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Figure 1. Our approach generates tree skeletons (right) of real orchard trees (left) from colorized point clouds (middle). We leverage a
denoising diffusion probabilistic model to predict the nodes and hierarchy of tree skeleton represented as a graph (red) of individual trees.

Abstract

The natural world presents complex organic structures,
such as tree canopies, that humans can interpret even when
only partially visible. Understanding tree structures is
key for forest monitoring, orchard management, and au-
tomated harvesting applications. However, reconstructing
tree topologies from sensor data, called tree skeletoniza-
tion, remains a challenge for computer vision approaches.
Traditional methods for tree skeletonization rely on hand-
crafted features, regression, or generative models, whereas
recent advances focus on deep learning approaches. Exist-
ing methods often struggle with occlusions caused by dense
foliage, limiting their applicability over the annual vegeta-
tion cycle. Furthermore, the lack of real-world data with
reference information limits the evaluation of these meth-
ods to synthetic datasets, which does not validate gener-
alization to real environments. In this paper, we present
a novel approach for tree skeletonization that combines a
generative denoising diffusion probabilistic model for pre-
dicting node positions and branch directions with a classi-
cal minimum spanning tree algorithm to infer tree skeletons
from 3D point clouds, even with strong occlusions. Addi-
tionally, we provide a dataset of an apple orchard with 280
trees scanned 10 times during the growing season with cor-
responding reference skeletons, enabling quantitative eval-
uation. Experiments show the superior performance of our
approach on real-world data and competitive results com-
pared to state-of-art approaches on synthetic benchmarks.

1. Introduction

The world around us is filled with natural structures, such as
trees, that humans can interpret even when parts of them are
occluded; however, this remains a challenge for computer
vision systems. Reconstructing tree topologies from sensor
data is one application where this aspect matters. There are
many applications where inferring these topologies is fun-
damental, e.g., forest monitoring for understanding of these
complex natural systems [67], monitoring growth [16], pre-
dicting quality and quantity of harvested products [14], or
carbon storage estimation [9]. Another highly relevant ap-
plication is orchard management, where automated pruning
and thinning processes require an accurate representation of
tree topology to define target points [71]. Automated har-
vesting robots can benefit from topological tree models by
including them in the end effector path planning to avoid
collisions with trunks and thick branches while ignoring fo-
liage and small twigs [2]. There is an increasing interest
in tree topology estimation, which is commonly called tree
skeletonization [1, 7, 8, 26, 32, 34, 38]. Tree skeletoniza-
tion consists of inferring from sensor data the graph repre-
senting the medial axes of the trunk, branches, and twigs,
collectively referred to as branches, for simplicity.

We address tree skeletonization using 3D point cloud
data, which is more descriptive for geometry than using
only 2D images. Traditionally, the task of tree skeletoniza-
tion is approached as a regression problem [5, 6, 65], while
more recent approaches tackle the problem also with gen-



erative methods [66]. Prior work is based on traditional
optimization strategies, and more recently, the research di-
rection focuses more on the use of deep learning mod-
els [13, 37]. These approaches often predict offsets to es-
timate the medial axis of the branches. This works well
when most of the branches are measured by the sensor, but
performance degrades when large amounts of leaves lead
to heavy self-occlusions of the trees. In this setting of oc-
cluded views, generative models have the potential to in-
fer the missing parts by learning the underlying data distri-
bution. While the use of traditional generative methods in
the form of procedural tree models has been explored by
Stava et al. [62], we are not aware of any work employ-
ing generative deep learning models for tree skeletoniza-
tion. We leverage generative denoising diffusion models
motivated by their excellent results for generation of image
and point cloud data [22, 44, 72].

One major limiting factor in the development of tree
skeletonization methods is the lack of real-world reference
data for evaluating developed methods. Manual annotation
of real-world data is complex; therefore, most existing work
is evaluated quantitatively on synthetic data and provides
only qualitative results for real-world data. While qualita-
tive results can indicate performance, quantitative metrics
are essential to compare different methods objectively. To
fill this gap, we recorded real-world 3D point cloud data and
provide reference tree skeletons leveraging multiple scans
of trees in an orchard over the whole vegetation cycle.

