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Abstract— Map consistency is an important requirement for
applications in which mobile robots need to effectively perform
autonomous navigation tasks. While recent SLAM techniques
provide an increased robustness even in the context of bad
initializations or data association outliers, the question of how to
determine whether or not the resulting map is consistent is still
an open problem. In this paper, we introduce a novel measure
for map consistency. We compute this measure by taking into
account the discrepancies in the sensor data and leverage it to
address two important problems in SLAM. First, we derive a
statistical test for assessing whether a map is consistent or not.
Second, we employ it to automatically set the free parameter
of dynamic covariance scaling, a robust SLAM back-end. We
present an evaluation of our approach on over 50 maps sourced
from 16 publicly available datasets and illustrate its capability
for the inconsistency detection and the tuning of the parameter
of the back-end.

I. INTRODUCTION

Building consistent maps is an essential capability for
autonomous robots, as maps are useful for a large variety
of applications that requires the robot to navigate. It turns
out that in SLAM there actually is no consistent notion of
consistency. For example, in robot mapping, one often uses
the term global consistency if the map is in line with the
ground truth or at least resembles the topological structure
of the environment. Local consistency, in contrast, is used to
describe a locally correct alignment of the scans — despite
a potential misalignment at the global scale. In this paper,
we consider a map to be consistent from a sensor data point
of view, i.e., when no noticeable artifacts are present and the
topology of the environment is correctly represented.

A large number of mapping approaches have been pro-
posed in the past, see [3, 6] for an overview. A popular
approach to SLAM comes from its graph-based formulation.
Corresponding methods represent the map as a graph that
consists of poses and constrains between the poses. They
compute the maximum likelihood map by performing error
minimization. Modern techniques apply robust kernels or
related techniques during the minimization, with the aim of
mitigating data association errors and computing a consistent
map [1, 16, 13, 14]. Most robust kernels, such as dynamic
covariance scaling (DCS) [1] and switchable constraints
(SC) [16], depend on an additional parameter, which, loosely
spoken, defines if a constraint is an inlier or an outlier. This
parameter, typically is sensitive to the particular environment
and needs to be set manually.
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Fig. 1. Inconsistencies detected with our method in a corrupted Belgioioso
castle dataset: (top) ground-truth, (middle) inconsistent alignment, (bottom)
regions detected as inconsistent by our approach.

The contribution of this paper is a novel method to
automatically compute the consistency of static maps by
taking into account the discrepancy between sensor readings.
We introduce a score function that quantifies the mismatch
in the sensor data after optimization. It is partially inspired
by the lazy data association approach of Hähnel et al. [11] in
which a data association tree was computed during mapping.
We combine the use of inconsistencies in observations with
a cascaded hypothesis test on the entire map to test for
global map consistency. Our score function also supports to
compare changes in the graph configuration and to evaluate
the quality of the result. This allows us to formulate an
optimization problem, which sits on top of DCS to tune its
parameter automatically.

We formulated both the hypothesis test and the parameter
tuning, for 2D laser data. We further implemented and
thoroughly evaluated our work on a large set of publicly
available datasets. We show that the proposed hypothesis
test allows to reliably identify inconsistent maps, without
forsaking our ability to detect consistent ones.

II. RELATED WORK

Over the last two decades, a large number of SLAM
approaches have been proposed [3, 6]. A recently popular
technique to estimate a consistent map is the graph-based
SLAM paradigm. A variety of approaches for minimizing the
error in the corresponding constraint graph have been pro-
posed, including relaxation methods [7], stochastic gradient
descent and its variants [15, 8], smoothing techniques [5, 12],
and hierarchical techniques [4, 10]. A comprehensive tutorial



on graph-based SLAM has been published by Grisetti et
al [9].

All these techniques assume Gaussian errors in the con-
straints of the SLAM graph but show decreased performance
with an increasing number of data association outliers. Over
the last years, researchers invented SLAM back-ends that can
deal with a substantial number of outliers [1, 16, 13, 14]. The
method of Sünderhauf and Protzel [16] is able to switch off
potential outlier constraints and the control of the switching
behavior is handled within the optimizer. Related to that,
Agarwal et al. [1] proposed dynamic covariance scaling,
which is similar to switchable constraints [16] as it also
re-weights constraints, but without the need to explicitly
compute switching variables. Olson and Agarwal [14] in-
troduced a maximum operator on Gaussian mixtures in the
optimization process. It allows for dealing with multi-modal
constraints and rejecting outliers, while maintaining com-
putational efficiency. Latif et al. [13] proposed an approach
that handles outliers by finding the maximum set of clustered
edges that are consistent with each other.

