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Abstract— Automated driving relies on fast, recent, accurate,
and highly available pose estimates. A single localization system,
however, can commonly ensure this only to some extent. In this
paper, we propose a multi-sensor fusion approach that resolves
this by combining multiple localization systems in a plug and
play manner. We formulate our approach as a sliding window
pose graph and enforce a particular graph structure which
enables efficient optimization and a novel form of marginaliza-
tion. Our pose fusion approach scales from a filtering-based to
a batch solution by increasing the size of the sliding window.
We evaluate our approach on simulated data as well as on
real data gathered with a prototype vehicle and demonstrate
that our solution runs comfortably at 20 Hz, provides timely
estimates, is accurate, and yields a high availability.

I. INTRODUCTION

Navigation for automated vehicles requires a precise
knowledge of the car’s pose to make informed driving
decisions. A large variety of systems and algorithms has been
proposed in the past to solve the localization task, including
systems based on Global Positioning System (GPS), vision,
and lidar. It is important to realize that the overwhelming
part of localization systems operates within limited system
boundaries and can not guarantee 100% availability under
real-world conditions. A GPS-based localization system for
example will likely fail in satellite-denied regions such
as in tunnels or parking garages, whereas a vision-based
localization system is likely to fail in darkness or other
extreme lighting conditions. There is the potential that the
availability, robustness, and accuracy of the localization in-
crease if multiple pose estimation procedures with orthogonal
sensors are combined, adding also to the versatility and fail-
safe behavior of the system.

In this paper, we present an approach to multi-sensor data
fusion that decouples the localization from the fusion task
and can be executed online. Merfels et al. [1] propose a con-
cept for sliding window pose graph fusion that we develop
to the more sophisticated chain pose graph approach in this
paper. The proposed system, called the PoseGraphFusion,
enables the combination of multiple global pose sources
(e.g., GPS) with multiple odometry sources (e.g., wheel
odometry) to estimate the current pose, as illustrated in
Fig. 1 and Fig. 2. A key advantage of decoupling the
fusion from the localization is the ability to incorporate
third-party localization modules for which source code is
unavailable. The contribution of this paper is an online pose
estimation algorithm based on fusing multiple pose sources.
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Fig. 1. Overview of the proposed multi-sensor data fusion: multiple
odometry and global pose sources are fused in a graph-based optimization
to provide a single pose estimate.
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Fig. 2. A coarse localization (red triangles), a precise but only temporary
available localization (blue triangles), and odometry as dead reckoning
trajectory (blue) are used to estimate the true trajectory (red) of a vehicle.
The estimated poses are shown as black triangles: the goal is to approximate
the unknown red line as closely as possible with the black triangles.

The algorithm avoids overconfidence by performing delayed
marginalization. The pose estimation is formulated as a
sliding window graph-based optimization, which leads to the
maximum likelihood (ML) estimate over the joint probability
of vehicle poses in the current window. It converges to the
online ML estimate for increasing sizes of the sliding win-
dow. Our pose fusion combines exchangeable input sources
in a generic way. It deals with multi-rate sources, noncon-
stant input frequencies, out-of-sequence estimates, and time-
varying latencies in a straightforward manner. Efficiency is
a major design criterion as the proposed system runs online
in an automated vehicle. Different parametrizations make
it possible to scale from the (iterated) Extended Kalman
Filter (EKF) to the online batch solution and thus to balance
runtime versus accuracy.

In brief, the key contributions of this paper are:
• the presentation of an efficient sensor fusion algorithm

with generic odometry and global pose inputs offering
an intuitive architecture for pose estimation, which
effortlessly resolves typical timing issues;

• the description of a graph construction algorithm de-
signed to produce a sparse block-tridiagonal structure of
the system matrix, which therefore offers a fast solution;

• the insight that marginalization on such a matrix struc-
ture can exactly and efficiently be carried out without
an additional fill-in, so that marginalization can be
interpreted as adding a prior node to the graph.
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II. RELATED WORK

Multi-sensor data fusion for navigation systems enables
the integration of information from multiple sources to esti-
mate the state of the system. This is conventionally achieved
by using filtering-based approaches such as the Kalman filter
and its variants or, alternatively, sliding window smoothing
algorithms. For example, Kubelka et al. [2] use an error
state EKF to fuse information from four different odometry
sources. Weiss et al. [3] propose an EKF to fuse inertial
measurement unit (IMU) with GPS data and a camera-
based pose estimate. Their work is generalized by Lynen
et al. [4] to a Multi-Sensor-Fusion EKF. The filtering-based
approaches have in common that they rely at a very early
stage on the Markov assumption and marginalize all older
information, thus prematurely incorporating the linearization
error. Strasdat et al. [5] show that mainly because of that
reason filtering performs suboptimal even for short time
frames when compared to smoothing.