In this paper, we propose a method for estimat-
ing skeletons from 3D point cloud data of trees with
dense foliage, leveraging a denoising diffusion probabilis-
tic model (DDPM). Our approach takes as input a 3D point
cloud that partially covers the tree and outputs a graph rep-
resenting the branching structure of the trunk and canopy.
The DDPM predicts the position of each node and the
branching direction to encode connectivity implicitly. We
then use these predictions to create a graph of the whole
tree from the tips of the branches to the base of the tree
using a minimum spanning tree with edge weights based
on flow directions. We also provide a point cloud dataset
of an apple orchard covering 280 trees measured 10 times
over the growing season. We provide reference skeletons of
the branching structure for each tree and date, which allows
evaluation at different occlusion levels due to leaf growth.
Fig. 1 shows the data and exemplary extracted skeletons.

In summary, our key contributions are:
• A tree skeletonization approach using 3D point clouds

as input that employs a novel diffusion-based formula-
tion for generating an implicit representation of a graph-
like structure from which we reconstruct the partially oc-
cluded branching structure of a tree with foliage.

• A novel 3D point cloud dataset covering apple trees in
a real orchard with reference skeletons for quantitative

evaluation on real-world data.
• Quantitative evaluation on our real-world dataset show-

ing improved tree skeletonization performance of our ap-
proach over other state-of-the-art approaches, but also
competitive performance on existing synthetic datasets.
We provide the implementation of our approach as open

source code at https://github.com/PRBonn/DiffTS.

2. Related Work
Tree skeletonization is a challenging problem in computer
vision and has been extensively studied in the past. Previous
works for tree skeletonization [1, 7, 32, 38] use 2D images
as input, which are convenient to acquire but lack depth in-
formation required to reconstruct 3D tree skeletons. This
leads to poor performance for complex tree skeletons or sit-
uations with dense foliage due to low observability using a
single view. Therefore, other methods [8, 26, 34] use 3D
point clouds or other means of 3D data to extract the under-
lying tree skeletons and can be mainly subdivided into (i)
geometric and (ii) procedural modeling approaches.

Geometric approaches use different strategies to in-
fer the branch points from the measured 3D point cloud
given. Iterative thinning techniques are often used to in-
fer the medial axis of the branches but often fail with in-
complete or noisy input data, especially when dense foliage
is present [5, 20, 63, 65]. Other approaches use cluster-
ing of the input points into branch pieces and connecting
them based on geodesic graphs [11, 17, 18, 23, 37, 64],
which is efficient but insufficient with occlusions and tight
branching structures. As geometric approaches are affected
by occlusions leading to missing parts and disconnected
branches in the output, some works ensure global connec-
tivity of predicted skeleton by constructing minimum span-
ning trees [15, 40, 75] or global graph contraction [25].

Procedural approaches infer the branching structure
based on apriori knowledge about tree growth [4, 19,
53, 77], which is formalized using learned rules [31] or
L-systems [35] that are a rewriting system guided by a set
of rules describing the growth of a given tree variety. This
leads to a procedural generation of the tree skeleton, start-
ing from the trunk’s base to the twigs’ tip. Zhang et al. [74]
propose a procedural generation moving in the opposite di-
rection, emulating the path of sap particles from the leaves
to the root for estimating the branching structure. Initial
particle positions are defined based on point density, and
particle directions are computed based on the neighboring
particles and the location of the tree base. Overall, procedu-
ral approaches perform well on data with missing parts but
rely on extensive hyperparameter tuning to generate these
missing parts correctly.

Deep learning approaches recently received increasing
interest for tree skeletonization. Liu et al. [37] predict se-
mantic branching points and branch instances approximated

https://github.com/PRBonn/DiffTS
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Figure 2. Overview of our tree skeletonization approach. Given a tree and its point cloud scan S, we define the initial set of nodesMT

with the node points pTd as a set of points sampled from S and the nodes flow directions fTd randomly initialized. Then, the trained DDPM
is used to iteratively predict the noise εθ at step t from the set of nodesMt, conditioned to the scan S, until arriving atM0. FromM0,
we compute the minimum spanning tree (MST) to define the predicted tree skeleton T with vertices V ′ and edges E ′.