Although these methods for outlier rejection improve the
robustness of SLAM back-ends, it is not yet possible to
guarantee consistency of the resulting map. The ability to
determine if a map is consistent has not received a lot of
attention in the literature, with the notable exception of the
work by Hähnel et al. [11]. Despite finding the correct data
associations, Hähnel et al. determine the log-likelihood of a
pairwise scan matching, given their pose estimate. The log-
likelihood is computed by superimposing a scan onto a local
occupancy grid map build by the other scan.

Our approach can be seen as related to the work of Hähnel
et al. as we provide a measure for the likelihood of a pairwise
mismatch, but we further extend it in a multiple-overlapping-
scans scenario, while abandoning the need for discretization.
We furthermore exploit these concepts for performing a
cascaded statistical test and apply them to automatically tune
the parameter of dynamic covariance scaling [1].

III. PAIRWISE INCONSISTENCY MEASURE

In this section, we propose a measure of compatibility
between scans. Our approach makes the assumption that
the environment is static, although we will illustrate ex-
perimentally that it is still robust with respect to a certain
degree of dynamics. In the following, we will describe the
methodology for 2D range scans.

Our goal is to provide a value describing the discrepancy
between two scans. To achieve this, we determine how much
two laser range scans occlude each other’s free space. Let S1

and S2 be two laser scans, taken from two different poses and
expressed in global coordinates. For each scan, we compute
a polygon using its end points and the position of the robot.
Each polygon describes the free space that is covered by the
scan. The intuition is that S1 and S2 are considered to be
consistent with each other if none of the end points of S1 lies
inside the polygon of S2 and vice versa. We call the points
of S1 lying inside S2 the inconsistent points of S1 w.r.t. S2.

Fig. 2. Example showing inconsistency distances in Si w.r.t. Sj . The set
of green and black polygonal chains identify the observable boundary of Si

and Sj , while the shaded green area represents the visibility polygon of Si.
The lengths of the dotted red lines represent the inconsistency distancies in
Si w.r.t. Sj , for all inconsistent points w.r.t. Sj falling into the visibility
polygon of Si.

The measure we derive from this intuition computes the
sum of the distances of each inconsistent point of the first
scan to the boundary of the polygon surrounding the second
scan and vice versa. Let Vi be the set of points defining the
visibility polygon of Si and pki its k-th end point. We define
the inconsistency distance di(p) for a point p as:

di(p) =

{
dist(p,Vi) if p inside Vi
0 otherwise

, (1)

where dist(p,V) is the Euclidian distance of a point p to
the closest point on the polygon boundary V . By summing
over all the end points of the scans, we obtain the pairwise
inconsistency measure

Mij =
∑
k

di(p
k
j ) +

∑
k

dj(p
k
i ). (2)

See Fig. 2 for an example. In the remainder of this paper, we
refer to the total number of inconsistent points in Si w.r.t. Sj
and in Sj w.r.t. Si as nij . A naïve implementation computes
Mij in O(K2), where K is the number of end points.

IV. STATISTICAL TEST FOR MAP CONSISTENCY

In this section, we formulate a hypothesis test for the
global consistency of a map, based on the pairwise measure
of compatibility.

A. Hypothesis Test for Pairs of Scans
Under the assumption of a correct alignment of two scans

Si and Sj , we expect that on average 50% of the end points
in Si are inconsistent points of Sj and vice versa. This is
due to the inherent sensor noise in the laser measurements.

If Si and Sj are obtained from the exact same pose
and the laser range values are normally distributed, the
inconsistency distances are half-normally distributed, with
the scale parameter s2 given by twice the range variance of
the laser. The half-normal distribution is the distribution of
Y = |X|, with X ∼ N (0, s2).

We further assume that the inconsistencies are i.i.d. ran-
dom variables with finite mean µ and variance σ2. In the
case of the half-normal distribution, we have

µ = s

√
2

π
σ2 = s2

(
1− 2

π

)
. (3)



According to the central limit theorem, Mij follows

Mij − µnij
σ
√
nij

∼
nij→∞

N (0, 1). (4)

The former can be generalized to situations in which the ran-
dom variables follow different distributions, as long as they
are independent and they satisfy Lindeberg’s condition [2].
In this case, the limit of the mean is still normally distributed.
We found that the approximation is very accurate even for
as little as 20 half-normal samples.

As a result of that, we can conduct a hypothesis test if nij
is sufficiently large and µ and σ2 are known. The hypothesis
test allows us to determine whether Mij ∼ N (µnij , σ

2nij).
It requires a one-sided test, as only large Mij values are
relevant; a low Mij value only implies that larger deviations
from the perfect map assumption are accepted.