In contrast to filtering techniques, smoothing approaches
compute the ML estimate by nonlinear least squares op-
timization to a Bayesian network, Markov random field
(MRF), or factor graph. Offline batch optimization of this
form assumes additive, white Gaussian noise with zero mean.
It considers past and future measurements. Online batch
optimization only takes into account all past states up to the
current one. Although these are both computationally expen-
sive operations, online batch optimization becomes feasible
through the usage of incremental smoothing techniques, such
as iSAM2 [6], that recalculate only the part of the graph that
is affected by new measurements.

In this context, Chiu et al. [7] combine a long-term
smoother using iSAM2 and a short-term smoother using so-
called Sliding-Window Factor Graphs to fuse pose sources.
Indelman et al. [8] use the incremental smoothing tech-
nique [6] to fuse multiple odometry and pose sources.
Cucci and Matteucci propose the graph-based ROAMFREE
framework [9] for multi-sensor pose tracking and sensor
calibration. They keep the size of the graph bounded by
simply discarding older nodes and edges, thus potentially
obtaining overconfident estimates.

The approach that we present in this paper is from a
methodical point of view closest to the approach of Sibley
et al. [10], who are the first to introduce the concept of a slid-
ing window filter in the context of robotics. They apply it to
planetary entry, descent, and landing scenarios, in which they
estimate surface structure with a stereo camera setup. Our
contribution is based on a similar methodology but applies
it to our use case of pose fusion. Furthermore, the structure
of our problem is explicitly kept less complex by design and
thus sparser due to the way our graph is constructed. This
leads to a faster way of solving the nonlinear least squares
equations, performing marginalization, and estimating the
uncertainty of the output. Furthermore, we provide a way
of semantically reasoning about the prior information arising
from marginalization by deriving a prior node.

III. POSEGRAPHFUSION

The input data to the sensor fusion are pose measurements,
which are subject to noise. We assume the noise to be addi-
tive, white, and normally distributed with zero mean. Many
estimation and data fitting problems can be formulated as
nonlinear least squares problems. Our approach exploits the
state-of-the-art graph optimization framework g2o [11] and
for the most part, we adopt the notation of Kümmerle et al.

The key idea is that given the state vector
x = (x>1 , . . . ,x

>
m)> and a set of measurements, where zij

is the mean and Ωij the information matrix of a single
measurement relating xi to xj (with C being all pairs of
indices for which a measurement is available), least squares
estimation seeks the state

x∗ = argmin
x

∑

〈ij〉∈C

e>ijΩijeij (1)

that best explains all measurements given the `2 norm. The
vector error function e(xi,xj , zij) measures how well the
constraint from the measurement zij is satisfied and we
abbreviate it as eij = e(xi,xj , zij). Solving (1) requires
iteratively solving a linear system with the system matrix
H and the right-hand side vector b such that

H =
∑

〈ij〉∈C

Jij(x)>ΩijJij(x), (2)

b> =
∑

〈ij〉∈C

e>ijΩijJij(x), (3)

where Jij(x) refers to the Jacobian of the error function
computed in state x. For more details, we refer the reader
to [11].

A. Sliding Window Chain Pose Graph Fusion

In contrast to general nonlinear least squares estimation,
which is commonly taking into account all available in-
formation within the full pose graph, it is necessary for
an online state estimation system to limit the considered
information to keep the problem computationally tractable.
The proposed approach achieves this by marginalizing out
prior state variables and thus only considering a fixed
amount of state variables. More formally, the state vector
x in a sliding window pose graph is reduced to the M
most recent states x = (x>t−M+1, . . . ,x

>
t )>. The size of the

system matrix H is therefore bounded by R3M×3M . The
optimization result from the last time step provides the initial
guess for the optimization in the current time step. This leads
to an effective and efficient solution in practice as a single
optimization is usually sufficient to integrate the additional
information of the current time step.

