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Abstract— Monitoring individual plants and computing pre-
cise 3D reconstructions is highly relevant for crop breeding. In
the conventional breeding approach, humans measure pheno-
typic traits by hand, requiring substantial manual labor. This
paper addresses precise 3D plant reconstructions in a crop
field or breeding plot based on UAV imagery. We explicitly
address the challenges resulting from the thin structures of
leaves and naturally occurring self-occlusions. We combine
photogrammetric bundle adjustment with a template-based
matching approach and produce accurate 3D models that
allow us to derive common, geometric traits used by breeders
to phenotype plants. We provide a thorough experimental
evaluation on commercially used sugar beet breeding plots to
illustrate the capabilities of our method as well as its real world
applicability.

I. INTRODUCTION

Phenotyping refers to the task of measuring the observ-
able characteristics or traits of an organism. It covers its
physical form and structure, its developmental processes, and
physiological properties. Plant phenotyping plays a vital role
in crop production and especially plant breeding, where the
appearance and performance of different plant varieties have
to be monitored and assessed [10]. This monitoring process
involves regularly measuring individual plants at several
stages to support breeders and scientists in selecting plants
that show desirable traits and using them for the following
breeding generations. Traditionally, the in-field assessment
is done by human inspection [11], which creates substantial
manual work and limits the spatial and temporal throughput.

An attractive way to observe fields or breeding plots at a
larger scale is the use of unmanned aerial vehicles (UAVs). A
typical UAV can be equipped with a high-resolution camera
and is able to cover multiple hectares of fields at high
resolution (in our setup 6 ha/h at 1 mm/px ground sampling
distance). The key advantage of UAVs is that acquiring data
is fairly easy. Their downside, however, is that they provide
only 2D image data, mainly in a top-down (nadir) view. Thus,
performing 3D reconstruction of plants can be challenging,
especially if required at high resolution. Furthermore, seri-
ous self-occlusions of the leaves pose great challenges to
matching algorithms. The fact that leaves are thin structures
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Fig. 1: Our UAV collecting images over commercial breeding plots
of sugar beets (top row). By combining bundle adjustment (middle)
and template matching, we can obtain precise 3D reconstructions
(bottom right) of individual plants (bottom left). We also show a
detailed view of a leaf reconstruction in the presence of occlusions.

additionally prevents the use of most volumetric environment
representations commonly used in SLAM systems, such as
voxel grids or TSDFs [13], [22], [27], [28], [31].

This paper addresses the problem of building high-
resolution 3D models of plants from UAV images. The
models should be precise enough to compute common phe-
notypic traits such as individual leaves’ length, width, or
margin undulation. As a concrete application, we consider
monitoring sugar beets, a value crop commonly grown in
Germany and other European countries. We use data from
real sugar beet breeding plots, grown and maintained by
commercial breeding companies and the Federal Office of
Plant Varieties in Germany. Fig. 1 shows our UAV during a
flight mission and illustrates the results of the reconstruction
approach presented in the paper.

The main contribution of this paper is a novel, template-
based approach for the reconstruction of crops in agri-
cultural fields and breeding. It combines photogrammetric
bundle adjustment of canopy points with a technique that
fits templates, which are well-suited to represent the thin
structure of leaves, to the data. Our approach deforms these
templates to match with the 3D points stemming from the



bundle adjustment using a gradient descent approach opti-
mized to handle partial observations. Furthermore, we use
least squares optimization to robustly pre-align the template
by leveraging domain-specific constraints, such as the axis
defined by plant center and leaf tip. We implemented and
thoroughly evaluated our approach on real UAV images
photographing sugar beet plants in agricultural fields and
commercially used breeding plots. Our experiments suggest
that our approach (i) is able to accurately reconstruct the
leaf parts visible in the leaf point clouds, including fine
details, (ii) reconstructs in a plausible way part of the leaves
that not visibile due to occlusions, (iii) is well suited for
reconstruction of partial plants in real field conditions, and
(iv) and the obtained reconstructed meshes are correctly
aligned to the corresponding leaf parts.

