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Improving Robotic Fruit Harvesting
Within Cluttered Environments Through

3D Shape Completion
Federico Magistri Yue Pan Jake Bartels Jens Behley Cyrill Stachniss Chris Lehnert

Abstract—The world population is increasing and will, by 2050,
nearly double its demand for food, feed, fuel, and fiber. Be-
sides environmental challenges, labor shortage also poses crucial
challenges to the agricultural production system. Automation
of manual tasks in crop production can potentially increase
efficiency but also lead to a change in agricultural practices for
more effective usage of available land. In this paper, we address
the problem of robotic fruit harvesting in challenging real-world
scenarios such as vertical farms, where robotic sensing and
acting need to cope with a cluttered environment. Robotic fruit
harvesting is typically done by directly detecting a grasp point
in the sensor reading, which can lie on the fruit itself or on its
peduncle depending on crop harvesting requirements. However,
grasp point detection is not always possible as the ideal grasp
point may be hidden behind leaves or other fruits. Our approach
exploits shape completion techniques allowing us to estimate the
complete 3D shape of a target fruit together with its pose even
under strong occlusions. In this way, we can estimate a grasp
point even when the fruit is only partially visible. We evaluate our
approach on a real robotic manipulator operating in a vertical
farm growing different fruit species and employing different
harvesting tools. Our experiments show that, on average, our
proposed pipeline increases the success rate by 18.5 percentage
points, in terms of end-effector positioning, compared to the most
competitive baseline among the ones reported in this work, that
does not rely on shape completion.

Index Terms—Robotics and Automation in Agriculture and
Forestry; Agricultural Automation; Perception for Grasping and
Manipulation

I. INTRODUCTION

WHILE the world population is rapidly growing, increas-
ing the demand for food, feed, fuel, and fiber [14],

our agricultural production systems are put under severe stress
by labor shortage [9], [39] and loss of arable lands [15]. On
the one hand, autonomous robotic systems have the potential
to reduce the need for human labor [22] by taking over
tasks currently performed by humans, e.g., weeding [2], [52],
transportation [11], [17], or phenotyping [33], [42]. On the
other hand, vertical farms offer a solution to increase yield
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Fig. 1: Top: zoomed-in view of a partially visible fruit, which
is common in real-world scenarios, making the harvesting task
challenging. Second row: our manipulator performing an autonomous
harvest in a vertical farm. Third row: (right) example of good end-
effector positioning when estimating the fruit’s shape and orientation,
(left), the end-effector does not reach a good position for grasping
when the fruit shape is not estimated. Bottom: successful harvest
using our proposed pipeline exploiting shape completion.

while reducing land use [21], which are potentially easier to
realize using autonomous robotic systems than human labor.

In this paper, we consider the problem of autonomous
robotic fruit harvesting, with experiments on real strawberries
and tomatoes plants. To successfully harvest a fruit, a robot
needs to precisely locate where to place its end-effector. Such
a point can be on the fruit itself or on the fruit peduncle
depending on the design of the end-effector tool and the fruit
species [48]. However, the estimation of a grasp point is not
trivial due to the cluttered nature of agricultural environments.
As a practical example, grasp points may be hidden by leaves
or other fruits as shown exemplarily in Fig. 1. To overcome
such challenges, a robotic system should have a high-level,
semantic, and geometric understanding of its surroundings and
especially the task-relevant objects.
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Fig. 2: An overview of our harvesting pipeline. From left to right: our robot arm in its initial configuration. We segment individual fruits
using the color information of an RGB-D camera. For each segmented fruit, we estimate its complete 3D shape and its 6-DoF pose. Based
on the fruit’s pose and shape we evaluate different grasp pose candidates exploiting the fruit’s symmetry before attempting the grasp.

In recent years there has been an increasing interest in
robotic fruit harvesting leading to three main paradigms:
(i) detecting and cutting the fruit peduncle [3] with applica-
tions to capsicums and strawberries, (ii) attaching to the fruit
while using suction devices [38] with applications to tomatoes
and apples, (iii) directly gripping the fruit and applying a
twisting motion [45] with applications to tomatoes and berries.
Entailing that often a specifically tailored vision system has
to be implemented to comply with the tool design.

The main contribution of this paper is a novel approach
integrating 3D shape completion of fruits plus a 6 Degrees
of Freedom (DoF) pose estimation module into a robotic
harvesting pipeline of real fruits and the experimental vali-
dation of the working pipeline on two fruit species. This is
a novel setup and we demonstrate in this paper its benefits
on real tomato and strawberry plants. This gain is achieved
as the robot has a better understanding of the scene and thus
can perform better robotic harvesting. Notably, our approach
can be integrated seamlessly with different end-effector tools
designed for cutting the peduncle or gripping a fruit.