The state variables consist of a position plus a heading.
They are defined in a two-dimensional Cartesian coordinate
system for which we choose the Universal Transverse Mer-
cator coordinate system. We refer to pose sources, which
measure poses within this coordinate system, as global pose
sources (e.g., GPS), and poses in this system as global poses.
Pose sources, which measure spatial transformations relative
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to the previous pose, are dubbed local pose sources or simply
odometry.

In the spirit of MRFs, we refer to nodes representing state
variables as hidden nodes. In contrast, global pose constraints
are encoded in so-called observed nodes and denoted with x̄.
They are connected to hidden nodes to constrain them in the
global coordinate frame. The observed nodes therefore “pull”
the hidden nodes towards them. Their constraints equal zero
if and only if the hidden nodes are identical to the observed
nodes. Similarly, we map odometry measurements to edges
between hidden nodes. They “push” the hidden nodes to
relative poses which are equal to the relative transformation
encoded in the edge.

In contrast to related graph-based approaches [9], [10], we
neither generate a hidden node every time a measurement
arrives nor tie their generation to a specific pose source.
Instead, we construct a hidden node every time step, i.e., ∆t
seconds (the temporal resolution). For each hidden node,
we query all global pose sources for measurements and
interpolate one observed node per source at the timestamp of
the hidden node if measurements are available. Additionally,
we query each odometry source to interpolate the edges
between all two successive hidden nodes. The motivation
behind this is to enforce a certain matrix structure for
H , to include all measurement sources in a generic way
independently of their specific output frequencies, and to
a priori relate the number of state variables to the length of
the interval of the sliding window. We refer to the resulting
form of the graph as chain pose graph.

The block structure of H reflects the connections of poses
and edges in the graph as it is its adjacency matrix [12].
Its structure changes slightly with the availability of mea-
surements. In general, the block structure of a chain pose
graph is a block-tridiagonal matrix. An example graph in
Fig. 3 illustrates how to integrate multiple hidden and ob-
served nodes as well as odometry constraints. It additionally
shows the resulting block-tridiagonal matrix structure of the
corresponding system matrix. The diagonal entries in the
system matrix are influenced by odometry and global pose
constraints, while the off-diagonal entries are only affected
by odometry constraints. Loop closures are not considered
as they arise rarely when driving straight from destination to
target and break with the treatment of input sources as black
boxes.

The block-tridiagonal structure is a consequence of the
linear temporal ordering of the state variables combined
with the fact that edges are at most constructed between
successive nodes. We specifically design our solution to
produce a block-tridiagonal matrix because this structure
does not produce fill-in in H after marginalization of the
oldest state variables. Beyond that, even the Cholesky fac-
torization H = R>R, which we perform to solve the linear
system, does not suffer from fill-in in its triangular matrix
R. In fact, R becomes a band matrix. As a consequence,
costly variable reordering techniques are unnecessary as R
already contains the minimum number of nonzero elements
necessary to reconstruct H .

xa
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(a) A chain pose graph.







(b) Corresponding block-
tridiagonal structure of the
system matrix.

Fig. 3. A chain pose graph and the corresponding structure of the system
matrix. The black circles are hidden nodes, the dashed blue circles are global
pose measurements from two different sources, the non-dashed blue circles
are observed nodes, and the green edges are odometry constraints. Note
how the raw global pose measurements are interpolated (dashed blue lines)
at the same timestamps as the hidden nodes to obtain the observed nodes.

Furthermore, the computational complexity of the
Cholesky factorization of a block-tridiagonal matrix is O(n)
(with n being the number of nonzero entries in H). This
is a substantial improvement as for arbitrary (dense) matrix
structures their decomposition or inversion becomes as costly
as approximately O(n2.4). For experiments concerning the
runtime for general graph-based optimization with g2o, we
refer the reader to the runtime evaluations in [11, Fig. 8],
where the time complexity for optimizing the Manhattan3500
dataset is clearly higher than linear in the number of nodes
although the same sparse matrix techniques have been used
that are being used in our implementation. For our approach,
we demonstrate the linear time complexity for a practical
experiment in the evaluations section.

In summary, our chain pose graph approach prevents fill-
in after marginalization in H , during the factorization in
R, makes common variable reodering strategies unnecessary,
and is efficiently solvable in O(n).

B. Time behavior

After detailing how and for which timestamps we con-
struct hidden and observed nodes, we turn our attention to
the questions how our system handles the time behavior of
input sources and how we design the time behavior of the
pose fusion. In this paper, we define time behavior as the
latency, frequency, and availability of estimates.