II. RELATED WORK

In recent years, we have been witnessing an increase
in agricultural robotics studies, with applications ranging
from weed control [32] and ripeness estimation [12] to har-
vesting [15] and grasping [4]. However, phenotyping using
mobile robots is still limited to basic traits such as average
plant height and leaf area index. For instance, the works by
Carlone et al. [5], Dong et al. [9], and Chebrolu et al. [6]
estimate how the height of the plants changes over time
by aligning point clouds of crop fields at different growth
stages, using non-rigid registration techniques. Instead, in
our work, we want to infer the 3D geometry of crops at
a detailed leaf level and in the presence of occlusions by
jointly deforming a template and estimating which leaf parts
are missing in the observation. In this sense, our task can
also be seen as a partial non-rigid registration problem. Non-
rigid registration techniques can register scans with localized
deformations in contrast to rigid registration techniques such
as iterative closest point. One can divide these approaches
into two categories. On one side, approaches that explicitly
compute the data association between source and target
point clouds [25], [33], with applications to monitor plant
growth [7], [8], [17]. This class of problems has the drawback
of an explicit data association step, which is an ill-posed
problem in our setting. On the other side, approaches that
cast the registration task as a probability density estimation
problem [20], [21]. With these methods, however, it is
not possible to consider prior knowledge about the global
position of the template. Therefore, these approaches do not
perform well on partially occluded scans.

Despite the research efforts, few studies address the ubiq-
uitous challenge of occlusions in agricultural environments.
At an image level, Blok et al. [3] estimates the pixel-wise size
of broccoli heads in the presence of occlusions using a deep
neural network. Some works also integrate prior knowledge
of plant structures into 3D measurements. Binney et al. [2]
fit cylinders to point clouds of trees to recover missing data.
Ando et al. [1] proposed to estimate 2D shapes leaves by
capturing and extracting deformations. However, the most
similar work to ours is the one by Sodhi et al. [24], which
addresses the problem of mapping plant sub-units called

Fig. 2: We show the geometric parameters of our template λ, κ,
α. The blue line represents the central leaf axis ρ, while the green
one is the lateral leaf axis τ (left side). By encoding semantic
information such as stem and leaf points as well as leaf keypoints
(right side), we can compute fine-grained phenotypic traits.

Fig. 3: A visual impression of the dataset collected in controlled
environment (top) and the point cloud obtained from the bundle
adjustment of real field images (bottom).

plant phytomers to their phenotype values. They sample 3D
plant models from an underlying probability distribution,
thus cast phenotyping as a search in the space of plant
models. However, the results of their approach only model
the basic leaf structure, omitting finer details such as the leaf
blobbiness and margin undulation, which are prominent in
certain crop varieties.

We exploited the idea of template matching in previous
work [16] coupling differentiable rendering and registration
techniques; however, our previous study was not able to solve
the 3D reconstruction in occluded regions. We overcome this
by introducing a parametric template model and explicitly
estimating which parts of such template have no correspon-
dence in the target observation.

III. OUR APPROACH

Our leaf reconstruction approach works in 3D as this is
needed for the computation of the plants’ geometric features.
However, UAVs commonly collect 2D image data in nadir
view containing multiple plants. Hence, the first steps of
our approach generate point clouds of the whole field and
segment them into individual plants and leaves. We define a
parametric leaf model M to reconstruct the leaves imaged by
the (partial) scans S = {s1, . . . , sN} of points s ∈ R3. We
fit this parametric model to the points of a leaf scan to obtain
a plausible estimate of the missing parts and to detect the
different leaf parts. To further refine this, we then move the
vertex positions by optimizing a reconstruction loss function.



A. From 2D Field Images to 3D Plant Point Clouds

We accomplish this by using bundle adjustment, which
allows estimating the 3D pose of points in a scene that
has been imaged from multiple viewpoints in a statistically
optimal manner. See Triggs et al. [26] for an overview. To
obtain dense and accurate point clouds, each part of the
scene needs to be visible from different viewpoints. We,
therefore, use a flight pattern to obtain images with an
overlap of 75% in both height and width. Before starting the
leaf reconstruction, we segment the point cloud generated by
the bundle adjustment in individual plants and, for each of
them, segment their leaves in separated instances. To achieve
this, we use a recent work by Weyler [29], which extends
prior work [30] towards semantic and instance segmentation
of individual plant and its leaves on images. The obtained
2D masks can then be projected onto the 3D point clouds to
segment individual leaves.