In sum, we make three key claims: our approach is able to
(i) yield a higher success rate by integrating shape completion
into a harvesting pipeline; (ii) find good grasp candidates
while using different end-effectors designed for different fruit
species; (iii) increase the robustness of the harvesting pipeline
by evaluating different grasp pose candidates.

II. RELATED WORK

Due to the heterogeneous nature of agricultural environ-
ments, a diverse number of approaches have been proposed for
robotic fruit harvesting such as cutting the peduncle, gripping
and pulling the fruit, and vacuum sucking depending on the
different tool design [20]. In the first case, Sa et al. [40]
propose to detect the fruit’s peduncle to directly estimate a
cutting point. Estimating the fruit orientation is an orthogonal
approach for fruit picking when cutting the peduncle giving
the robot more spatial information. Such an estimation can be
done by directly regressing the orientation by means of neural
networks [49] or by estimating keypoints of the fruit to recover
its main axis [19], [24], [44], [55]. In the second case, the
end-effector tool is typically designed with 3 or more fingers
to firmly grip the fruit [7], [43]. In this scenario, the robot
needs to estimate the complete shape of the fruit to secure the
grasp [10]. Lastly, for vacuum-sucking tools, a robot needs
to estimate a planar patch on the fruit’s surface to attach for
the end-effector [38]. Note that each tool design needs an ad-

hoc vision system to correctly estimate where to place the
end-effector. In contrast, our proposed approach can be easily
integrated into harvesting pipelines when using different tools.

Additionally, other factors hamper research in robotic har-
vesting such as simplistic testing environments [16] and
robotic platforms tailored to a specific growing system [51].
In contrast, our proposed solution can be deployed in real
agricultural environments.

Lehnert et al. [25] propose to recover the fruit’s shape and
pose by fitting an ellipsoid on the segmented fruits. Such an
approach can fail in case of a limited number of sample points,
for example, due to occlusions. Our approach, presented
here, exploits a robust shape completion and pose estimation
pipeline that learns a prior over fruit shapes exploiting high-
resolution point clouds. Additionally, we exploit the almost
symmetric fruit shape to evaluate different grasp directions to
increase robustness to occlusions. Ren et al. [37] deploy a
soft gripper to harvest strawberries in a vertical farm. They
propose a scene categorization to discard occluded fruits from
the harvesting process. In contrast, our approach can harvest
fruit also in cluttered environments.

Shape completion has been used for mapping [30] and next
best view planning [32], [53] by fitting an ellipsoid in 3D
point clouds of fruits. Instead, we use a shape completion
module to drive a harvesting pipeline. In prior work, we
estimate complete 3D shapes of fruit by exploiting a high-
precision LiDAR system to build prior knowledge over a
general fruit shape [29]. Pan et al. [34] extend it by creating
multi-resolution panoptic maps where the authors estimate
the complete 3D shape and 6-DoF pose of fruits. Our work
integrates our pose estimation module [34] in the harvesting
pipeline, exploiting the almost symmetric shape of fruits to
better reason the arm’s end-effector placement.

Beyond fruit harvesting, shape completion approaches have
been proposed in the agricultural context for yield estima-
tion [6], [18] and plant phenotyping [28], [31]. These works
focus mainly on monitoring the plant’s status. In contrast, we
use the estimated 3D shapes to interact with the plants for
harvesting fruits.

III. OUR APPROACH TO ROBOTIC FRUIT HARVESTING

Given an RGB-D image, we segment fruit instances using
an image-based instance segmentation approach. Afterward,
for each segmented fruit, we estimate its complete 3D shape
together with its 6-DoF pose. At this point, exploiting the
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almost rotational symmetric shape of the fruits, we evaluate
different grasp pose candidates and select the candidate with
the highest manipulability. We show an overview in Fig. 2
A. Vision Modules

The goal of our vision modules is to estimate a 3D mesh S
and a corresponding pose TS ∈ SE(3) for each fruit in an
input RGB-D image of height H and width W , where we
denote with I ∈ R3×H×W the RGB image and D ∈ RH×W
the depth channel. With I[u, v] and D[u, v] we refer to the
RGB or depth value at pixel location (u, v), respectively.