Integrating input sources with unknown time behavior
is difficult as we deal with multi-rate sources, noncon-
stant input frequencies, out-of-sequence estimates, and time-
varying latencies. Our approach consists in buffering all
incoming data and preprocessing it. This does not introduce
any delay as we do not need the measurements before the
next graph construction phase. The preprocessing includes
detecting missing pose estimates by estimating the recent
input frequency of each source and comparing the number of
estimates we should have received to the number of estimates
we actually received. Sorting the data by time enables the
integration of out-of-sequence data.

Instead of being data-triggered, the output of the
PoseGraphFusion is time-triggered. Its output frequency f
is decoupled from the temporal resolution ∆t. Every 1/f
the cycle of graph construction and optimization is triggered.
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Fig. 4. Time behavior of the input data for three examples sources 0 to 2
and the corresponding time behavior of the output of the PoseGraphFusion.
The input sources show occasional activity (source 0), data dropouts (source
1), and different data rates. The PoseGraphFusion is able to handle these
characteristics and incorporates all input data by first buffering it. At the start
of each cycle (directly after the red vertical line), the graph is constructed
and optimized. The time necessary for that is the computation time (teal
hatched). After the optimization, the estimated pose is propagated to the
beginning of the next cycle (green arrows) so that it can be transmitted
immediately.

The time spent for constructing and optimizing the graph is
summed up as the computation time. The most recent state is
estimated with a sliding window pose graph over the current
set of measurements. It is subsequently propagated into the
future to the start of the next cycle as depicted in Fig. 4 with
a constant turn rate and velocity model. The propagation
ensures that at that point, the now already computed pose
estimate can directly be sent out. This in turn guarantees a
low latency of the pose estimate, where we define the latency
to be the difference of the time when the pose has been
computed and the time for which it is valid. Depending on
the application, a slightly higher latency might be tolerable
in exchange for a propagation-free pose estimate, in which
case the pose propagation is turned off.

A conventional Kalman filtering approach has difficulty to
generically incorporate multiple input sources with unknown
data rates. To integrate a new measurement, it has to prop-
agate its state back in time to the time of the measurement,
apply the measurement, and re-apply all other stored mea-
surements. A pose graph approach with the described char-
acteristics does not suffer from repeated backward-forward
computations and is able to elegantly resolve time behavior
issues and treat all sources in a homogeneous manner.

C. Marginalization in the form of a prior node
As stated in Section III-A, it is mandatory to limit the

amount of hidden nodes to maintain constant runtime com-
plexity. Simply removing edges and nodes leads to informa-
tion loss and is equivalent to conditioning, which potentially
leads to overconfidence. Therefore, we marginalize the oldest
nodes. This truncates the graph but retains the same informa-
tion (given the linearization point). The common approach
for that is computing the Schur complement on the system
matrix H . In general, the disadvantage of this operation is
the introduction of conditional dependencies between state
variables that are connected. As we design our problem
structure to be a chain pose graph, we are able to retain
the same sparsity pattern and do not suffer from a denser
system matrix after marginalization.

We examine the effect of the Schur complement and show
that we can exploit the knowledge of the particular block-
tridiagonal matrix structure to derive the concept of a prior
node, which carries the same information as introduced by

the Schur complement. In general, using a representation
in the form of a graph is beneficial compared to directly
solving the least squares equations because of the possibility
to visually understand the problem, more possibilities for
data inspection, and a more intuitive way to manipulate the
problem structure. These are the same reasons why it is
advantageous to construct a prior node for marginalization in-
stead of performing the Schur complement. The user has the
possibility to understand how the prior information affects
the rest of the graph, thus allowing him to manipulate this
information if desired. If one was to repeatedly perform the
Schur complement, it would become untraceable to under-
stand the optimization result of the graph as not all necessary
information is conceptually represented herein. The concept
of a prior node is also supported by a more pragmatic reason:
it allows us to store and load the optimization problem
with solely the help of its graph representation. Furthermore,
it opens up the possibility to explicitly apply a robust
kernel on the cost function of the prior node and to adjust
the uncertainty of the prior information based on context.
In total, marginalization by using a prior node is making
the graph construction logic aware of the marginalization
process, allows the understanding and manipulation of the
prior information, and is thus preferable over marginalization
by performing the Schur complement on the system matrix.