B. Leaf Model

We use a parametric leaf template M as a prior for the
leaf reconstruction where the set of parameters Ω = (λ, κ, α)
describes the coarse deformation. In the following we refer
to the (curved) line connecting the plant center to the leaf
tip as the central leaf axis ρ. We define the leaf shape as
a triangular mesh composed of a set V = {v1, . . . ,v209}
with 209 vertices and a set F = {f1, . . . , f352} containing
352 triangle faces lying in the xy-plane. We then model the
stem length by spacing the stem vertices over the length λ.
To model the leaf curvatures we define the vertical distance
dyi = vy − y0 of vi from the leaf base, where vy is the
vertex y-component and y0 is the y-component of the base.
To obtain the principal leaf curvature, we increase the height
of the vertices according to κ sin(dyni), where dyni is dyi
normalized to [0, π]. Additionally, we define the distance
dxi = dist(ρ, vi) of vi from the central leaf axis, where
dist is the point to line distance function.

By adding α sin(dxni) to the z-component of each vertex,
we obtain a deformation symmetric to ρ, that represents the
typical corner arching of sugar beet leaves. Here dxni is dxi
normalized to [0, π2 ] to obtain maximum arching at the leaf
corners. See Fig. 2 for a visual explanation of the template
and its parameters.

C. Alignment and Optimization of the Template

The first step in the fitting process is the alignment of the
template with the scan. We align the template by translating
the stem base onto the plant center and then scale and rotate
it to align the tip of the template with the leaf tip in the scan.
We can predict the plant center with high accuracy by using
the work of Weyler et al. [30]. We assume that the leaf tip
is always present in the scan, as the characteristic growth of
sugar beet plants leads to no self-occlusions that cover the
tips. We then search for the scan point that lies furthest away
from the plant center and define it as the leaf tip.

This leads us to the pose of the leaf up to a rotation
of an angle θ around the central leaf axis ρ. We find this
parameter θ along with the deformation parameters of the

Fig. 4: F-score for both datasets, our approach yields better recon-
struction accuracy, handling high percentage of missing data.

template M by optimization, by minimizing the distances of
the scan points to the closest vertex of the template. To solve
this, we limit the parameters to predefined ranges and apply
the Levenberg-Marquardt algorithm [19].

D. Partiality Filtered Stochastic Gradient Descent

The previous step delivers a rough alignment of the
template to the scan, allowing us to infer which parts of
the leaf are likely to be observed and which likely are not.
To get a reconstruction that resembles the actual leaf more
closely, we use stochastic gradient descent (SGD) to optimize
a combined loss consisting of four parts:

• Chamfer distance between template vertices V and
scan vertices S

Lcd(V,S) =
d̄(V,S)

2
+
d̄(S,V)

2
, (1)

d̄(V,S) =
1

|V|
∑
v∈V

min
s∈S
‖v − s‖22. (2)

• Vertex normal consistency computes the normal con-
sistency for each pair of neighboring faces of the
template mesh:

Lnc =
∑
fi∈F

∑
fj∈N (fi)

1− n>i nj , (3)

where F is the set of faces in the template, and N (f)
defines the neighborhood of adjacent faces of a given
face f . ni and nj are the normals associated to fi and
fj , where we assume that ||ni||2 = 1 and ||nj ||2 = 1.

• Laplacian smoothing computes the Laplacian smooth-
ing objective for the template mesh:

Ls =
∑
v∈V

1

|N (v)|
∑

u∈N (v)
u− v, (4)

where N (v) defines the direct neighborhood of vertex
v, given the triangle mesh, i.e., all vertices that are
connected to v with an edge.

