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Abstract— As the world population is expected to reach 10
billion by 2050, our agricultural production system needs to
double its productivity despite a decline of human workforce
in the agricultural sector. Autonomous robotic systems are
one promising pathway to increase productivity by taking
over labor-intensive manual tasks like fruit picking. To be
effective, such systems need to monitor and interact with plants
and fruits precisely, which is challenging due to the cluttered
nature of agricultural environments causing, for example,
strong occlusions. Thus, being able to estimate the complete
3D shapes of objects in presence of occlusions is crucial for
automating operations such as fruit harvesting. In this paper,
we propose the first publicly available 3D shape completion
dataset for agricultural vision systems. We provide an RGB-D
dataset for estimating the 3D shape of fruits. Specifically, our
dataset contains RGB-D frames of single sweet peppers in lab
conditions but also in a commercial greenhouse. For each fruit,
we additionally collected high-precision point clouds that we
use as ground truth. For acquiring the ground truth shape,
we developed a measuring process that allows us to record
data of real sweet pepper plants, both in the lab and in the
greenhouse with high precision, and determine the shape of
the sensed fruits. We release our dataset, consisting of almost
7,000 RGB-D frames belonging to more than 100 different
fruits. We provide segmented RGB-D frames, with camera
intrinsics to easily obtain colored point clouds, together with
the corresponding high-precision, occlusion-free point clouds
obtained with a high-precision laser scanner. We additionally
enable evaluation of shape completion approaches on a hidden
test set through a public challenge on a benchmark server.

I. INTRODUCTION

Our agricultural production system needs to double its
production of food, feed, fiber, and fuel to cope with an
ever-growing population. A promising solution to support us
in achieving this goal is the usage of autonomous systems
that can continuously monitor the field, selectively harvest
fruits and crops, or spot diseases early enough to avoid loss
of yield. Such systems need to estimate important features of
fruits and crops such as size, shape, and health status from
perceived sensor data. In agricultural environments, this is
extremely challenging due to their cluttered nature leading
to plant and fruits being partially occluded.

In this paper, we aim to facilitate the development of
agricultural vision systems in presence of such occlusions.
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Fig. 1: With our dataset, we tackle the problem of estimating the
shape of fruits as a mesh (shown in grey) given a partial observation
of an RGB-D sensor providing a colored point cloud. The estimated
shape of the fruit is essential to allow safe grasping in situation with
severe occlusions, like a greenhouse environment.

Occlusions are a key issue in developing vision systems in
agricultural environments. A correct handling of occlusions
could benefit a diverse number of agricultural tasks such as
high-throughput phenotyping, yield estimation and forecast-
ing, and robotic harvesting.

The main solutions for handling occlusions in agricultural
environments have been constrained to 2D images, either by
amodal instance segmentation methods that produce masks
combining the visible and occluded part of crops [4] or by
generative adversarial networks that estimate the appearance
of crops as if there are no occlusions [17]. In contrast to the
2D case, fewer efforts have been made to tackle the occlusion
problem in a 3D scene. We are taking a different avenue to
address occlusions in the context of fruit picking using 3D
data provided by commonly employed RGB-D sensors. In
particular, manipulation tasks in robotics commonly employ
3D models of the objects to perform grasp prediction, but
usually employ CAD models of known objects for this
purpose, which cannot be pre-determined in an agricultural
context, as each fruit has a different shape. Therefore, we
propose a dataset for promoting research on predicting a
complete shape model of real-world fruits that can be used in
manipulation scenarios [24]. Thereby, we are addressing the
challenging task of uncovering the full 3D shape of partially
occluded fruits. Achieving this allows us to perform more



reliable fruit grasping, and, can be used to derive phenotypic
traits about the fruit, such as size, shape, and quality.