by cylinders to then apply a neural merging module for
predicting the final skeleton. Liu et al. [36] infer a graph
representing the tree skeleton from a single input image
by combining learning-based graph generation with mini-
mum spanning trees. Li et al. [33] also use single view
images but generate a 3D semantic voxel grid to encode
structural information and intricate tree features. Isokane et
al. [24] instead work with multi-view images to infer parts
of the branching structure occluded by leaves and lever-
age a Bayesian extension of image-to-image translation.
Liu et al. [39] generate complex 3D tree skeletons from 2D
sketches. Meyer et al. [48] propose an approach that first
predicts which points are part of the main trunk or branches,
which is then used for a Laplacian-based contraction to ex-
trapolate the tree skeleton of leaf-free trees.

Denoising diffusion probabilistic models lately be-
came popular due to their high-quality image generation
results [12, 22, 50, 52, 54, 56, 78, 79]. Also, conditioned
diffusion models gained even more attention due to their
ability to steer the generation process towards a specific in-
put [3, 21, 73]. The main drawback of DDPMs is the time
needed for the denoising process, which can be reduced,
for instance, by distillation of the denoising model [47, 57]
or analytically approximating the denoising step solution to
reduce the number of needed steps [27, 42, 43, 60].

Diffusion models for 3D data have been investigated
for 3D shape generation [44, 45, 58, 59, 69, 72, 76] focus-
ing on point clouds of single objects to generate new shapes
or complete partial inputs. Only a few works [30, 49, 80]
instead target real-world data generation. Some works [49,
80] rely on projecting the 3D data to an image-based rep-
resentation, e.g., range images, such that the image-based
methods can be directly applied. However, such projection-
based approaches often cannot complete the whole 3D
scene when reprojecting the image to the 3D world since
some regions do not have any information due to occlu-
sions in the projected point cloud. Lee et al. [30] achieve

the generation of complete scenes using a discrete diffusion
model formulation and a fixed voxel grid representation of
the environment. The model is then used to infer whether
each voxel is occupied, and a semantic label is predicted.
The work by Nunes et al. [51] instead operates directly at
point level to generate complete 3D scenes. In our work,
we leverage this local formulation by Nunes et al. [51] to
predict the position of the nodes and their flow direction to
implicitly represent the tree structure, which we then use to
extract the full tree skeleton as a graph.

3D tree skeletonization datasets for evaluation of tree
skeletonization approaches are either of synthetic nature or
do not provide any means of quantitative evaluation due to
the difficulty of obtaining reference skeletons for real data.
Dobbs et al. [13] present a synthetic dataset of trees of six
different species with reference skeletons consisting of only
100 trees per species. The synthetic dataset proposed by
Tang et al. [68] contains 13,000 trees of 10 different species
but only contains the node position of a reference skeleton
without any connectivity information. Yan et al. [70] also
propose a synthetic dataset of trees with sparse point clouds
with only around 3,000 points per tree. Meyer et al. [48]
provide qualitative experiments on real-world data but lack
quantitative evaluation due to missing reference skeleton.

Together with our tree skeletonization approach, we
present the first real-world dataset of tree point clouds with
reference skeletons of 280 trees throughout a vegetative cy-
cle that enables quantitative evaluation of tree skeletoniza-
tion with different levels of occlusions caused by foliage.

3. Our Approach
In this paper, we aim at extracting the branching structure
of a tree, i.e. tree skeleton, from the 3D point cloud of a
whole tree including the foliage. To this end, we propose
a tree skeletonization method based on a denoising diffu-
sion probabilistic model (DDPM) that outputs a tree skele-
ton based on an input 3D point cloud. In this work, we



define the tree skeleton as a directed graph G = (V, E) de-
fined by a set of vertices V = {v1, . . . , vR} and a set of
connecting edges E = {e1, . . . , eD} with ed = (vv, vu),
between vv and its parent vu. To infer the 3D position of the
vertices V of the tree skeleton graph G, we use the DDPM
formulation proposed by Nunes et al. [51] starting with an
initialization of the vertex positions obtained by randomly
sampling points from the input point cloud. We then pre-
dict iterative denoising corrections to distribute the nodes
evenly onto the medial axes of the branches. We condition
the DDPM predictions with the input point cloud, in order
to predict the corresponding tree skeleton out of the learned
distribution.