In the following, we will first analyze the impact of the
Schur complement on our chain pose graphs and subse-
quently show, how to compute the uncertainty and mean
estimate of the prior node to obtain the same result. The
derivation is detailed for the marginalization of a single
hidden node but can easily be applied iteratively if multiple
nodes shall be marginalized.

1) Effect of the Schur complement on chain pose graphs:
It is useful for the derivation to start with a graph with
only two hidden nodes (see Fig. 5a) and ignore the node xa
for now to see how the different terms are affected by the
marginalization. Consider a graph Gsmall where xb is linked
to xc and additionally to one or more observed nodes (Fig. 5a
shows an example for two connected observed nodes, see
the blue circles). The corresponding system matrix Hsmall

is given as a block matrix and the optimization solves the
equation

[
Hsmall
bb Hsmall

bc

Hsmall
cb Hsmall

cc

]
∆xsmall = −

[
bsmall
b

bsmall
c

]
. (4)

If we additionally include the hidden node xa, the graph
structure and the system matrix change. Let xa also be
connected to one or more observed nodes and consider the
one or more odometry constraints between xa and xb. The
resulting graph Gfull (see Fig. 5b) is defined by the system
matrix

H full =



H̄aa + Ĥaa Ĥab

Ĥba Hsmall
bb + Ĥbb Hsmall

bc

Hsmall
cb Hsmall

cc


 (5)
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Fig. 5. Graph marginalization can be understood as prepending a prior
node x̄p to the graph. Blue non-dashed circles represent observed nodes.
For understanding how the hidden node xa influences the optimization, it is
useful to start with a graph in (a) without xa. Considering xa in (b) leads
to additional terms in the system matrix. Marginalization in (c) with a prior
node x̄p leads to the same system matrix as performing the conventional
Schur complement on Gfull.

and the coefficient vector

bfull =



bfulla

bfullb

bfullc


 =




b̄a + b̂a
bsmall
b + b̂b
bsmall
c


 , (6)

where H̄ij and Ĥij capture the sum of all entries of Hij

stemming from observed nodes and odometry constraints,
respectively. The terms b̄i and b̂i have the same function for
the vector entry bi. All of these terms are readily available
as they have been computed in the last iteration, including
any robust cost function applied on them.

The common way to marginalize xa consists in computing
the Schur complement of H full and bfull. This leads to the
marginalized system matrix Hmarg, which is identical to
Hsmall except for the upper left block which changes to

Hmarg
bb = Hsmall

bb + Hschur, (7)

Hschur = Ĥbb − Ĥba(H̄aa + Ĥaa)−1Ĥab. (8)

The corresponding marginalized coefficient vector is

bmarg =

[
bsmall
b + bschur

bsmall
c

]
, (9)

bschur = b̂b − Ĥba(H̄aa + Ĥaa)−1(b̄a + b̂a). (10)

We remark that after the marginalization, the structure of the
system matrix is still block-tridiagonal due to the particular
design of our chain pose graph, meaning that the sparsity
pattern of H is retained after marginalization without fill-
in. Moreover, the information is conserved in a consistent
way. Any other marginalization method that claims to be
exact, needs to produce the same result. In the remainder
of this section, we show that an alternative marginalization
technique consists in replacing xa and its connected observed
nodes and edges with a prior node x̄p, which behaves like
an observed node. To this end, two questions have to be
answered: how to compute its correct mean estimate and
how to compute the uncertainty of this prior node?

2) Derivation of the prior node: Our goal is now to derive
the equations for computing the prior node x̄p as depicted
in Fig. 5c. First of all, we observe that in the special cases
that xa is not directly connected to any observed node or
that there exist no edges between xa and xb, xa does not
influence the estimate of xb and we can omit constructing a

prior node. The derivations in the following treat the general
case in which xa is connected to at least one observed node
(which can for example be the prior node from the last cycle)
and is additionally linked via at least one edge to xb.