The main contribution of this paper is the release of the
first publicly available 3D shape completion dataset con-
sisting of RGB-D frames and corresponding high-precision,
occlusion-free point clouds obtained with a high-precision
laser scanner. The prediction task targets the estimation of
the complete fruit shape from partial observations, as shown
in Fig. 1. In this paper, we also describe the process of gener-
ating the ground truth shape models for the sweet peppers in
a real-world commercial greenhouse. We specifically design
a measuring process that allows us to acquire highly accurate
and dense point cloud models of the sweet peppers.

In sum, our contributions can be summarized as follows:
(i) we release the first public dataset1 for 3D shape comple-
tion in agricultural environments, (ii) we provide a CodaLab
competition with a hidden test set to foster research in this
area, (iii) we provide a description of the process to obtain
the dataset to facilitate other researcher’s data collection
efforts, (iv) we release a Python-based development toolkit2

for handling the dataset and computing metrics.

II. RELATED WORK

Dataset and associated benchmarks have a long history
in robotics and computer vision. They enable researchers
to quantitatively and qualitatively measure the progress of
research providing the foundation of a reproducible evalua-
tion. The datasets provide a starting point for investigation
of novel research areas, where it is hard to acquire data or
the data generation process requires specialized equipment.

In recent years, there has been an increasing interest in
semantic interpretation of images in the agricultural context,
both on arable crops [20], [38], [32] and horticulture [13],
[33], [2]. These works rely on large image datasets with
pixel-accurate labels designed for various tasks: crop/weed
segmentation [6], [34], leaf segmentation [16], [37], fruit
counting [36], [31], and fruit size estimation [10], [12]. We
refer to Lu et al. [21] for an overview of image datasets in
agricultural environments. In contrast to these datasets, we
provide 3D ground truth shapes of fruits in the agricultural
context rather than segmentation labels.

While there are several image datasets available, few
provide point cloud data and none of them tackle the oc-
clusion problem in agriculture to the best of our knowledge.
For instance, Chaudhury et al. [5] proposed a synthetically
generated point cloud dataset based on plant models with
semantic labels. Furthermore, the Pheno4D dataset [35]
provides point clouds of tomato and maize plants captured
with a high-precision laser scanner with labels of individual
leaves that are consistent over time. James et al. [14] provide
a temporally consistent dataset of strawberry point clouds.
Dutagaci et al. [9] release a rosebush plants 3D dataset
acquired through X-ray tomography with semantic labels.

1Further details on downloading the dataset can be found at:
https://www.ipb.uni-bonn.de/data/shape_completion

2Our development toolkit including a data loader is available at:
https://github.com/PRBonn/shape_completion_toolkit

Khanna et al. [15] present a dataset containing color images,
infra-red stereo image pairs, and multi-spectral camera im-
ages along with applied treatments and weather conditions of
the surroundings. Finally, Marks et al. [25] published a sugar
beet point cloud dataset with leaves instance labels from
real breeding plots. In contrast to these works, our dataset
is specifically designed to tackle the occlusion problem in
agricultural environments by providing complete shapes of
sweet peppers with sub-millimeter accuracy.

Recently, a few datasets have been released for map-
ping applications in agricultural environments. The MAgro
dataset [26] consists of robotic sensor data, such as 3D
LiDAR, data from an inertial measurement unit, and wheel
encoders, gathered in apple and pear orchards with calibrated
RTK GNSS to evaluate localization methods. The Bacchus
dataset [30] captures the whole canopy growth of a vineyard
tailored for mapping and localization algorithms for long-
term autonomous robotic operation. Instead, we designed our
dataset to estimate precisely the 3D shape of individual fruits,
which could be exploited for robotic grasping applications.

In summary, our dataset complements available point
cloud datasets by providing measurements from a greenhouse
using an RGB-D sensor with occlusions caused by leaves and
other fruits. By providing the accurately measured shapes of
the sensed fruits, we release a dataset for shape completion
from partial observations and furthermore enable unbiased
and reproducible evaluation on a hidden test set.

