
data. Bottom: After training one epoch on the Apollo training set.

converges to a lower minimum (blue). The validation loss is further reduced for
the largest dataset containing sequences 00 to 05 plus 11 to 21 (green), indicating
that more data improves the model’s performance on the unseen validation set.
The individual loss components in Tab. 8.3 show that we can improve all losses
by using more data. This emphasizes that self-supervised point cloud prediction
profits from a large amount of sensor data without expensive labeling.

8.2.8 Runtime

For the runtime, our approach takes on average 11 ms (90 Hz) for predicting five
future point clouds with up to 131,072 points each on a system with an Intel
i7-6850K CPU and an Nvidia GeForce RTX 2080 Ti GPU, which is faster than
the sensor frame rate of 10 Hz of a typical rotating 3D LiDAR sensor and faster
than existing approaches like MoNet [111] using the same GPU. Compared to a
runtime of 280 ms reported by Lu et al. [111] for MoNet for predicting five future
point clouds with 65,536 points each, our approach is 25 times faster for twice as
many points.
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Figure 8.9: Total validation loss for a given number of training iterations with different training
data sizes. The solid line is a fitted exponential curve.

Loss 14,082 Samples 21,832 Samples 34,334 Samples

Range LR [m] 0.798 0.735 0.710
Mask LMask 0.299 0.290 0.285
Chamfer Distance LCD

[
m2
]

0.985 0.795 0.768

Table 8.3: Final validation loss components for different numbers of training dataset sizes. We
train all methods for 50 epochs. The best results are in bold.

8.3 Related Work

Extracting spatio-temporal information from point cloud sequences has been ex-
ploited in the literature for different tasks related to point cloud prediction. We
now review related approaches, such as scene flow estimation, vision, and point-
based prediction.

Scene Flow Estimation. Liu et al. [109] extend PointNet++ [149], which
extracts spatial features from a single point cloud, and propose FlowNet3D for
estimating the 3D motion field between two point clouds. Lu et al. [112] use
FlowNet3D to interpolate intermediate frames between two LiDAR scans. Other
deep learning-based scene flow estimation methods can be found in the litera-
ture [183, 213].

In contrast to computing the scene flow between two past frames, point cloud
prediction estimates multiple future point clouds. Scene flow requires labels like
point-wise correspondences or segmentation masks, which makes learning costly.
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Instead, our approach focuses on the self-supervised generation of new, future
point clouds based on the observed sensor data.

Future State Prediction. Predicting future trajectories of traffic partic-
ipants based on their past motion is one possible application of LiDAR-based
future scene prediction. Given LiDAR scans, these methods rely on preceding
detection and tracking modules to infer past trajectories.

For example, Luo et al. [114] develop a 3D convolutional architecture based
on a bird’s eye view of voxelized LiDAR scans transformed by the sensor’s ego
motion. Inspired by this, Casas et al. [26] increase the prediction horizon with In-
tentNet and estimate high-level driver behavior from HD maps. Liang et al. [102]
integrate a tracking module into the end-to-end pipeline to improve the tempo-
ral consistency of the predictions while Meyer et al. [124] and Laddha et al. [98]
explore the range image representation to predict future 3D bounding boxes. A
second method to estimate a future scene representation without the need for
prior object detections is prediction performed at the sensor level. Hoermann et
al. [73] directly predict a future occupancy grid map from a sequence of past 3D
LiDAR scans and Song et al. [168] predict a motion flow for indoor 2D LiDAR
maps. Wu et al. [198] use a spatio-temporal pyramid network to estimate vox-
elized bird’s eye view classification and future motion maps. Recently, Toyungy-
ernsub et al. [182] differentiate between dynamic and static cells for grid map
prediction but require tracking labels to segment moving cells.

In contrast to the approaches above, our method operates on full-size point
clouds without voxelization. Weng et al. [196] show a reversed trajectory pre-
diction pipeline that can take the point cloud predictions and detect and track
objects in future scans. This makes it possible first to train the prediction of point
clouds self-supervised and then use off-the-shelf detection and tracking modules
to get future trajectories.