To define the edges E , for each vertex vv we predict the
direction of flow of the resin in the tree, which we simply
refer to as flow direction, in form of a unit vector pointing
towards the parent node vu. We then generate the full tree
skeleton by computing the minimum spanning tree over the
nodes based on the predicted node positions and flow direc-
tions. We show the process on an exemplary point cloud in
Fig. 2. In the following, we first describe the DDPM formu-
lation and then we present our formulation to adapt it to the
tree skeletonization task.

3.1. Denoising diffusion probabilistic models

Denoising diffusion probabilistic models [12, 22, 50] sam-
ple from the learned distribution by performing an iterative
denoising process. The model usually starts from Gaus-
sian noise [12, 22, 50] and at each step removes noise from
the input until it converges to the target sample, e.g., im-
ages [12, 22, 50, 52, 54, 56, 78, 79] or shapes [44, 45, 58,
59, 69, 72, 76]. This can be achieved by defining a forward
diffusion process where noise is iteratively added T times
to the target data such that the corrupted data approximates
to Gaussian noise. Then, the model is trained to predict
the noise that was added at each step t. During inference
a novel sample is generated by starting with random noise,
and using the trained model to predict and remove the noise
iteratively over T steps, arriving to a new sample from the
training data.

The diffusion process as formulated by Ho et al. [22]
can be generally written as follows. Given a sample
x0 ∼ q(x) from a target data distribution q, the diffu-
sion process adds noise to x0 over T steps, resulting in
x1, . . . ,xT , where q

(
xT
)
≈ N(0, I), where N(0, I) is a

normal distribution with mean 0 and the identity matrix I
as diagonal covariance. This diffusion process is parame-
terized by a sequence of defined noise factors β1, . . . , βT ,
where iteratively at each step t, Gaussian noise is sampled
and added to xt−1 given βt. This can be simplified to sam-
ple xt from x0, without computing the intermediary steps
x1, . . . ,xt−1. To do so, Ho et al. [22] define αt = 1 − βt

and αt =
∏t
i=1 αi, and xt can be sampled as:

xt =
√
αtx

0 +
√
1− αtε, (1)

where ε ∼ N(0, I). Note that when T is large enough
q
(
xT
)
≈ N(0, I), since αT approaches zero.

For settings where the input data distribution is far from
a Gaussian distribution N (0, I), Nunes et al. [51] pro-
pose a point-wise local formulation of the diffusion process.
Instead of sampling xt as a mixed distribution between
ε ∼ N (0, I) and x0 as in Eq. (1), they formulate the dif-
fusion process as a noise offset added locally to each point
pi ∈ P , where P is the target point cloud to which noise
will be added during training. By setting x0 = 0 in Eq. (1)
and adding xt to pi the diffusion process at timestep t can
be formulated as:

pti = pi +
(√
αt0+

√
1− αtε

)
, (2)

= pi +
√
1− αtε, ∀pi ∈ P. (3)

The denoising process aims to undo the T noising steps
by predicting the noise ε added at each step t [22]. Given
an initial xT , we want to reverse the diffusion process and
get to x0. The reverse diffusion step can be written as:

xt−1 = xt − 1− αt√
1− αt

εθ
(
xt, t

)
+

1− αt−1

1− αt
βtN(0, I) , (4)

where εθ(xt, t) is the noise predicted from xt at step t.
This generation can also be guided given a condition c.

This conditional generation can either stem from a pre-
trained encoder [12] or from classifier-free guidance [21],
where the encoder is trained together with the noise predic-
tor. In our case, we use the classifier-free guidance since it
does not require a pre-trained encoder. With the classifier-
free guidance, the model is trained to learn the conditional
and unconditional noise distribution. In this case, at each
training step the model has a probability ρ of predicting the
unconditional noise distribution, where the conditioning is
set to a null token, i.e., c = ∅.

The training process optimizes the denoising model to
predict the noise ε added at step t to a given input. Given
an input x0 and a condition c, a random step t ∈ [0, T ]
is sampled, and xt is sampled from Eq. (1) with Gaussian
noise ε. Then, from xt, c and t, the model computes the
noise prediction, supervising it with an L2 loss:

L
(
xt, c̃, t

)
=
∥∥ε− εθ(xt, c̃, t) ∥∥2, (5)

with c̃ ∼ B(p) where B is a Bernoulli distribution with out-
comes {∅, c} with probability ρ that ∅ occurs.