Instance Segmentation: We use Mask R-CNN [12] for
instance segmentation of fruits using the RGB image I, where
we use a ResNet18 [13] as backbone. Thus, we obtain F bi-
nary masks, M1, . . . ,MF , Mi ∈ {0, 1}H×W , of the segmented
fruits in image I withMi = {(u, v) | Mi[u, v] = 1} being the
pixel locations of the foreground, i.e., Mi[u, v] = 1, of each
mask Mi. The corresponding set of point clouds, P1, . . . ,PF ,
where Pi = {p1, . . . ,pN}, pj ∈ R3, can be obtained by
having access to the camera intrinsics and D resulting in the
backprojected point clouds Pi of every fruit, where we use
only depth values of D given by Mi.

Shape Completion and Pose Estimation: In line with our
previous approaches [29], [34], we use DeepSDF [35] to learn
a shape prior over different fruit species by exploiting high-
resolution point clouds of complete fruits. DeepSDF [35] takes
as input a query position x ∈ R3 and a latent shape code
z ∈ RC , and predicts the SDF value s ∈ R at x through a
decoder network Dθ:

s = Dθ(x, z), (1)

where θ are the model weights of neural network Dθ.
At training time, we learn model weights θ such that the pre-

dicted SDF value is close to the ground truth value determined
from the complete high-resolution point clouds. At inference
time, we optimize a shape code zi via backpropagation using
as input a partial point cloud Pi using the trained Dθ with fixed
model weights θ. We refer to our previous paper [34] for more
details. At this point, we can compute a dense SDF volume
by querying Dθ at a regular 3D grid of coordinates that we
can convert to a complete mesh Si via marching cubes [26].
This means that the shape code zi univocally defines a 3D
mesh. With this setup, fruit shapes Si are represented in a so-
called canonical pose corresponding to the peduncle pointing
upwards, which can lead to a failed grasp as fruits are not
always aligned with such a direction.

To jointly estimate a 3D shape, namely estimating its shape
code zi, and its corresponding pose TSi , we define three loss
functions: Ls, Ld, and Lm. The surface reconstruction loss Ls

is responsible for keeping the points from the target point
cloud Pi close to the iso-surface, i.e., coordinates of the SDF
volume with s = 0, of the SDF predicted by Dθ. In this
way, the predicted 3D mesh will closely align with the input
point cloud and exploit its encoded prior to estimate how the
fruit may look in regions where the robot has no observations
via the point cloud Pi. Formally, our surface reconstruction
loss Ls is given by:

Ls =
1

|Pi|
∑
p∈Pi

Dθ (TSi p, zi) , (2)

Strawberry 
End-Effector Tool

Tomato
End-Effector Tool

Fig. 3: Designs of our end-effectors and their envisioned grasp pose.
Top: a strawberry grasping tool designed to cut the peduncle. Bottom:
tomato grasping tool designed to grip and pull the fruit. Our proposed
grasping pipeline can be easily adapted to both designs.

where p is the corresponding homogeneous coordinate of p.
Thus, Ls is minimized if the iso-surface is close to the
observed point cloud, which means that Ls approaches zero
when evaluated at the measured points p ∈ Pi.

Using differentiable rendering [50], [54], we render a depth
image D̂i and a binary mask M̂i from the estimated shape Si
to obtain consistency between the robot’s observation and the
predicted shape using the depth rendering and mask rendering
losses Ld and Lm:

Ld =
1

|Mi|
∑

(u,v)∈Mi

∣∣∣∣∣∣D̂i[u, v]− D[u, v]
∣∣∣∣∣∣2 , (3)

Lm =
1

|Mi|
∑

(u,v)∈Mi

∣∣∣∣∣∣M̂i[u, v]−Mi[u, v]
∣∣∣∣∣∣2 , (4)

which ensures that the predicted shape Si is also consistent
with the observed RGB image and depth map.

In sum, we optimize the following loss for each fruit:

L = ws Ls + wd Ld + wm Lm + wr Lr, (5)

where Lr = ‖zi‖2 is a regularization term and ws, wd, wm,
wr are the weights for each loss term. By minimizing the
loss L, we can estimate the shape code zi and pose TSi of
the ith fruit. We refer to Pan et al. [34] for more details on
the implementation of the optimization routine to efficiently
estimate the fruit’s shape and pose.