Vision-based Prediction. There has been a large interest in vision-based
prediction. Srivastava et al. [170] propose an LSTM [72] encoder-decoder model
that takes an input sequence of image patches or feature vectors and outputs a fu-
ture sequence of the same kind. Shi et al. [165] propose ConvLSTMs that employ
convolutional structures in the temporal transitions imposed by the LSTM. This
makes it possible to encode temporal and spatial correlations in image sequences
jointly. The integration of 3D convolutions into LSTMs has been researched by
Wang et al. [193]. Aigner et al. [3] omit the use of recurrent structures and de-
velop a video prediction approach called FutureGAN based on 3D convolutions
combined with a progressively growing generative adversarial network.

Using the range image representation of LiDAR scans, we can transfer the
techniques from vision-based methods for solving point cloud prediction. How-
ever, there are differences between video and range image-based point cloud pre-
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dictions. The main difference is that range images contain 3D point information
rather than RGB values. In addition to that, range images have a 360-degree
field of view, which causes a strong correlation between the left and right image
borders because of the principle of a typical rotating LiDAR sensor, for example,
a Velodyne or an Ouster scanner.

Point Cloud Prediction. Though vision-based and voxel-based predic-
tion methods have been well studied, predicting full-scale future point clouds is
still challenging and has not yet been fully explored in existing works. Fan et
al. [53] propose a point recurrent neural network (PointRNN) to predict a fu-
ture sequence of unordered and unstructured point clouds. Their method models
spatio-temporal local correlations of point features and states. Lu et al. [111]
introduce MoNet, which integrates a point-based context and motion encoder
network and processes these features in a novel recurrent neural network. A 3D
scene flow-based point cloud prediction approach has been recently developed by
Deng and Zakhor [42]. All three methods are 3D point-based but only consider
a limited number of points.

Weng et al. [196] propose an encoder-decoder network that takes a highly
compressed feature representation of a full-scale LiDAR scan and models the tem-
poral correlations with an auto-encoder based on a recurrent neural network. The
feature vectors are obtained by a point-based architecture or 2D convolutional
neural networks processing 2D range image representations. Deep learning-based
generation of LiDAR scans from a 2D range image has also been investigated by
Caccia et al. [22].

In contrast to existing approaches, we propose a technique that concatenates
the projected 2D range images to a spatio-temporal 3D representation, which
makes it possible to use 3D convolutions without the need for recurrent architec-
tures for temporal modeling. As discussed by Bai et al. [12] for general sequence
modeling, using convolutional networks results in an architecture that is easier to
train and faster at inference since the input range images are no longer processed
sequentially. Compared to MoNet [111], this allows us to predict more future
point clouds in less time.

8.4 Conclusion
This chapter presented a novel approach to self-supervised point cloud prediction
with 3D convolutional neural networks. Our method exploits the range image
representation to extract spatio-temporal features from the input point cloud
sequence jointly. This allows us to successfully predict detailed, full-scale future
3D point clouds during online operation. We can train and evaluate our approach
online without needing labeled data.
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We implemented and evaluated our approach on different datasets, provided
comparisons to other existing techniques, and supported all claims made in this
work. The experiments suggested that our method outperforms existing baselines
and generalizes well to different sensor mounts in unseen environments.

Our proposed approach addressed the question of “Where is an object moving
to?” from a different perspective compared to our previous prediction model
presented in Chap. 7 by focusing on the prediction of raw sensor data. This field
of research has not yet been fully explored, and it is a promising direction that
requires further studies.

Since we also use the range image representation to reduce the computational
complexity, we also suffer from label bleeding [125], previously mentioned for
segmentation. We observed that the predicted range images do not have sharp
edges, leading to intermediate points between two objects after re-projection. We
believe that using a sparse 4D architecture as used in Part I of the thesis can
mitigate this.
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Conclusion

S patio-temporal perception is a fundamental capability that mobile robots
must have to operate safely in unknown and dynamic environments.
Equipped with LiDAR sensors, mobile robots can process spatial data
over time to accurately assess their surroundings’ dynamics. In this

thesis, we explored how we can employ CNNs to extract both spatial and temporal
information from sequences of LiDAR scans.