• Relative edge length compares the length of each
vertex normalized by the sum of vertex lengths with the



TABLE I: Precision, Recall, F-score, and Chamfer distance in controlled environment

Occlusion Percentage Occlusion Percentage Occlusion Percentage Occlusion Percentage
25% 50% 75% 25% 50% 75% 25% 50% 75% 25% 50% 75%

Approach precision [%] ↑ - avg (std) recall [%] ↑ - avg (std) f-score [%] ↑ - avg (std) Dc [%] ↓ - avg (std)

CPD [21] 74.51 (23.08) 72.07 (22.07) 65.33 (26.56) 36.25 (20.47) 22.61 (14.34) 12.12 (9.82) 46.66 (21.28) 32.72 (16.65) 19.09 (12.73) 7.00 (2.82) 11.04 (3.69) 18.33 (6.47)
Anch CPD 57.96 (20.85) 55.06 (19.59) 45.87 (18.18) 38.97 (20.91) 33.49 (17.81) 25.76 (15.44) 45.02 (20.15) 40.01 (17.62) 31.55 (15.61) 8.58 (5.38) 11.16 (6.43) 15.40 (9.13)

Anch CPD + SGD 66.01 (19.43) 63.99 (19.53) 59.88 (19.26) 60.02 (17.20) 50.24 (15.01) 35.77 (12.60) 61.95 (16.95) 55.15 (15.31) 43.36 (12.88) 6.17 (3.46) 8.54 (4.51) 12.58 (6.64)
PF-SGD (ours) 77.44 (16.21) 66.86 (16.43) 50.71 (16.12) 77.12 (15.15) 61.89 (14.16) 44.54 (15.25) 76.75 (14.41) 63.53 (13.44) 46.65 (14.21) 4.21 (3.01) 6.56 (4.27) 10.97 (7.25)

Input Anch CPD + SGD PF-SGD (ours)

Fig. 5: Controlled environment. Qualitative and quantitative recon-
struction results at different occlusion levels: 50% top, 75% bottom.
The lighter the color, the bigger the distance between reconstructed
mesh and scan.

same value before the optimization began to preserve
the leaves morphology:

Le =

∑
e∈E ||u− v||2

1
|E|

∑
e∈E ||u− v||2

, (5)

where E is the set of edges e in the template. Each edge
is defined by two connected vertices u and v.

Our loss function for stochastic gradient descent is, then,
defined as the weighted sum of the previously defined terms:

L = wcdLcd + wncLnc + wsLs + weLe. (6)

During the optimization, the non-observed vertices tend to
collapse onto the partial scan. Therefore, we filter them
out dynamically during the process. To accomplish this, we
divide the set of vertices V into a subsets Vobs of observed
vertices and a subset Voccl of occluded and therefore unob-
served vertices (see Fig. 7), such that Vobs ∪ Voccl = V and
Vobs∩Voccl = ∅. We define the threshold δ = min ||v − s||2,
where s ∈ S, representing the maximum distance at which
we consider a vertex to be observed. We initialize δ to an
initial value δ0 and then decay δ linearly over the SGD
iterations to a final value δe. At each iteration, we redefine
the sets Vobs := {v ∈ V |mins∈S ||v − s|| < δ} and Voccl :=
V − Vobs. The loss function is computed on the vertices
contained in Vobs and their position is optimized. The vertices
contained in Voccl instead are reset to their initial position and
excluded from the optimization process.

E. Reconstruction of the Unobserved Part

The approach presented in the previous section only re-
fines the estimate of observed template vertices Vobs, while it
does not update the poses of the unobserved vertices Voccl .
To propagate the refinement from Vobs to the neighboring
vertices in Voccl and obtain a smoother reconstructed leaf,
we make use of the idea proposed by Sorkine et al. [25]. We

propagate the deformations estimated for visible vertices Vobs
to the non-observed ones Voccl. Each v ∈ Voccl undergoes a
similar transformation to its neighbors by solving:

T ∗ = min
T

∑
vi∈Voccl

∑
vj∈N (vi)

(v′i − v′j)− T (vi − vj), (7)

where v′i and v′j are the vertices after applying the trans-
formation T ∈ R4×4 and N (·) is the neighboring function.

IV. EXPERIMENTAL EVALUATION

We present our experiments to show the capabilities of
our method, from now on called PF-SGD (Partially Filtered
Stochastic Gradient Descent optimization). We use the same
parameters for all experiments, namely wcd = 1.0, wnc =
0.2, ws = 0.1 and we = 0.5. To ensure convergence for
all leaves we set the number of optimization iterations to
1000. The presented results support our key claims, which
are: (i) our approach is able to closely reconstruct the
leaf parts visible in the leaf scan, including finer details,
(ii) parts of the leaves that are missing due to occlusions are
reconstructed plausibly, (iii) our reconstruction process can
complete partial scans obtained on the field, (iv) and the
obtained reconstructed meshes are correctly aligned to the
corresponding leaf parts