Based on N laser scans, we can build an N×N symmetric
matrix Ψ containing standardized Mij values as follows:

Ψ =

[
Mij − µnij
σ
√
nij

]
1≤i≤N
1≤j≤N

(5)

Here, the sparsity of this matix depends on the amount of
overlap between laser scans.

Given Ψ, we can infer whether two scans Si and Sj are
consistent with confidence 1−α by verifying the inequality

Ψij ≤ F−1(1− α), (6)

where F−1(p) is the inverse CDF of the normal distribution.
By adopting a bounding box test and assuming that the

pairwise measure of compatibility is determined in O(K2)
complexity, Ψ can be computed in O(N2 +NRK2), where
R denotes the average number of laser scans a scan overlaps
with respect to the bounding box and K is the number of
laser beams per scan.

B. One-vs-All Consistency Test for Scans

To asses global consistency, one can conduct the above
described test for all pairs of scans and consider a map to be
consistent if all tests are successful. The problem, however, is
that a single statistical test will produce the wrong result with
probability α. Thus, testing a single scan that overlaps with
r other scans yields a type I error probability of 1−(1−α)r.
This renders the direct application of the pairwise approach
unsuitable.

To overcome this problem, we model the outcome of a
pairwise hypothesis test as a Bernoulli-distributed random
variable with parameter α. Thus, the number of failed tests
follows a binomial distribution with parameters α and r.
Given that, we can compute the maximum number ξ̂ of tests
that can fail for a confidence level 1− α′ as

ξ̂ = min
0≤ξ≤r

ξ
∣∣∣∣∣∣

r∑
i=ξ+1

(
r

i

)
αi(1− α)r−i ≤ α′

 . (7)

Computing ξ̂ according to (7) is numerically unstable.
Thus, we exploit(

r

i

)
αr(1− α)r−i =

exp
(
i logα+ (r − i) log(1− α) + log Γ(r + 1)

− log Γ(i+ 1)− log Γ(r − i+ 1)
)
, (8)

where Γ(·) is the gamma function.
This allows for computing a cascaded hypothesis test for

the consistency of a scan with respect to all scans it overlaps
with. We first perform all pairwise hypothesis tests. Then,
if the number of failed tests is smaller than ξ̂, the overall
consistency test is positive.

C. Estimating Distribution Parameters from Data

In theory, one could compute the mean µ and variance σ2

of the half-normal distribution directly from the variance of
the laser range finder. In practice, however, this approach
does not take into account the bias of the scan matcher
nor artifacts due to the incidence angle of the laser beams.
To improve robustness, we estimate them directly from
data, assuming that the incremental solution, i.e., without
loop closures, is consistent. Moreover, to account for the
heteroscedasticity of the test variables Mij due to the scan
matcher bias, we adaptively estimate a mean µi and a
variance σ2

i for each scan.
We assume here that the incremental scan matcher pro-

duces correctly aligned scans locally. For the i-th scan,
we define Li to be the set of scan indices in its local
neighborhood. In our current implementation, this contains
up to 20 scans.

Formally, in order for all Mij to pass the hypothesis test
with confidence 1−α, the following inequalities need to be
satisfied:

Mij − µi nij
σi
√
nij

≤ F−1(1− α) ∀j ∈ Li ∀i (9)

Recall that the inconsistency distances are half-normally
distributed with mean and variance given by the scale pa-
rameter s2

i according to (3). By substituting (3) into (9) we
obtain

si ≥ max
j∈Li

Mij

nij

√
2
π + F−1(1− α)

√
nij
(
1− 2

π

) . (10)

There is one degree of freedom to choosing s2
i , we thus

consider the limiting behavior and replace the inequality with
an equality.

During the compatibility test of two scans on the overall
map, we choose the largest scale parameter between s2

i and
s2
j for the pairwise Mij test. This formulation, to some

extent, allows to deal with dynamic environments, although
the larger the amount of dynamics the worse the ability to
detect inconsistencies.
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(a) Static-world datasets
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(b) Datasets with dynamics
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(c) All 53 datasets

Fig. 3. Pareto frontier for specificity and recall on the evaluated datasets. The method of Hähnel et al. is shown in blue while ours is in red.

V. AUTOMATIC PARAMETER TUNING FOR DCS
One current limitation of DCS [1] is the effect of the

parameter Φ on the solution. In this section, we show how
to use the proposed inconsistency measure in order to find
the Φ that produces the most consistent map.