B. Tool-specific Grasp Pose Initialization

In our approach, we engineered two distinct end-effectors
tailored for strawberries and tomatoes, respecting each crop’s
unique harvesting requirements. The strawberry end-effector
features a dual-function scissor mechanism, designed to sever
and secure the peduncle above the strawberry, ensuring a
gentle and efficient harvest. Enhanced with a safety guard, this
tool prioritizes human and environmental safety. Conversely,
the tomato end-effector incorporates an adaptive 4-bar linkage
gripper with parabolic fingertips. This design adapts to various
tomato sizes, enabling a smooth detachment from the vine
without necessitating a cutting action.
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Fig. 4: Determining the free space of the grasp candidate is achieved
via rendering of a depth image D̂φ using the candidate pose Tφ at
the grasp point location determined from the completed mesh Si. The
depth image D̂φ stores the result of the ray casting operation with
the environment mesh E .

With the estimated pose TSi and knowing the end-effector
design, we compute the grasp pose T

′

Si using a tool-specific
transformation Tg , which is relatively applied to the deter-
mined estimated fruit pose TSi as follows:

T′Si = TS Tg, (6)

where the rotation part of Tg is the identity matrix and the
translation part is the vector g ∈ R3 whose values depend on
the used end-effector tool as illustrated in Fig. 3.

Specifically, when gripping the fruit itself, g = [0, 0, 0]>

meaning that we target the center of the estimated fruit shape.
While, for cutting the peduncle, g = [0, 0, z∗]> with the scalar
z∗ computed from the estimated complete mesh Si as

z∗ = max
(x,y,z)∈VSi

z, (7)

where we denote by VSi the set of vertices of mesh Si.
To summarize, the only change needed to adapt our grasp

pose initialization to different tool designs used in this paper
is a translation along the fruit estimated z-axis. Furthermore,
this can be easily adapted to other fruit requirements.

C. Grasp Pose Estimation

Having estimated the fruit’s shape Si and its grasp pose T′Si ,
which now includes the target grasp point, we can now reason
about how to approach the fruit to execute the harvesting.
We note that fruits are almost symmetrical around their
main axis, i.e., the z-axis estimated by our pose estimation
module. Meaning that all poses obtained by rotating around
this axis are potential grasp candidates. We define such a
set with T = {Tφ1 , . . . ,Tφn} where φi corresponds to the
rotation angle around the z-axis. For simplicity, we consider
only angle increments of 15◦, i.e., φ1 = 0◦, φ2 = 15◦, . . . .

At this point, we need to evaluate which poses are reachable
by our manipulator. We start by integrating the current depth
frame D using a standard volumetric mapping pipeline [46].
Again, using marching cubes, we can extract a mesh F that
represents the current robot’s observation. We can, now, define

Fig. 5: A visual impression of our vertical growing system where we
highlighted each component.

the mesh E representing the robot’s surrounding environment,
containing the mesh F and the known vertical farm 3D model,
i.e., a CAD model of the pipes and walls blocking the path of
the manipulator.

Using the mesh E , we can now evaluate potential manipula-
tor paths and determine how to approach the fruit such that we
have the most possible free space. To this end, we render the
mesh E from each candidate pose Tφ obtaining a depth image
D̂φ via ray casting, where we initialize the rendered image
with zero anywhere. Therefore, if the raycasting starting at
the current candidate pose Tφi hits a surface it will receive a
non-zero value at that image location, as shown in Fig. 4. We
now define the set of grasp pose candidates as the set Tc ⊆ T
as follows:

Tc = {Tφ ∈ T | JD̂φK < t}, (8)

where the operator J·K counts how many pixels of the rendered
image D̂φ have a non-zero value, i.e., where raycasting hit a
surface, and t is a user-defined threshold. Note that we only
evaluate Eq. (8) in a patch around the image centered roughly
corresponding to the robot footprint. For each candidate pose
T ∈ Tc, we compute the inverse kinematic solution q = IK(T),
where q ∈ RJ corresponds to a specific joint angle configu-
ration of the J joints. For a configuration q, we evaluate the
arm manipulability µ using the Jacobian J(q) evaluated at the
specific joint configuration q:

µ(q) = J(q)J>(q). (9)

We can then select the pose T∗ ∈ Tc that maximizes the
arm’s manipulability:

T∗ = max
T∈Tc

µ(IK(T)). (10)

With the selected T∗ and the corresponding joint angle
configuration, we use RRT [23] within MoveIt [8] for motion
planning with the TRAC-IK [5] solver for improved solution
rate and time compared to standard solvers.
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Fig. 6: We show different end-effector positioning. In (a), the fruit
pose and shape estimated by ellipsoid fitting [25] do not align well
with the real fruit shape and pose leading to wrong positioning.
In (b), the fruit pose is correctly estimated regressing the fruit
orientation with a deep neural network [49]. However, the missing
shape estimation leads to wrong positioning. In (c), we show the
positioning obtained with our approach. The end-effector is correctly
positioned behind a leaf approaching the fruit’s peduncle. Note that
detecting the grasp point [40] failed as it was covered by a leaf.