III. OUR DATASET

We propose a dataset of fruits collected in two scenarios.
First, data collected in a lab environment for controlled
experiments and, second, data collected in a commercial
greenhouse showing the full complexity of the application
scenario. In our benchmark, we use data collected in the lab
for training set, while we use data collected in the greenhouse
for testing set. The validation set contains data coming from
both environments. The reason for this separation lies in the
difficulty in collecting greenhouse data, having a procedure
to collect data in the lab allows us to have a large training
set.

As inputs in both scenarios, we choose to use RGB-D
frames collected with an Intel RealSense d435i, which is
a commonly used camera in agricultural robotics research.
For collecting ground truth data capturing the shape of the
fruits, we use a high-precision LiDAR, a Perceptron V5
laser scanner, mounted on a non-actuated measuring arm,
a Hexagon ROMER Infinite 2.0 arm that provides sub-
millimeter measurements. In this way, we can manually
position the laser scanner to cover the fruits as good as
possible. For more details on the LiDAR and the measuring
arm, we refer to Schunck et al. [35]. For both scenarios,
we designed a specific measurement procedure to align the
measurements from the RGB-D sensor with the accurate
ground truth point cloud of the LiDAR such that we have a
pose in the coordinate frame of the LiDAR.

The recording setup in the lab scenario allows us to
register the different point clouds from the RGB sensor and

https://www.ipb.uni-bonn.de/data/shape_completion
https://github.com/PRBonn/shape_completion_toolkit


3D Mapping

Planes Extraction

Final Registration

Fig. 2: Registration procedure for the lab scenario. Given the TSDF-
aligned RGB-D frames with the corresponding point cloud (on the
left side) and the dense point cloud of the LiDAR (on the right
side), we can estimate planes in each point cloud (shown in the
middle). With an initial pose estimated via the extracted planes, we
can register both point clouds using ICP automatically resulting in
the final registration.

the LiDAR in a common reference frame. Here, we exploit a
known environment structure to automatically determine the
pose of the RGB-D sensor in the coordinate system of the
LiDAR as described in Sec. III-A.

In the greenhouse scenario, we have to adapt the mea-
surement procedure as we cannot scan the fruits with the
high-precision scanner on the trees, but still want to capture
the plant in a natural environment including the occlusions
caused by leaves and other parts of the plants. Therefore, we
designed a process that allows to associate the real scanned
fruits with the measured fruit shapes of the ground truth point
cloud, which we describe in Sec. III-B. Note that additional
sensors such as an IMU can be used to improve the mapping
accuracy. Despite having access to one within the camera, we
did not use it as we found the mapping accuracy satisfactory.

A. Lab Scenario

In the lab scenario, we are able to record data of different
fruits from more viewpoints compared to the greenhouse
scenario. For each fruit, we collect the RGB-D frames by
manually moving the camera around the fruit and trying to
obtain as many viewpoints as possible. Afterwards, we repeat
the process with the LiDAR covering the complete fruit. We
want to highlight that it was not possible to scan the fruit
with the different sensors at the same time, since the camera
has a minimum range of 30 cm while the LiDAR operates
at a closer range, i.e., 10 cm on average.

Our goal is twofold. First, we want to use the laser scanner
data from the test set as ground truth, while using the RGB-D
data as input. Second, we want to use the laser scanner data
to allow learning shape priors from high-quality point clouds

that can be helpful when working on noisy point clouds
obtained with a RGB-D camera. To achieve this, we need to
register the data coming from the two sensors into a single
coordinate system. A high-level overview of the registration
process is shown in Fig. 2.