A. Datasets

We collected two different datasets of sugar beet plants,
a manually created high precision point cloud dataset and
a dataset of UAV images of breeding plots. The first one
contains nine plants with 90 individual leaves in sum. We
acquired it with a high-resolution laser scanner (Perceptron
V5) attached to a measuring arm (Romer Infinite) to obtain
ground truth data with sub-millimeter accuracy and without
any occlusion (due to numerous viewpoints during manual
recording). We refer to Schunck et al. [23] for more details
on the scanning system. This dataset allows us to evaluate
the reconstruction accuracy in a controlled environment. The
second dataset consists of 13 different plants resulting in
138 individual leaves. We collected this dataset with the
Phaseone iXM-100 camera attached to a UAV. As reference
data, we flew three missions on the same field with a camera
angle of 45, 90, and 135 degrees from the ground plane.
We use the canonical nadir view of 90 degrees as input
of our reconstruction pipeline and the other missions to
obtain more accurate reference data. We process the resulting
100-megapixel images into 3D point clouds using bundle
adjustment and then segment them into individual plants and
their leaves. We show few exemplary plants in Fig. 3. All
the leave point clouds used in this evaluation are labeled
manually to ensure ground truth information.



TABLE II: Precision, recall, f-score, and Chamfer distance com-
puted on data from an agricoltural field

precision [%] recall [%] f-score [%] Dc [%]
Approach ↑ avg (std) ↑ avg (std) ↑ avg (std) ↓ avg (std)

CPD [21] 71.05 (17.86) 33.12 (15.63) 43.59 (17.07) 7.48 (2.57)
Anch CPD 52.83 (8.69) 33.80 (13.35) 39.91 (11.56) 11.10 (4.92)

Anch CPD + SGD 69.39 (9.84) 56.77 (15.24) 61.41 (11.81) 7.54 (2.90)
PF-SGD (ours) 81.65 (14.72) 73.69 (16.66) 77.25 (15.60) 4.74 (2.93)

Input Anch CPD + SGD PF-SGD (ours)

Fig. 6: Real field. Qualitative and quantitative reconstruction. The
lighter the color, the bigger the distance between reconstructed mesh
and scan.

B. Metrics

To measure the accuracy of our approach, we use different
metrics: Chamfer distance, f-score, precision, and recall. To
use the Chamfer distance defined in Eq. (1) as a metric, we
define G and R as the ground truth point cloud and the point
cloud obtained by densely sampling the reconstructed mesh.
Then, the Chamfer distance Dc = Lcd(R,G).
To illustrate the performance in a clearer way we define an
f-score metric as proposed by Knapitsch et al. [14]. We first
define precision p, and recall r, given a threshold δ:

p(δ) =
100

|R|
∑
r∈R

s
min
g∈G
||r − g|| < δ

{
,

r(δ) =
100

|G|
∑
g∈G

s
min
r∈R
||g − r|| < δ

{
,

(8)

where g and r are points from G and R and the operator J·K
is the Iverson bracket, i.e., if the condition within the brackets
is satisfied, it evaluates to 1, otherwise to 0. Intuitively,
such metrics compute the percentage of points in one set
whose distance to the closest point in the other set is smaller
than a fixed threshold. The f-score is simply the harmonic
mean of precision and recall f(δ) = 2·p(δ)·r(δ)

p(δ)+r(δ) . For all the
experiments, we set the threshold δ = 5 mm.

C. Comparison to the State of the Art

For all the experiments, we compare our approach to the
coherent point drift algorithm (CPD) [21], the state-of-the-
art non-rigid registration algorithm because of its registra-
tion performance and scalability to large point sets [18].
The algorithm works quite well for the reconstruction of

completely observed leaves, it fails for the ones presenting
occlusions. We tried many parameter configurations but the
mesh resulting from CPD always collapsed on the visible
part of the leaves. As the algorithm’s ability to correctly
deform our template onto the partial leaf point clouds is
not satisfactory and to ensure a fair comparison, as we used
leaf tip and plant center as prior knowledge, we made two
extensions to the approach.