The inference starts from an initial xT ∼ N(0, I) and
iteratively denoises it to get x0. For the classifier-free guid-
ance [21], we predict the conditional εθ(xt, c, t) and uncon-
ditional εθ(xt, ∅, t) noise distribution and compute the final
predicted noise ε′θ(x

t, c, t) as:

ε′θ
(
xt, c, t

)
= εθ

(
xt, ∅, t

)
+s

[
εθ
(
xt, c, t

)
− εθ

(
xt, ∅, t

)]
, (6)



where s ∈ R is the conditioning weight.
With Eq. (6) we can predict the noise at any step t,

from which we can use Eq. (4) to compute xT−1, . . . ,x0,
where x0 is a newly generated sample conditioned on c.

3.2. Diffusion tree skeletonization
We want to train the DDPM to predict the skeleton from a
point cloud scan of a tree. To do so, we constrain the di-
rected graph to be a rooted tree, therefore each node has a
single parent node, as this is true for all topologies of trees
stemming from a single growth point. To adapt the formu-
lation of G to tree skeletonization, we associate each vertex
vr with a 3D position pr ∈ R3 from the tree skeleton.

Instead of directly predicting the edges E , we define
the set of nodes M = {m1, . . . ,mD}, where each node
md = (pd,fd) is composed of its position pd and its flow
direction fd. The flow direction fd is a unit vector pointing
from the node position pd towards the position of its parent
node ppar(md)

. Hence, the flow direction fd is defined as:

fd =
pd − ppar(md)∥∥∥pd − ppar(md)

∥∥∥ . (7)

Exemplary nodes and flow directions are shown in Fig. 3.
We then use the DDPM with weights θ to predict a sam-

pleM0
θ ∼ q(M). To achieve this we first train our model

by adding noise to the nodes md as defined in Eq. (3) as:

mt
d = md +

√
1− αtε. (8)

Training the DDPM to predict the noise ε conditioned to an
input tree point cloud S = {s1, . . . , sB} with sb ∈ R3.
Thus, Eq. (5) is written as:

L
(
Mt,S, t

)
=
∥∥ε− εθ(Mt,S, t

) ∥∥2. (9)

After the training, we then perform the reverse diffu-
sion step with Eq. (4) given the conditioned noise prediction
ε′θ (Mt,S, t) as in Eq. (6). After iteratively removing the
noise over T times, we arrive to a sampleM0

θ ∼ q (M) as
the skeleton of the input tree point cloud S from the learned
data distribution q (M).

The graph generation process generates a complete
graph of the branching structure from the node positions
and the flow predictions. We set a subset S ′ of the tree
point cloud scan S as the initial corrupted dataMT = S ′,
and use the trained DDPM weights θ to denoiseMT over
T times with Eq. (6), arriving to M′ = M0

θ. From M′,
we start by defining a graph G′ = (V ′, E), with V ′ vertices
associated with the predicted points p′d from the predicted
nodes m′d, and E being the set of edges between all the pre-
dicted nodes. Then, we leverage Kruskal’s algorithm [29]
to compute the minimum spanning tree T = (V ′, E ′) over
G′ based on the predicted flow directions f ′d. To include the

Scan points
Nodes

Flow directions
Edges

Figure 3. Tree skeleton graph. We define the tree skeleton G as
a graph with nodes V (in red) and edges E (in black). This graph
lies on the medial axis of the branches of the tree given by a point
cloud S (in blue). To generate the graph, our approach predicts the
flow direction fd (black arrows) at each node position pd.

flow directions in the minimum spanning tree computation
we define the used edge weights wij as:

wij =
(
p′i − p′j

)>
f ′i, (10)

where p′i and p′j are the positions of the nodes m′i and m′j
defining the edge eij , and f ′i is the predicted flow direction
from the node m′i.