To register the sensor data, we start by registering each
RGB-D image belonging to the same fruit to each other
with a standard TSDF fusion pipeline [8], [27], [39]. This
provides us with locally consistent poses of each recorded
RGB-D image. The results of this step are the camera poses
for each RGB-D frame in a local coordinate system of
the first RGB-D image and a mesh of the object extracted
via marching cubes [19]. To register the point cloud of
the LiDAR to the points of the mesh from the RGB-D
sensor, we apply iterative closest point (ICP) [3], where
we approximate the initial transformation between the two
point clouds using the environment structure. To initialize the
transformation between the point clouds, we scan the fruits
inside three perpendicular planes and exploit this structure
in the registration.

To determine the initial transformation, we extract the
planes using a RANSAC approach which determines the
three most dominant planes. To match the planes, we simply
assume that for the first RGB-D frame we are approximately
looking at the intersection point of the three planes. This
results in three pairs of planes with normals (ni,n

′
i), i =

1, 2, 3, where we have normals ni ∈ R3 from the planes in
the first point cloud and n′i ∈ R3 of the planes in the second
point cloud. The rotation matrix R ∈ R3×3 between the two
sets with known associations between the normals (ni,n

′
i)

can be calculated as follows [11]:

R =
n′1(n2 × n3)> + n′2(n3 × n1)> + n′3(n1 × n2)>

det(n>1 n>2 n>3 )
,

(1)

where det(·) corresponds to the determinant of the matrix
(n>1 n>2 n>3 ) with the normals ni as column vectors.
The matrix R is usually not an orthonormal matrix because
of the measurement noise, but a true rotation matrix, can be
computed using a singular value decomposition of R.

The translation between the two sets of planes is the
difference between the intersection point of the planes in
the RGB-D point cloud and the intersection point of the
planes in the LiDAR point cloud. After a fine-registration
using ICP, we can compute the pose of every RGB-D frame
in the coordinate system of the LiDAR point cloud.

B. Greenhouse Scenario

For the greenhouse scenario, we collected data in a
greenhouse at Campus Klein-Altendorf near Bonn, Germany,
which we provide as validation and test sets. As before, the
collected data is comprised of measurements of two different
sensors. First, RGB-D frames collected with an autonomous
robot equipped with three Intel RealSense d435i cameras
mounted on a robotic platform as described by Smitt et
al. [36] and, second, high-precision scans of individual sweet
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Fig. 3: Measuring procedure to align greenhouse RGB-D frames with the corresponding ground truth point cloud generated by the LiDAR.
Given two recordings with and without markers, we first align the photogrammetric point clouds via a transformation T , which allows us
to associate the sweet peppers without and with markers. Based on the markers and manually identified pins, we are able to determine
the transformation of the scanned fruit in the RGB-D frame yielding the final registration.

peppers obtained with the aforementioned LiDAR as ground
truth measurement.

In the lab scenario, we exploit the environment structure
for aligning the data from different sensors. However, the
same procedure is not possible as the sensors are located
in different places. To register the individual sweet peppers
in the RGB-D frames with their respective ground truth, we
rely on a different measurement procedure.

We first perform a data collection run without any markers
to get data as seen by a robot operating in the greenhouse.
For getting the ground truth shape via high-precision point
cloud using the LiDAR, we augment the environment with
markers to associate the harvested fruits with the already
collected data. See Fig. 3 for a visual impression of our
greenhouse scenario and the measurement procedure.

More specifically, we manually tag individual sweet pep-
pers in two ways: first, we place a label with an ID close
to each fruit and, second, we insert multiple 3D markers,
similar to paper pins, on each sweet pepper. The ID ensures
that we can identify the fruits after harvesting and scanning
them with the LiDAR. The attached 3D markers allow us
to register the scanned fruits in the RGB-D frames. After
augmentation with markers, we deploy our robot again to
collect data with the markers attached to the sweet peppers.