We considered the squared distance of each template ver-
tex v to the closest point in the scan d = mins∈S || v − s ||2,
normalized to a maximum distance threshold and clipped to
obtain values in [0, 1] as the prior probability of each vertex
of being observed. We then multiply these prior probabilities
onto the association probability matrix of CPD, P . For details
on this, please refer to the original publication. To use our
prior knowledge about the position of the plant center and
the leaf tip that we obtained as explained in III-C, we set
the association probability of the corresponding entries in
P to 1 and exclude those vertices from the optimization
process. We refer to this as anchored CPD (”Anch CPD”).
Furthermore, as the coherent point drift algorithm is not
reconstructing finer details of the leaves accurately, we refine
the obtained result by stochastic gradient optimization, using
our loss Eq. (6). To ensure a fair comparison, the losses and
their weights are the same as the ones explained in Sec. III-
D. We refer to these results as ”Anch CPD + SGD”.

D. Reconstruction Evaluation in Controlled Environment

We design the first experiment to support the claims that
our approach is (i) able to closely reconstruct visible leaf
parts in the point clouds, including fine details and (ii)
reconstruct in a plausible way parts of the leaves that are
not visible.

To obtain a quantitative evaluation with a precise refer-
ence, in this experiment we use the dataset obtained with the
laser scanner. As the point clouds in this dataset cover the
entire leaves completely, we can measure the performance
precisely. We first define three levels of occlusion, namely
25%, 50%, and 75%, of the points in each leaf. Then, we
synthetically generate ten randomly occluded leaves for each
of the occlusion levels for each leaf in our dataset. This
enables us to test our approach on increasingly complex
scenarios while having a precise ground truth model for
the evaluation. In total, we test our method on 2 700 leaf
variations. In particular in Fig. 4, we show the estimated
distributions for the f-score. In detail, we present the median
(bar inside the box), the lower and upper quartile (box
extent), and the minimum and maximum values of the
distribution. We also show qualitative examples in Fig. 5.
An overview of the other metrics can be seen in Tab. I.
From the evaluation follows that our approach outperforms
the baselines in most of the metrics. The precision of the
CPD approach is better for low occlusions, but, as can be
seen in Fig. 5, the results of this class of methods tend to fit
the entire template onto the partial observation. This leads
to high precision, counterbalanced by a low recall, resulting
in worse overall reconstructions, as can be seen from the f-



Input Occlusions Keypoints

Fig. 7: Given a leaf (left), we show the estimated occlusions (mid)
and the semantic components of the deformed template (right).

score. Notably, our approach can achieve a lower score for
the chamfer distance across all occlusion levels by a large
margin, see Tab. I.

E. Reconstruction Evaluation in Real Field Conditions

In our next experiment, we support the claim that our
method is well suited for the reconstruction of partial plants
in real field conditions, where wind and real-world lighting
create noise and artifacts. In this experiment, we perform
the reconstruction on the point clouds obtained by process-
ing only the images obtained from a drone mission with
the optical axis perpendicular to the ground plane. This
resembles the process that one would typically follow in
a real application, as it considerably reduces the effort of
acquiring and processing data. As obtaining complete ground
truth scans is infeasible, we bundle adjust the full 3 flight
missions with different camera angles instead. We use them
as a reference model of the field, as they are more precise
and cover the lower parts of the canopy more accurately.
We show the f-score analysis in Fig. 4 and an overview
of all the metrics in Tab. II. This experiment shows that
our work is better suited at reconstructing leaves from real
scans than the other approaches, as expected given the results
of the previous experiment. This can also be seen from the
qualitative examples in Fig. 6.

F. Semantic Accuracy Evaluation

In our last experiment we show that our approach is
not only able to reconstruct the leaf surface accurately,
but the reconstructed mesh is also correctly aligned with
the main leaf parts. This backs up our last claim that our
reconstructions correctly align with the corresponding leaf
parts. As correctly detecting the leaf parts such as the
tip and the lateral extremities is important in phenotyping
applications, the metric here is the distance between the
manually annotated keypoints, described in Fig. 2, and their
corresponding vertices in the template mesh. We report such
metrics for both datasets in Tab. III. Our approach shows
better performances for each keypoint except the leaf tip.
Such behavior can be attributed to our heavy reliance on the
least squares pre-alignment.