We addressed two core questions critical to deploying such systems in real-
world environments: The first question, “What is moving?”, focuses on identify-
ing moving objects. Distinguishing moving objects from non-moving ones is an
important capability to avoid collisions and safely plan trajectories in crowded
scenarios. Our work introduced two approaches for segmenting moving objects
from either a limited sequence of LiDAR scans or a local map generated from all
previous measurements. A key strength of these methods is their robustness to
new, unseen objects, as they rely primarily on movement patterns of points rather
than object semantics. We evaluated the generalization capabilities of these ap-
proaches across unseen environments and proposed a dataset with novel moving
object labels from various LiDAR sensors. Additionally, we developed a method
to segment long-term dynamic objects that have moved since a prior map was
generated, such as parked cars or grown vegetation. Next, we filtered out such
unstable points for localizing in the map to increase localization accuracy and
robustness.

The second question, “Where is an object moving to?”, pertains to predicting
the future behavior of other agents to facilitate successful path planning. Initially,
we focused on structured environments, such as highways, where we identified a
set of high-level maneuvers typical in human driving. Based on past states of
nearby vehicles, we developed a system that predicts both the future maneuvers
and trajectories of these vehicles. We proposed a self-supervised method that pre-
dicts a sequence of future point clouds to mitigate the reliance on labeled training
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data and the requirement for prior detection and tracking. This approach offers
the advantage of being trainable and evaluable in real-time, enabling continuous
adaptation and learning.

9.1 Summary of the Key Contributions
In Part I, we introduced 4DMOS in Sec. 3, a system that segments moving objects
in real-time from a sequence of LiDAR scans. Utilizing the sparse 4D CNN
discussed in Sec. 2.4.2, we developed a strategy to merge multiple predictions for
the same scan in a static state binary Bayes filter. We experimentally showed
that this reduces the number of false positives and negatives in a probabilistic
fashion. Experimental results demonstrated that our method surpasses existing
approaches and generalizes effectively to unseen environments and a modified
sensor configuration. However, this approach assumes that moving objects remain
visible throughout the sequence of past measurements, which often does not hold
for sensors with sparse sampling patterns. Additionally, we did not leverage
prior knowledge of whether we previously observed a moving object at a specific
location, which could indicate that the space is generally free or typically occupied
by moving objects.

Our second contribution in Sec. 4 is MapMOS and addressed these challenges
by utilizing all available past information. We proposed an architecture that
segments moving objects based on a local map of the environment and develop
a volumetric belief to model which part of the environment can be occupied by
moving objects. Mapping experiments demonstrated that we can effectively use
this belief to obtain a static map of the environment for further planning purposes.

For both 4DMOS and MapMOS, we conducted extensive evaluations using
data unseen during training to highlight the advantages of our proposed architec-
tures. To bolster our findings, we introduced a new dataset, HeLiMOS, in Sec. 5,
which includes moving object labels for all sensors within one sequence of the
original HeLiPR dataset. This dataset enabled us to train and evaluate both
systems across various sensor types and measurement patterns, showcasing their
generalization capabilities.

In addition, we demonstrated in Sec. 6 how we can adapt our MapMOS ap-
proach to segment not only moving objects but also unstable ones. We con-
tributed a new system to filter out points that are unstable for localization within
a given map. In this case, we aimed not only to segment currently moving points
but also to identify generally unstable points, such as those from parked cars or
vegetation. This chapter illustrated how the methodologies established in this
thesis can facilitate a broader segmentation of spatio-temporal data beyond cur-
rently moving objects.
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Part II of the thesis contributed to the spatio-temporal prediction of future
states for autonomous vehicles. In Chap. 7, we introduced a novel neighborhood
representation that captures the past states of neighboring vehicles, accompanied
by an architecture based on spatio-temporal 2D convolutions for processing this
data. Our architecture allowed us to predict the future maneuvers of vehicles
based on their local neighborhoods and to regress future trajectories. We exper-
imentally validated that the neighborhood influences the prediction and showed
that the predicted trajectories are closer to the recorded ground truth compared
to existing approaches. However, this approach still relied on labeled data for
training, requiring prior steps such as detection and tracking.