After these procedures we obtain: (i) a clean set of RGB-D
frames that will be used as inputs for the shape completion
challenge, (ii) a tagged set of RGB-D frames that we use for
registration purposes, and (iii) high-precision point clouds
for each sweet pepper that represents our ground truth for
each individual fruit. To register each fruit in the RGB-D
frame they appear, we first conduct a 3D reconstruction for
the complete plant row. The TSDF fusion pipeline of the
RGB-D frames that we used for the lab scenario did not
yield convincing results, due to larger noise in the depth
measurements under natural lighting conditions. To solve
such an issue, we opted for an estimation of camera poses
via an RGB bundle adjustment using a commercial software

for photogrammetric 3D reconstruction [1]. Together with
the estimated camera poses, we can further derive a dense
point cloud and a 3D mesh.

We scaled the two reconstructions, i.e., reconstruction of
the first clean recording run and the recording with the
markers, to the real scene scale using the data from the wheel
odometry of the robot. As we need the relative transformation
between these two 3D reconstructions for transforming fruit
poses from the tagged dataset to the original dataset, we
apply ICP to the dense point clouds for alignment. The initial
transformation for ICP is estimated by manually identifying
a single pair of frames of the two recording runs which show
the same part of the row and computing their relative pose.

For aligning a point cloud of a fruit from the LiDAR to
a frame of the tagged dataset, we manually measure three
corresponding 3D markers in the laser scan and on the image
frame. Then we intersect the viewing rays constructed with
the measured image coordinates with the reconstructed 3D
mesh to get the 3D coordinates of the 3D markers in the
tagged mesh. Given these 3D point correspondences, we
can estimate the relative pose of the scanned fruit in the
tagged dataset. As we know the transformation to the original
dataset, we concatenate all transformations such that we end
up in the pose of the scanned fruit in the RGB-D camera
frame. Finally, we apply ICP between the 3D mesh and a
single scanned fruit to improve the pose estimate further.

With this, we obtain the ground truth shape of each sweet
pepper and also ground truth poses with respect to the fruit
canonical pose, i.e., with the peduncle pointing upwards.

C. Curating the Benchmark Dataset

The objective of our dataset is to foster research in
3D shape completion and reconstruction in agricultural en-
vironments. To simplify the task, we concentrate on the
shape reconstruction and completion task for a segmented
fruit, thus, factor out the process of generating an instance



TABLE I: Statistics of the provided data. L indicates data collected
in the lab, G in the greenhouse.

Split #Images #Fruits Ground truth Scenario

Training 4580 66 3 L
Validation 1387 25 3 L + G

Test 980 38 7 G

segmentation of a complete RGB-D frame and the pose
estimation of the fruits.

To this end, we employed an instance segmentation ap-
proach trained on sweet peppers [36] to extract the parts
of the RGB-D frame I ∈ RH×W×4, where each pixel pi =
(u, v) of the image frame of width W and height H corre-
sponds to an RGB value (ri, gi, bi) and it’s corresponding
metric depth di ∈ R, that corresponds to the fruit Fj , i.e.,
Fj = {pi|pi ∈ Sj}, where Sj ∈ {0, 1}H×W is the binary
mask corresponding to the j-th fruit inside the image I.

For each fruit point cloud Fj in the RGB-D point cloud,
we then apply the know transformation from the RGB-D
image to the LiDAR point cloud to transform the points of
Fj into the LiDAR’s canonical pose, i.e., with the peduncle
pointing upwards. Thus, for each fruit we provide: (i) the
original RGB-D data, Pj , and (ii) the corresponding com-
plete ground truth point cloud P̂j obtained with the LiDAR.

For reproducible experimental evaluation in our bench-
mark, we split the data of the two scenarios into train,
validation, and test set, where we ensured that fruits in the
validation and test set are spatially separated. We want to
highlight that greenhouse data is not present in the training
set. Such a setting introduces a domain gap enabling us to
evalute generalization capabilities of tested algorithms. Tab. I
provides a summary of the provided data for the task of
shape completion of sweet peppers. Note that it is possible
that the same fruit is visible from multiple viewpoints but
share the same ground truth point cloud. We refer to Fig. 5
for an qualitative impression of the registration results and
refer to our dataset website3 for further details on the dataset
organization.