Kruskal’s algorithm then computes the graph that con-
nects all nodes with the minimum total edge weight given
the weights computed in Eq. (10), reducing E to E ′. Thus,
the final predicted tree skeleton is defined as T = (V ′, E ′),
with V ′ as the predicted points p′d and the edges E ′ given
the weights computed with the predicted flow direction f ′d.
To further improve the predicted tree topology, we apply a
post-processing step where we remove edges that are longer
than a threshold lmax and we perform connected compo-
nents analysis to remove disconnected parts of the graph
that contain less than nmin nodes. For more details on the
post-processing refer to Sec. B of the supplement.

3.3. Real-world orchard tree dataset
To test the performance on real world data, we collected a
dataset of 280 apple trees in an orchard. The trees were
scanned 10 times over the whole growing season of one
year with a terrestrial laser scanner (TLS). As inferring the
tree skeleton in the absence of foliage with existing methods
proved to give good results, we used the last scan collected
after the leaves fell of the trees after the growing phase to
generate the reference skeletons for the other scans. We



registered the scans of all rows and all dates in a global ref-
erence frame. We then manually cut out the tree rows from
the aggregated scans in order to remove ground and support
structures. To eliminate the vertical poles in the orchard we
performed cylinder fitting on the point cloud and removed
all points inside the fitted cylinders. To get a robust initial-
ization for the clustering we removed all points above 0.3m
from the ground and performed HDBSCAN clustering [46]
to detect the individual trunk bottoms. To extend the clus-
ters to the rest of the trees, we defined a connectivity graph
by defining edges between all points closer than a threshold
dmax = 0.2. We then computed the shortest path distance
between all points of the row and the centroid of the initial
clusters. To define the cluster membership of all points in
the row, we used the shortest path distance in order to ob-
tain the tree instance segmentation. Finally we generated
the reference skeletons by running AdTree [15] on the seg-
mented trees and we segmented the point clouds of the other
dates by propagating the segmentation of the last date to the
other dates by nearest neighbor search. For further details
please refer to Sec. A in the supplementary material.

4. Experiments and Discussions
The main focus of this work is an approach that generates a
complete tree skeleton covering the wooden parts of a tree
from an input point cloud of the tree, including the leaves.
To show the capabilities of our approach, we conduct ex-
periments on two different kinds of data: (1) synthetic point
clouds and (2) real-world orchard point clouds. The exper-
iments show that our method is able to perform tree skele-
tonization on different tree species and on both synthetic
and real data.

4.1. Experimental setup
Datasets. To test the performance of our method, we eval-
uate our approach on both synthetic and real-world data.

For the synthetic data, we used the TreeNet3D
dataset [68], a multi-variety synthetic dataset that con-
tains point clouds of 13,000 trees of 10 different species
generated using the tree modeling software SpeedTree by
Orca [61]. As the authors of the dataset did not provide
the connectivity information of the nodes but only the con-
nectivity at the branch level, we generated the node hierar-
chy from the provided branch hierarchy. We also defined
the train, validation and test splits by randomly splitting the
dataset in a 80%, 10%, and 10% for each tree species, as
TreeNet3D does not define them. The simulated scans do
not provide color information, so the branch structure needs
to be inferred using purely geometric information.

As the synthetic dataset TreeNet3D does not contain
apple trees, we performed additional experiments on the
simulated apple tree data provided by Dobbs et al. [13],
which contains 100 samples but bridges the gap between

Table 1. Skeletonization performance on TreeNet3D dataset
(normalized by variety). Best performance with respect to a par-
ticular metric is bold and the second best is underlined.

Approach Chamfer Precision Recall F1-Score
distance [cm] ↓ [%] ↑ [%] ↑ [%] ↑

AdTree [15] 0.91 85.58 96.57 88.80
LBC [6] 2.37 86.41 69.14 74.71

PC-Skeletor [48] 1.00 94.33 85.92 89.05
Smart-Tree [13] 2.53 48.20 33.88 37.06

Ours 0.78 88.34 91.37 89.59

TreeNet3D and our orchard dataset, as the simulated point
clouds are very dense and provide color information.

To test the performance on real-world data, we evalu-
ated our method on our apple orchard dataset presented in
Sec. 3.3, where each tree point cloud has both position and
color information with corresponding reference skeletons.