The first step is to remove xa as well as all observed
nodes and edges connected to it. Connecting the prior node
x̄p with the information matrix Ω̄p to xb leads to the graph
Gprior (see Fig. 5c). The prepended node yields an additional
addend H̄p in the matrix Hprior of Gprior such that

Hprior =

[
Hsmall
bb + H̄p Hsmall

bc

Hsmall
cb Hsmall

cc

]
, (11)

and an additional addend b̄p in bprior such that

bprior =

[
bsmall
b + b̄p
bsmall
c

]
. (12)

We want to create the prior node so that it behaves like any
other observed node in the graph. This already determines
that the mean estimate of the edge, which relates x̄p to
xb, is equal to the mean estimate of any observed node,
i.e., (0, 0, 0). This trick simplifies the calculation of the the
error function epb and consequently its Jacobian Jpb(x)
while not limiting the generality of the solution. We obtain

epb =

[
R>θp 0

0> 1

]
(xb − x̄p), (13)

Jpb(x) =

[
R>θp 0

0> 1

]
, (14)

where Rθp is the standard two-dimensional rotation matrix.
We need these two terms to compute H̄p and b̄p:

H̄p = Jpb(x)>Ω̄pJpb(x), (15)

b̄p = Jpb(x)>Ω̄pJpb(x)(xb − x̄p). (16)

In total, we derived how x̄p influences Hprior, bprior through
H̄p, b̄p. We have also shown that the Schur complement
influences Hmarg, bmarg through Hschur, bschur. The last
step consists in postulating H̄p = Hschur and b̄p = bschur
to guarantee that the effect of the prior node is equivalent to
the exact marginalization. We solve the resulting system of
equations by inserting H̄p into b̄p, which leads to

b̄p = H̄p(xb − x̄p) (17)
⇔ bschur = Hschur(xb − x̄p) (18)

⇔ x̄p = xb −H−1schurbschur. (19)

As this allows us to calculate x̄p by using (8) and (10), we
can now compute Ω̄p:

Ω̄p = (Jpb(x)>)−1HschurJpb(x)−1. (20)

These analytic closed-form expressions for x̄p and Ω̄p

allow us to position the prior node x̄p in such a way that
the resulting pose estimates for the rest of the graph are
identical to the Schur complement marginalization. The mean
in combination with the uncertainty estimate provide us with
the insight how the marginalization affects the graph. As
motivated above, this knowledge can (amongst others) be
used to visualize the prior information, adapt its uncertainty,
or apply a robust cost function on it.
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D. Assessing the uncertainty of the fused estimate

Modeling uncertainty is a key element of probabilistic
robotics and obtaining an estimate of the uncertainty of the
fused pose estimate is vital for most sophisticated motion
planners. We described in the previous sections the process of
preprocessing the input data (Section III-B) and constructing
a sliding window chain pose graph (Section III-A). The
optimization assigns to the hidden nodes the global poses
which best satisfy all constraints. In this section we show that
we can efficiently recover the uncertainty of the optimized
hidden nodes.

Solving the nonlinear least squares problem of the pose
fusion with a sparse solver typically involves computing the
Cholesky factorization H = R>R, where R is an upper
triangular matrix with entries rij . Following [13], the uncer-
tainty matrix of the hidden nodes H−1 with entries H−1ij is
obtained by the recursive formula

H−1ii =
1

rii


 1

rii
−

n∑

k=i+1

rik 6=0

rikH
−1
ki


 , (21)

H−1ij =
1

rii


−

j∑

k=i+1

rik 6=0

rikH
−1
kj −

n∑

k=j+1

rik 6=0

rikH
−1
jk


 . (22)

The formula yields an O(n) time complexity (with n being
the number of state variables) because it operates on the
nonzero entries of the sparse band matrix R. It becomes
constant time for sliding window pose graphs as the number
of state variables is upper bounded by a constant value.
As we are only interested in the estimated uncertainty of
the last hidden node, only a single and comparably trivial
calculation has to be performed. We can therefore compute
the uncertainty of our pose estimates, and even more, do so
efficiently.

E. Noise correlations between input sources

We need to apply appropriate preprocessing if noise is
correlated between input sources. This occurs when different
input sources build up on the same sensor data or when the
same algorithm runs on two physically different sensors. We
explicitly account for correlated noise between sources to
avoid overconfident estimates. As our approach is agnostic
to the specific type of input source, we perform fusion under
unknown correlation and employ covariance intersection [14]
in a preprocessing step (see [1] for further details). To this
end, we identify groups of sources with correlated noise,
buffer their measurements, and combine them into a single
consistent estimate per group using covariance intersection.
These estimates are subsequently entered into the pose fusion
process. This results in a reduced number of input sources,
in conservative covariance estimates, and avoids the potential
threat of divergent or overconfident fusion estimates.