IV. SHAPE COMPLETION BENCHMARK

Together with the dataset, we provide a benchmark for
the reproducible and unbiased evaluation of shape comple-
tion approaches in the agricultural domain. Therefore, we
concentrate here on the shape completion in a setting of
reconstructing the fruit in a canonical orientation, where we
factor out the process of determining the location of the
fruits and provide RGB-D information in canonical fruit-
specific local reference frame as described in Sec. III-C. In
our benchmark, we expect the estimation of a complete 3D
mesh M given partial observation of fruits P provided by
an RGB-D sensor. The desired mesh M = (V, T ), repre-
sented by N vertices V = {v1, . . . ,vN} and M triangles
T = {(i, j, k)|i, j, k ∈ {1, . . . , N}} defined as tuples with
the corresponding vertex indexes, should represent a closed

3Our dataset website provides further details on the provided data:
https://www.ipb.uni-bonn.de/data/shape_completion
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Fig. 4: We show few example of input point clouds (left) and ground
truth point clouds (right). The shape completion tasks involve
estimating a complete 3D mesh from a partial and noisy point cloud.

surface of the complete fruit. Thus, the task can be described
as the problem of finding the complete mesh M of a given
colored point cloud P in a canonical frame, see Fig. 4.

A. Metrics
We report four different metrics: f-score, precision, recall,

and Chamfer distance for evaluating 3D shapes, but rely
on the f-score integrating precision and recall as our main
metric. Precision, recall, and Chamfer distance are evaluated
on point cloud R generated by densely sampling of the
reconstructed mesh M and the corresponding point cloud
G of the LiDAR.

In line with Knapitsch et al. [18], we compute the preci-
sion p(ρ), i.e., which is the proportion of the points of the
reconstruction R that are close to the ground truth G and
recall r(ρ), i.e., the proportion of the point of the ground
truth G are close to the reconstructed mesh point cloud R,
where closeness is given by a threshold distance ρ:

p(ρ) =
100

|R|
∑
r∈R

s
min
g∈G
||r − g|| < ρ

{
, (2)

r(ρ) =
100

|G|
∑
g∈G

s
min
r∈R
||g − r|| < ρ

{
, (3)

where g ∈ R3 and r ∈ R3 are points from G and R,
respectively. Here, the operator JcK is the Iverson bracket, i.e.,
if the condition c within the brackets is satisfied it evaluates
to 1, otherwise to 0. Rather than choosing a fixed threshold ρ
like Knapitsch et al. [18], we evaluate precision and recall at
different ρ values, i.e., ρ ∈ {0.01 m, 0.02 m, . . . , 0.1 m} with
interval ∆ = 0.01 m. We compute the area under the curve
for the precision p̄ and recall r̄ as follows:

p̄ =
1

η

∑
ρ∈{0.01 m,0.02 m,...,0.1 m}

∆ p(ρ) (4)

r̄ =
1

η

∑
ρ∈{0.01 m,0.02 m,...,0.1 m}

∆ r(ρ), (5)

where η is a normalizer that corresponds to the precision or
recall of a perfect estimator evaluated with aforementioned
thresholds to arrive at p̄ ∈ [0, 1] and r̄ ∈ [0, 1].

https://www.ipb.uni-bonn.de/data/shape_completion


Fig. 5: Qualitative example of our registation results in the lab (top)
and greenhouse (bottom). Where we show the ground truth point
cloud, in red, aligned with the corresponding RGB-D frames.