The parameter Φ influences the map optimization process,
thus it implicitly affects the inconsistency measure Mij .
Let Ξ(Φ) denote the number of pairs of overlapping scans,
i.e., Ξ(Φ) = |{(i, j) | Vi ∩ Vj 6= ∅}|. We define the average
inconsistency measure of a DCS solution as

M(Φ) =
1

Ξ(Φ)

N∑
i=1

N∑
j=1

Mij(Φ), (11)

where Mij(Φ) is the pairwise inconsistency measure com-
puted on the DCS solution with parameter Φ.

The function M(Φ) allow us to compare the outcome of
the map optimization for different values of Φ. Our aim is
to find the Φ∗ that minimizes (11). In the ideal, noise-free
case M(Φ∗) = 0 and by definition M(Φ∗) ≥ 0. Thus, we
aim to minimize M(Φ):

Φ∗ = arg min
Φ∈[0,+∞)

M(Φ) (12)

Unfortunately, no closed form for M(Φ) is available and
it is only pointwise evaluable. Therefore, we address (12) as
a search problem over the

√
Φ space (Φ is an intrinsically

quadratic value), by iteratively computing the DCS solution
and its M(Φ) value. We empirically found that a comparably
simple search strategy is sufficient. Rather than adopting
procedures such as simulated annealing, a standard grid
search approach followed by a bisection method for fine
tuning is successful to approach Φ∗.

If a Φ such that the resulting map is consistent does not
exist, M(Φ) may favor a few large Mij(Φ) values over many
small Mij(Φ) values. Intuitively, it may favor few strong
inconsistencies, e.g., intersecting corridors, over many weak
ones, e.g., misaligned corridors. While this effect is to some
extent balanced by the number of overlapping scans Ξ(Φ),
we do not exclude the possibility of such an instance arising.
In those cases, we recommend to perform the statistical
hypothesis test on the resulting map, to assess its consistency.

VI. EXPERIMENTAL EVALUATION

This evaluation is designed to illustrate (a) the effective-
ness of our statistical consistency test, and (b) the ability to
automatically find the Φ parameter in DCS for computing
consistent maps.

A. Map Consistency

To evaluate the performance of the proposed hypothesis
test, we executed it on 16 publicly available, 2D laser
datasets1 including ACES3, Belgioioso castle, Bicocca 25b,
Bicocca 26a, MIT CSAIL, Edmonton, FHW, Freiburg 079,
Freiburg 101, Intel lab, MIT Killian, Mexico Acapulco,
Orebro, Intel Oregon, UW Seattle, Stanford gates, and
University of Bremen. We partitioned the 16 datasets into
two groups: static and dynamic. For each group, we have
generated consistent and inconsistent maps, resulting in 53
configurations.

We compared our method with the one by Hähnel et
al. [11] on each configuration. For our method, we consider a
map to be inconsistent if at least one cascaded hypothesis test
failed. For the method of Hähnel et al. a map is inconsistent
if the log-likelihood is below a set threshold. We run the
experiments for multiple values of our confidence parameters
and the threshold of the method by Hähnel et al. Each
parameter configuration results in a point in the specificity-
recall space. We compute the optimal Pareto frontiers of the
two methods and report them in Fig. 3.

In static environments, the plots show that our method
improves both, recall and specificity, compared to the one
of Hähnel et al, see Fig. 3(a). Our approach is close to the
optimal result point (1, 1) in the specificity-recall space. The
results show the advantage of using a cascaded hypothesis
test rather than relying on a greedy parameter choice. Note
that, the method proposed by Hähnel et al. only obtains high
specificity scores at low recall values. Fig. 1 shows, as an
example, the inconsistent regions detected by our method on
a corrupted version of the Belgioioso castle.

1http://www.informatik.uni-freiburg.de/~mazuran/
files/tagged-datasets-icra14.tar.gz
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Fig. 4. Φ sensitivity for different datasets: the top row shows the maps for the Φ = 1 baseline, while the middle row shows the maps for the Φ values
computed by our algorithm. The last row displays the value of M(Φ) on the bounded interval [0, 16]; the red line denotes the Φ coordinate of the minimum
of M(Φ).

In case of dynamic environments, the difference be-
tween the two approaches becomes even more evident (see
Fig. 3(b)). The MIT-Killian dataset, for instance, contains
a substantial amount of fast dynamics cased by walking
people. Our approach is able to correctly identify those scans
as being consistent, apart from two instances, which are
depicted in Fig. 5. For these two scans, our algorithm detects
two significant instances of quasi-static elements, in the form
of two objects that were absent when the robot first visited
the area, but were present in subsequent visits. By inspecting
other dynamic datasets, we found that our method handles
fast dynamics robustly, as long as their impact is moderate,
i.e., does not cover large portions of the scans.