IV. EVALUATION

The experimental section is designed to support our claims
that the presented sensor fusion approach is an efficient

pose estimation algorithm, converges accurately towards the
online ML estimate, scales from a filtering to a batch
least squares solution, and handles different time behaviors
without difficulty. We provide experiments on data gathered
on a real prototype vehicle and on simulated data.

A. Experiment on a real prototype vehicle

The following experiment is designed to show that the
pose fusion is able to run online on a car and effectively gen-
erate pose estimates given a set of real-world input sources.
The prototype vehicle is an Audi A6 Avant equipped with a
front-facing monocular camera, a front-facing automotive-
grade lidar scanner, and four fisheye top view cameras.
Three localization systems are incorporated as global pose
sources and one system is considered for odometry. The first
global pose source (referenced as pose source 0) is computed
by matching coarse lidar scans to a globally referenced
point cloud. The second global pose source is a GPS (pose
source 1), whereas the third source (pose source 2) is a
visual localization system, which computes a pose based on
comparisons of visual features with a globally referenced
feature map. The odometry source is provided by wheel
odometry.

The PoseGraphFusion takes these four sources as input
and computes pose estimates for the planner. As the noises
of the odometry source and the global pose sources are not
correlated, we directly fuse them and do not need to apply
covariance intersection in this setup. We use M = 1000
hidden nodes and set the temporal resolution to ∆t = 25 ms,
which results in a sliding window over the last 25 s. The test
drive was carried out on a route of about 16 km in rural and
urban areas in Germany.

In practice, these sources do not exhibit white Gaussian
noises with zero mean. To show this, we evaluate the auto-
correlations of their noises and find significant components
other than the zero component, meaning that the noises
are not independently distributed. Furthermore, the means
are unequal to zero. Moreover, pose sources 0 and 1 are
third-party black box modules without proper uncertainty
models. We therefore assume constant uncertainties for their
estimates. Despite this input data not being ideal for the
presented fusion approach, we demonstrate the applicability
of the fusion and show a decent performance. A detailed
analysis with the help of simulated data in Section IV-B
evaluates the performance for controlled noise.

1) Pose estimation quality: We evaluate the estimation
quality of the PoseGraphFusion by comparing its output to
the batch solution. Fig. 6 shows the development of the
position error over time. Pose sources 0 and 1 provide only
coarse localization estimates with RMS errors of 1.06 m and
1.23 m respectively, whereas pose source 2 performs better
with an RMS error of 0.28 m. The PoseGraphFusion stays
close to the performance of the best pose source with an
RMS position error of 0.38 m and heading error of 1.16◦.
Theoretically, the output of the fusion is supposed to improve
compared to the input sources. However, the noises are not
independently distributed with zero mean and the uncertainty
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Fig. 6. Position error over time for the three input sources and the
fused estimate. The performance of the PoseGraphFusion is linked to the
performance of the input sources. Its RMS error is 0.38m.

models are rough as mentioned above. Additionally, the input
pose sources are providing estimates in the past and are not
always available as we will see in the next evaluation.

2) Latency and availability: As for the current real-world
experiment, we demonstrate the capability of our approach to
combine the different time behaviors of the pose sources and
generate a consistent behavior as output. For this purpose, we
examine the latencies of their estimates: the pose sources 0,
1, and 2 all exhibit a latency of up to 0.3 s. This implies that
their pose estimates are too old to directly feed them into our
planner. In 95% of the time the PoseGraphFusion exhibits a
pose latency of 10 ms or less. Moreover, the pose sources are
not always able to calculate and provide a pose estimate due
to for example sensor or model failures. Consequently, the
pose sources have a limited availability, ranging from 66.98%
(pose source 0) over 97.76% (pose source 2) to 100% (pose
source 1 and odometry) of the time of this experiment. The
PoseGraphFusion achieves an availability of 100% of the
time. Note that this influences the position accuracy as the
pose sources can simply refuse to send a pose estimate in
difficult situations whereas the PoseGraphFusion is bound to
deliver.

Having shown that our system is capable of integrating
different time behaviors into a single consistent output be-
havior, we study the question whether the proposed algorithm
runs fast enough for online usage on a car.