Finally, the f-score f is given by:

f =
2 p̄ r̄

p̄+ r̄
. (6)

We additionally evaluate the Chamfer distance DC. It is
the average symmetric squared distance d̄2 of each point to
its nearest neighbor in the other point cloud:

DC(G,R) =
d̄2(G,R)

2
+
d̄2(R,G)

2
, (7)

with

d̄2(Pi,Pj) =
1

|Pi|
∑
xi∈Pi

min
xj∈Pj

‖xi − xj‖22. (8)

For the ranking of the entries submitted to our competition,
we use the F1-score as a primary metric and the Chamfer
distance as secondary metric in case of a tie.

B. CodaLab Competition

To evaluate predictions on the hidden test set, we expect a
specific directory structure in our CodaLab competition [29].
We ask the participants to submit a zip file that contains one
.ply file for each fruit id. Note that we expect the fruit
to be in the canonical pose, i.e., with the peduncle pointing
upwards, this is trivial to obtain given the provided pose
for each RGB-D frame. More details can be found on the
CodaLab submission page 4.

To speed up the usage of our dataset, we provide a
development kit providing a PyTorch-based data loader and
a small library for computing the metrics that we use in the
CodaLab competition.

C. Baselines

To facilitate the comparisons with previous work, namely
CoRe [23], HoMa [28], and T-CoRe [22], we report the
performances on the test set in Tab. II. Additionally, we
report the performances on the validation set in Tab. III to
enable comparison of novel approaches in ablation studies
using the validation set. From our experiments, T-CoRe
provides better predictions on the test set reaching 5.06 mm
of Chamfer distance and 58.0 % of f-score. In contrast, HoMa

4The CodaLab competition is available at: https://codalab.lisn.
upsaclay.fr/competitions/18987

TABLE II: Baseline results on the test set. The ↓ and ↑ indicate
that lower or higher values mean better performance.

Approach DC [mm] f [%] p̄ [%] r̄ [%]
↓ avg ↑ avg ↑ avg ↑ avg

CoRe [23] 6.84 45.61 43.87 48.56
HoMa [28] 5.39 57.11 55.63 58.88

T-CoRe [22] 5.06 58.04 58.60 57.76

TABLE III: Baseline results on the validation set. The ↓ and ↑
indicate that lower or higher values mean better performance.

Approach DC [mm] f [%] p̄ [%] r̄ [%]
↓ avg ↑ avg ↑ avg ↑ avg

CoRe [23] 7.18 42.48 38.92 47.52
HoMa [28] 4.19 65.65 63.58 68.01

T-CoRe [22] 4.69 60.61 60.59 60.82

is the best-performing method on the validation set, obtaining
4.2 mm of Chamfer distance and 65.7 % of f-score. We
believe this decrease in performance on the test set can be
a symptom of overfitting on the recording conditions. Note
that the validation set contains data from the lab and from the
greenhouse, while the test set only contains samples collected
in the greenhouse.

Finally, HoMa and T-CoRe yield better results than CoRe
across all metrics, which is expected given that it is the
only semi-supervised method. Notably, CoRe is the only
approach operating on images, while T-CoRe and HoMa use
point clouds. We believe this also contributes to the final
performances.

V. CONCLUSION

In this paper, we presented a novel dataset for 3D shape
completion of sweet peppers in agricultural environments.
Our dataset consists of RGB-D frames collected in the lab
and a commercial greenhouse, together with dense high-
precision point clouds as ground truth of the sweet peppers,
where we aligned the RGB-D data and the ground truth
point cloud with a tailored measurement procedure. We
additionally provide a CodaLab competition with a hidden
test set to ensure fair comparisons and automatic evaluations
to foster research into agricultural vision systems.

Our competion has already been used by more than 50
participants with a substantial increase in performances [7].
We believe this further demonstrates that the task used in
the benchmark of this paper is not solved yet with plenty of
room for improvements and at the same time the benefits of
curating public benchmark with hidden test sets.

In future, we also plan to provide ground truth for other
applications, such as 3D object pose estimation of fruits,
where we leverage our measurement procedure to determine
an accurate pose of visible sweet peppers based on the
alignment between the marker point clouds and our ground
truth measurements.
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