The robustness w.r.t. dynamics comes from the adaptive
estimation of the inconsistency distance distribution param-
eters presented in Section IV-C. Mean and variance are
increased when temporally local scans do not match well.
This also allows to mitigate the effect of incorrect laser
readings, due to bumps or slight slopes of the terrain, which
occur in datasets such as Bicocca 25b.

Fig. 3(c) shows the performance on all the datasets, includ-
ing static and dynamic environments. The performance trend
of both approaches is confirmed. Our approach outperforms
the one of Hähnel et al. in all the specificity-recall space.

B. Parameter Optimization for SLAM

This experiment is designed to show the impact of param-
eter search for map optimization with DCS. We compare

Fig. 5. Quasi-static objects in the MIT-Killian dataset marked in red.

DCS with our parameter search method vs. DCS with the
suggested default parameter value of Φ = 1 on five pub-
licly available datasets2: Bicocca multisession, MIT CSAIL,
Edmonton, FHW, and Intel lab.

The Bicocca multisession dataset is the same one consid-
ered by Latif et al. [13], including the initial guess. For all
other datasets, we corrupted the initial guess to challenge our
parameter tuning approach. In addition to that, we manually
added data association outliers to the graphs of MIT CSAIL
and Edmonton. For the FHW and Intel lab datasets, we
generated false data association edges by running a SLAM

2http://www.informatik.uni-freiburg.de/~mazuran/
files/dcs-datasets-icra14.tar.gz



Fig. 6. Example inconsistencies in the optimized Bicocca multisession
dataset. The trajectory of the robot is not shown for clarity.

TABLE I
AVG. EXECUTION TIME OF THE STATISTICAL HYPOTHESIS TEST

Dataset N R K Runtime [s]
ACES3 706 32.7 180 3.6

Belgioso castle 349 29.7 361 5.3
Bicocca 25b 1268 26.7 181 4.5
Bicocca 26a 1475 23.7 181 5.4
MIT CSAIL 686 50.7 361 13.1
MIT Killian 5489 56.0 180 42.0
Edmonton 630 35.4 180 1.3

FHW 1941 211.7 180 27.3
Freiburg 079 833 118.4 360 29.5
Freiburg 101 504 73.6 360 6.8

Intel lab 1311 133.7 180 13.4
Intel Oregon 485 62.4 181 2.9

Mexico Acapulco 1547 72.7 181 3.4
Orebro 237 19.5 181 0.7

UW Seattle 233 22.8 361 3.5
Stanford gates 1127 63.9 181 6.5

U. Bremen 119 21.1 181 0.4

front-end [17] with suboptimal parameters.
For such challenging datasets, DCS with Φ = 1 provides

a consistent solution only for the FHW dataset. Fig. 4 shows
the resulting maps of the datasets considered during the
experiment. The top row shows the output of DCS when
Φ = 1, while the second row the output of DCS using the
automatic parameter tuning procedure. The last row shows
the profile of M(Φ) for different values of Φ. Our approach
is able to find appropriate values for Φ and is producing
consistent maps.

Note that the best result for the Bicocca multisession
dataset is obtained with a value of Φ ≈ 5, which is in
line with the work of Agarwal et al. [1]. The resulting map,
however, does not pass the consistency test and it is barely
usable for autonomous navigation. Fig. 6 illustrates this fact
through a magnified view of two portions of the map.

C. Computation Time

Conducting the statistical test increases the computational
resources required to build a map. Table I summarizes the
execution time on an Intel i7-3770K processor using 8 par-
allel threads for different datasets. Our hypothesis test along
with the parameter tuning is highly parallelizable, hence can
be speeded-up if implemented in CUDA or OpenCL.

VII. CONCLUSION

In this paper, we addressed the problem of measuring
map consistency. We introduced a pairwise measure of
inconsistency between scans that calculates the amount of
mismatches of globally aligned laser measurements. We
furthermore described how the proposed measure enables us

to derive a statistical hypothesis test to assess the consistency
of a map and to provide a means for automatically tuning
parameters of a SLAM back-end.

We implemented and thoroughly tested our approach.
We evaluated the proposed hypothesis test on publicly
available datasets and showed the effectiveness of our
approach in both tasks, namely detecting the consistency
of a map and automatically tuning the free parameter
in the dynamic covariance scaling approach. The latter
allows us to retrieve the best map achievable by DCS
without the need for user intervention or manually
specifying the free parameter. We believe that the
combination of an automatic parameter tuning method
with a consistency hypothesis test is an important
tool for verifying the success of a mapping process.
The source code of the approach is freely available at
www.informatik.uni-freiburg.de/~mazuran/consistency
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