3) Runtime performance: Next we concern ourselves with
the runtime performance of the PoseGraphFusion. The soft-
ware was repeatedly run on a single core of a laptop with
an Intel i7-4800QM processor. Fig. 7 shows the computation
time at each time step for different numbers of hidden nodes
in the sliding window pose graph. The red curve illustrates
the need for limiting the size of the graph as otherwise
the computation time grows unboundedly and gets quickly
too demanding for a decent output frequency. A choice
of M = 4000 hidden nodes allows us to set the output
frequency to f ≈ 1

50ms = 20 Hz.
The near-constant computation time once the graph attains

its full size is expected as the optimization of a chain
pose graph of fixed size is constant as detailed in previous
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to a setup in which the number of hidden nodes is unlimited such that
nodes never get marginalized out. The resulting unbounded demand for
computation time disqualifies it for online usage. The computation time is
roughly constant in all other configurations.
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Fig. 8. Parameter space (assuming four input sources). The red curve marks
the maximum number of hidden nodes Mmax that can still be processed
fast enough to attain the corresponding output frequency f .

sections. Also, the linear increase in computation time before
the number of nodes equals M is in line with our theoretical
expectations as the solution of a problem in the form of a
chain pose graph has a runtime complexity of O(n). An
empirical analysis of the data depicted in Fig. 7 reveals
the reciprocal relationship between the maximum number
of hidden nodes Mmax and the attainable output frequency
f , as shown in Fig. 8. Different parametrizations allow us to
balance the need for a high output frequency versus the desire
for more hidden nodes. For our requirements we usually
choose an output frequency first and subsequently set the
number of hidden nodes.

In total, the PoseGraphFusion generates a smooth tra-
jectory and continuously provides accurate pose estimates
with a low latency at a configurable output frequency under
real-world conditions. Two last questions remain unanswered
so far: how many hidden nodes are needed at least to
fulfill a given accuracy requirement, and do more hidden
nodes actually reduce the estimation error? To answer these
questions, we perform two experiments with simulated input
data.

B. Simulated input data

The next experiment is conducted on simulated input
data and serves to investigate the estimation quality as a
function of the number of hidden nodes M . This engages the
question of the required number of hidden nodes, illustrates
the need of delayed marginalization, and most importantly
demonstrates that the sliding window estimate converges to
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Fig. 9. The cumulative distribution of the position error for different
numbers of hidden nodes M . The batch optimization (dashed black line)
depicts the theoretically attainable upper bound of accuracy if future
information were available. The other configurations demonstrate that the
accuracy increases for higher values of M , thus showing the need for
delayed marginalization.

the online batch solution for an increasing number of hidden
nodes. All inputs are sampled around the true values from
a Gaussian distribution with a standard deviation of 3.0 m,
3.0 m and 4◦ respectively in lateral and longitudinal direction
and heading orientation of the vehicle. Fig. 9 shows that
choices for M with a decent resulting accuracy lie well
within the space of possible parametrizations. Furthermore,
the cumulative distribution of the position error improves for
more hidden nodes and approaches the batch optimization.

The second experiment with simulated data is designed
to show that the position error decreases for an increasing
number of sources. The noise terms are identical for all
sources and equal to the values mentioned above. Fig. 10
shows how the fusion of inaccurate pose estimates (red
curve) leads to a much more accurate estimate and improves
further for increasing number of input sources. The online
combination of eight global pose and four odometry sources
is even roughly as accurate as the offline batch optimization
of two global pose sources and one odometry source. This
result reinforces the motivation for a pose fusion algorithm.

In summary, a higher number of hidden nodes and more
input sources are both advantageous with respect to the
position accuracy given certain noise assumptions.

V. CONCLUSION

The pose fusion concept presented in this paper is mo-
tivated by the need for fast, recent, accurate, and highly
available pose estimates. We approached these requirements
by proposing a sliding window graph-based optimization
scheme, which scales from a fast incremental solution to
an online batch solution by increasing the sliding window
size. Furthermore, we described the design of chain pose
graphs for efficient optimization. These graphs do not suffer
from additional fill-in after marginalization and allow us
to collapse all marginalization information in a prior node.
We have shown with experiments on a real vehicle that
the PoseGraphFusion is fast, provides timely estimates, is
accurate, and yields a high availability. The proposed system
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Fig. 10. The cumulative distribution of the position error for different
numbers of input sources. The legend entries “a + b sources” denote a
global pose sources (e.g., GPS) and b odometry sources. The dashed curves
are the offline batch optimization results. The red curve shows an example
for the quality of a noisy input source. Two of these sources paired with
an odometry source suffice as input to the PoseGraphFusion to obtain the
accuracy presented as black curve.

works with generic input sources and is general enough to
be applied to other autonomous systems.
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