Metrics. To evaluate the tree skeletonization perfor-
mance, we use commonly used metrics: the Chamfer dis-
tance, precision, recall, and F1-score. To this extent, we
use uniform distance sampling on the predicted graphs to
densely sample a set of pointsH from the predicted skeleton
and a set of points R from the reference skeleton. To per-
form the distance computation between the predicted and
the reference skeletons, we compute the Chamfer distance
between H and R. To further measure the reconstructed
skeleton’s quality, we use the F1-score, precision, and recall
metrics proposed by Knapitsch et al. [28]. We first define
precision p and recall r given a threshold δ:

p(δ) =
100

|R|
∑
r∈R

[
min
h∈H
||r− h|| < δ

]
, (11)

r(δ) =
100

|H|
∑
h∈H

[
min
r∈R
||h− r|| < δ

]
, (12)

where h ∈ R3 and r ∈ R3 are points from H and R, re-
spectively. The operator [ · ] is the so-called Iverson bracket,
i.e., if the condition within the brackets is satisfied, it eval-
uates to 1, otherwise to 0. We then compute the metrics
at 10 thresholds δ in the interval [δstart, δend] and approxi-
mate the area under curve. The F1-score f(δ) is simply the
harmonic mean of precision and recall:

f(δ) =
2 · p(δ) · r(δ)
p(δ) + r(δ)

. (13)

For the evaluation in the Smart-Tree dataset [13], we use the
same evaluation parameters proposed by the authors.

Baselines. As baselines, we use state-of-the-art meth-
ods for tree skeletonization. Laplacian-based contrac-
tion (LBC) [6] iteratively performs contraction of the tree
point cloud towards the medial axis of the branches. PC-
Skeletor, proposed by Meyer et al. [48], improves over



Table 2. Skeletonization performance on Smart-Tree apple
data branches. Best performance with respect to a particular met-
ric is bold and the second best is underlined.

Approach Chamfer Precision Recall F1-Score
distance [cm] ↓ [%] ↑ [%] ↑ [%] ↑

AdTree [15] 4.55 29.48 49.31 36.06
LBC [6] 8.10 23.70 7.43 11.30

Smart-Tree [13] 26.55 78.72 6.53 11.84
Ours 4.44 48.07 28.31 35.61

LBC by integrating semantic information, the assignment
of each point to leaves, branches, or the main trunk, into
the skeleton generation process. AdTree [15] creates an ini-
tial skeleton by building the minimum spanning tree of the
point cloud and then prunes the initial tree skeleton by it-
eratively removing branches. Smart-Tree [13] uses a neural
network to predict the offset vectors pointing from the scan
points towards the medial axis of the branches and the offset
scan points to build a constrained neighborhood graph that
is used with a greedy algorithm to build the tree skeleton.

Implementation details. We based our model on the
MinkUnet [10] architecture for the noise prediction neces-
sary for denoising following Eq. (4) and the encoder part
of the MinkUnet for computing the conditioning features
from the input scan S. We trained our approach with a
learning rate of 10−4 using the Adam optimizer [41]. The
batch size and the learning rate were tuned on the valida-
tion set of the different datasets. As diffusion parameters,
we used T = 1, 000 steps and tuned the noise factors β1
and βT for each dataset, as different tree sizes demanded
different noise levels. For the full details on the implemen-
tation please refer to Sec. C in the supplementary and our
open source code.

4.2. Performance on multi-variety synthetic dataset
In the first experiment, we evaluate the performance of our
skeletonization approach on the TreeNet3D dataset. This
allows us to evaluate the generalization capabilities of our
approach to different tree varieties, as this dataset contains
trees of 10 different varieties that differ heavily in appear-
ance and scale. To highlight how well our method gener-
alizes, we trained only one model for all 10 tree species.
As the different species vary a lot in scale, we normalized
the skeletons to have similar canopy sizes before computing
the metrics, as otherwise, bigger trees would have a higher
weight in the averaged metrics. As seen in Tab. 1, we out-
perform all baselines in the Chamfer distance and F1-Score,
showing that our predicted skeletons are closer to the refer-
ence and more accurate. PC-Skeletor [48] is the approach
with the best precision, but they use ground truth seman-
tic information as input. AdTree [15] instead performs best
on the recall metric as the predicted skeletons span over the
whole tree nicely, even in tree species with many branches,

Table 3. Skeletonization performance on our Orchard dataset.
Best performance with respect to a particular metric is bold and
the second best is underlined.