In summary, our evaluation suggests that our method
provides competitive registration accuracy in both geometry
and semantics compared to the baselines. Thus, we supported
all our claims with this experimental evaluation.

TABLE III: Semantic accuracy after template deformation

(a) Semantic fitting in controlled environment

center left tip right

Approach distance [mm] ↓ - avg (std)

CPD [21] 55.9 (22.1) 55.5 (28.3) 23.5 (11.0) 50.1 (21.9)
Anch CPD 45.2 (23.8) 59.9 (29.5) 7.9 (6.0) 51.7 (22.5)

Anch CPD + SGD 43.4 (22.6) 59.6 (30.3) 9.6 (5.7) 45.9 (23.5)
PF-SGD (ours) 27.6 (15.5) 27.3 (17.6) 6.7 (4.7) 24.7 (16.5)

(b) Semantic fitting in field conditions

center left tip right

Approach distance [mm] ↓ - avg (std)

CPD [21] 36.5 (10.0) 29.5 (13.1) 19.4 (9.1) 31.9 (14.6)
Anch CPD 26.5 (9.8) 34.2 (20.5) 15.3 (7.8) 36.1 (23.4)

Anch CPD + SGD 24.6 (12.0) 28.0 (18.4) 15.7 (8.5) 31.6 (23.9)
PF-SGD (ours) 11.9 (7.3) 24.9 (14.5) 18.1 (8.5) 21.1 (12.7)

V. CONCLUSION

In this paper, we presented a novel approach to pre-
cisely reconstruct sugar beet plants in field conditions. Our
approach operates on point clouds of plants obtained by
UAV imagery recorded in nadir view. Our method exploits
existing photogrammetric bundle adjustment and a deep
neural network to segment the field in plants and separate
its individual leaves. Once we have segmented the leaves,
we use SGD to deform the vertices of a leaf template
mesh, while jointly estimating which mesh vertices have
no correspondence in the point cloud due to occlusions.
This allows us to successfully obtain 3D models of whole
plants under real field conditions starting from 2D images.
Furthermore, by encoding additional semantic information on
the leaf template, our approach can be used to derive impor-
tant phenotypic traits at a sub-plant level. We implemented
and evaluated our approach on different datasets, provided
comparisons to other techniques, and supported all claims
made in this paper. The experiments suggest that, compared
to other registration methods, our approach provides more
reliable geometric and semantic reconstruction results.

Our approach can be extended along different dimensions.
An interesting research direction would be the evaluation of
plant health by leveraging the leaf shapes and the presence of
damaged parts. Currently, it is not possible to differentiate
between occluded and damaged leaves, but this could be
achieved by analyzing inter-leaf effects and color informa-
tion. Furthermore, to allow for a more robust reconstruction,
reliable prior detection of the leaf keypoints to support the
reconstruction process would be of great help. This would
most probably improve the reconstruction accuracy and the
robustness against noise in the measurements. Another in-
teresting future direction is to apply this method to different
plant species to reconstruct their leaf and fruit shape. An
adaptation of the template and the prealignment strategy
would probably suffice to achieve good results.

ACKNOWLEDGMENTS

We thank R. Marcuzzi, L. Nunes, M. Sodano, and L. Wies-
mann for supporting us with making annotations.



REFERENCES

[1] R. Ando, Y. Ozasa, and W. Guo. Robust surface reconstruction of
plant leaves from 3d point clouds. Plant Phenomics, 2021.

[2] J. Binney and G. Sukhatme. 3d tree reconstruction from laser range
data. In Proc. of the IEEE Intl. Conf. on Robotics & Automation
(ICRA), pages 1321–1326.

[3] P.M. Blok, E.J. van Henten, F.K. van Evert, and G. Kootstra. Image-
based size estimation of broccoli heads under varying degrees of
occlusion. Biosystems Engineering, 208:213–233, 2021.

[4] J. Brown and S. Sukkarieh. Design and evaluation of a modular robotic
plum harvesting system utilizing soft components. Journal of Field
Robotics (JFR), 38(2):289–306, 2021.

[5] L. Carlone, J. Dong, S. Fenu, G. Rains, and F. Dellaert. Towards
4d crop analysis in precision agriculture: Estimating plant height
and crown radius over time via expectation-maximization. In ICRA
Workshop on Robotics in Agriculture, 2015.
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