We tackled this limitation of supervised prediction with our last contribution
in Chap. 6, where we introduced a novel architecture capable of predicting a future
sequence of point clouds based on a past sequence. We achieved a self-supervised
prediction without the need for labels. We again utilized 3D convolutions over
time to process our input tensor of stacked range images and proposed two mod-
ifications to deal with details in the images and their circular nature.

The methods presented in this thesis make it possible to segment moving
objects in a sequence of LiDAR scans or with respect to a local map, regardless
of the sensor setup or the environment – a challenge where most MOS systems fall
short. It is essential for spatio-temporal perception systems to generalize well to
unseen environments and successfully deploy them in the real world. Both work
on spatio-temporal prediction demonstrate how we can use convolutions over
space and time to predict where an object is moving to, making prediction models
more efficient and fast compared to using recurrent networks. Additionally, our
proposed point cloud prediction architecture enables us to predict a future state
of the environment without the need for object trajectories, which require prior
detection and tracking steps. This new paradigm allows us to train and evaluate
our generalizable method reliably in unknown environments.

9.2 Future Work
While developing the various approaches presented in this thesis, several potential
future directions have emerged that could build upon the topics discussed. We
have identified four main areas that appear promising for further exploration:

First, we focused primarily on the sparse 4D CNN in Part I due to the com-
plexities involved in the prediction task. While the MOS task necessitates only
binary classification, spatio-temporal prediction requires generating new states,
such as trajectories or 3D points. Despite this, the sparse 4D architectures have
demonstrated strong performance in segmentation and possess the capability to
effectively tackle the challenges identified in the second part of the thesis. They
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directly operate in the voxelized 3D space over time without projecting to lower
dimensional representations like range images. This could potentially enhance
the quality of the predicted point clouds discussed in Chap. 8. Using a 4D CNN
to predict velocity or flow vectors may lead to more accurate future point cloud
sequences. However, our investigation into this area is still in its primary stages
and requires further development.

Second, we recognize that we could integrate the two core questions of the
theses, “What is moving?” and “Where is an object moving to?”, into a sin-
gle approach that simultaneously segments currently moving points and predicts
their future movements. This joint prediction would address the challenge of pre-
dicting the positions of non-moving objects within the local sensor frame, which
becomes unnecessary if we already estimate the ego motion with an odometry
system like KISS-ICP. In a joint estimation, both tasks are highly coupled and
can support each other to improve the prediction quality. There are research
works [101, 102] that propose an end-to-end prediction that circumvents the need
for preceding perception modules. However, such approaches still need training
data, and we cannot evaluate the prediction quality online. By comparing a
predicted future point cloud with its reference in a self-supervised manner, we
hypothesize that this could serve as a supervisory signal for the moving object seg-
mentation, keeping the entire pipeline self-supervised. There is ongoing research
in this direction for scene flow and motion [14] as well as occupancy fields [1].
Self-supervision is essential for tasks like prediction, as it minimizes reliance on
previously estimated intermediate representations, such as tracked trajectories.

Third, advancing new sensor technologies can further improve the segmen-
tation performance. For example, the Aeva Aeries II sensor from Chap. 5 is
a frequency-modulated continuous wave LiDAR providing a radial velocity mea-
surement for the points. Such sensors can drastically help segment moving objects
by providing additional motion cues. While we still believe that only relying on a
radial velocity measurement is insufficient for most downstream tasks, integrat-
ing these measurements into existing approaches is a promising research direction,
which has already been explored for radar sensors [211].

Lastly, while sparse CNNs are primarily used in research, they are not yet
optimized for deployment on computationally constrained mobile robots. The
approaches introduced in this thesis operate at sensor frame rate but depend on
GPU availability for rapid computation. We believe substantial research is still
needed on these architectures to reduce their size and enhance their computational
efficiency.
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