Approach Chamfer Precision Recall F1-Score
distance [cm] ↓ [%] ↑ [%] ↑ [%] ↑

AdTree [15] 4.62 14.99 54.96 22.92
LBC [6] 6.51 24.35 13.46 17.19

Smart-Tree [13] 5.23 21.86 26.93 23.98
TreeQSM [55] 4.60 17.87 48.90 25.72

Ours 4.19 41.68 39.05 38.62

by using many nodes. However, their precision is lower
due to overestimating the existing branches. Due to mem-
ory constraints we had to find a tradeoff between efficiency
and resolution, which led to predicting 3,000 nodes. Those
are way less than the nodes predicted by AdTree, which is
a potential limitation. However, this problem leads only to
slight degradation in very complex areas that are already
error-prone due to occlusions. In fact, our approach still
outperforms all baselines in the F1-Score, which gives a
more complete picture than precision or recall individually.

4.3. Performance on synthetic apple tree dataset
In the second experiment, we test the performance of
our method and the baselines on a synthetic apple tree
dataset to bridge the gap between the synthetic multi-
species TreeNet3D dataset and our real-world apple orchard
dataset. We use the synthetic apple tree data provided by
Dobbs et al. [13] and use the same evaluation parameters as
proposed by the authors. The quantitative results in Tab. 2
show that our method with a value of 7.66 cm achieves
the best Chamfer distance compared to the baselines. As
shown by the higher precision metric of Smart-Tree [13],
that method has the least false positives; however, it has a
very low recall value, showing that it misses many branches
in the predictions. The small size of this dataset challenges
our approach, as one limitation of diffusion models is their
reliance on high amounts of training data. Still, it is able
to outperform the baselines on the Chamfer distance metric
and is a close second on the F1-Score metric, which com-
bines precision and recall.

4.4. Performance on real-world orchard dataset
In the final experiment, we evaluate the performance of our
method on the real-world apple orchard dataset that we pre-
sented in Sec. 3.3. This experiment, therefore, tests the real-
world applicability of the compared methods, which cannot
be shown on synthetic data alone. From the qualitative re-
sults in Fig. 4 it immediately becomes clear that the clas-
sical approach AdTree [15] does not manage to properly
detect where the branches lie. Because most of the points in
the scan are leaves, this is indeed a very hard task with-
out any domain-specific prior knowledge. This domain-
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Figure 4. Qualitative results on the orchard dataset. From the comparison it can be seen that the predictions of our method follow more
closely the structure of the reference, and has less additional branches and are more consistent. Notice that our predictions are topological
tree structures, however this is not always visible due to perfect overlap with the reference.

specific knowledge is learned during the training process of
the models of our approach and Smart-Tree [13], leading to
superior identification of the branches. Smart-Tree [13] still
has significantly more false positives than our approach,
which can also be seen in the precision and Chamfer dis-
tance metrics reported in Tab. 3. The quantitative results
in Tab. 3 show that our method performs best in all met-
rics except recall. AdTree [15] obtains the best result in
terms of recall, but it becomes clear by visually inspecting
the results that this is due to the fact that their predictions
have substantially more nodes covering the entire scan. For
completeness we also tested the standard deviation of the
predictions of our approach with different random initial-
izations which is 0.047 cm on the chamfer distance.

5. Conclusion

In this paper, we proposed a novel tree skeletonization ap-
proach that generates a complete tree skeleton covering the

woody parts of the tree from an input point cloud of a tree
covered with leaves. We showed that our method is robust
to different tree species, scales, and appearances and com-
pared its performance to state-of-the-art methods both on
synthetic and real-world data. Our method generally out-
performs existing methods on the synthetic datasets, but es-
pecially in the real-world setting, the generative nature of
the approach has advantages. Due to the extreme amount
of occlusions, the learned distribution of tree shapes is very
effective. We also propose the first real-world tree dataset
with reference skeletons, enabling the quantitative evalu-
ation of tree skeletonization methods on real-world data,
which is key to testing their real-world applicability.
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