IV. EXPERIMENTAL EVALUATION

The main focus of this work is the integration of a shape
completion and pose estimation module in a robotic harvesting
pipeline to robustly harvest fruits in a real-world scenario. Our
experiments show that our approach can (i) yield a higher
success rate by integrating shape completion systems in a
harvesting pipeline; (ii) find good grasp candidates while using
different end-effectors designed for different fruit species; (iii)
increase the robustness of the harvesting pipeline by evaluating
different grasp pose candidates.

A. Experimental Setup and Hyperparameters

Vision Modules: For segmenting individual fruits, we train
Mask R-CNN [12] for 200 epochs using AdamW [27] as
optimizer. We set the initial learning rate to 1 · 10−4 and
employ an exponentially decaying learning rate schedule. As
training set, we use two public datasets LaboroTomato [1] and
StrawDI [36] for tomatoes and strawberries, respectively. We
collected two datasets to train our shape completion model,
one for each species, using a high-precision LiDAR system as
described in Schunck et al. [41]. Following the settings used
in our previous work [29], [34], we train our model for 3000
epochs using AdamW [27]. We set the initial learning rate
to 5 · 10−4 and use a stepping strategy where we halve the
learning rate every 300 epochs.

Robotic System: Our robotic platform consists of a custom-
built gantry system and a UFactory xArm manipulator with
6-DoF. The gantry system provides two additional prismatic
joints for horizontal and vertical movement of the arm at a
fixed distance from the vertical growing system. For sensing,
we use an Intel RealSense d435i RGB-D camera mounted on

Fig. 7: We show different end-effector positioning. In (a), the shape
estimated by ellipsoid fitting [25] does not align well with the real
fruit shape and pose leading to wrong positioning. In (b), we directly
detect the grasp point [40]. However, the missing shape estimation
leads to wrong positioning due to the partially occluded fruit. In (c),
we show the positioning obtained with our proposed approach. The
end-effector tool is correctly positioned to approach the fruit.

the manipulator’s wrist together with our grippers, see Fig. 5.
We additionally refer to Barthelme et al. [4] for more details
on the vertical farm.

Metrics: We report three metrics to evaluate the end-
effector positioning. Attempts ratio, ρa, i.e., the number of
attempts over the number of detections. Success ratio, ρs, i.e.,
the number of successes over the number of detections. We
finally report the success rate over the attempts rate ρs/ρa.
To evaluate the harvesting performances, we report the ratio
between the number of successful harvests over the number
of attempts ρh/ρa. We evaluate such metrics over 32 and 27
trials for strawberries and tomatoes.

Baselines: We compare our approach with three baselines:
(i) directly detecting the grasp point [40]; (ii) shape completion
and pose estimation by ellipsoid fitting [25]; (iii) estimating
the fruit pose by regressing its orientation with a deep neural
network [49]. This last baseline cannot be adapted to tomatoes
given their almost spherical shape. We train the baselines
on the same publicly available datasets, StrawDI [36] and
LaboroTomato [1]. Given that such datasets provide instance
segmentation labels, we manually label bounding boxes for
the peduncles and orientation vectors for estimating the pose
of the fruits. This was done specifically to give the same data
as input during training to ensure a fair evaluation.

B. End-Effector Positioning
The first experiment shows that our approach (i) yields a

higher success rate by integrating a shape completion approach
into a harvesting pipeline, and (ii) finds good grasp candidates
while using different end-effectors designed for different fruit
species, and thus supports our first two claims.

We report a quantitative evaluation of end-effector posi-
tioning for both, strawberries and tomatoes, in Tab. I. To
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TABLE I: Quantitative analysis of end-effector positioning. Our
proposed approach outperforms all the baselines.

Approach
Strawberry Tomato

ρa ρs ρs/ρa ρa ρs ρs/ρa
↑ [%] ↑ [%] ↑ [%] ↑ [%] ↑ [%] ↑ [%]

Grasp Point
Detection [40] 31.25 21.88 70.00 100.00 66.67 66.67

Rotation
Estimation [49] 78.13 40.63 52.00 - - -

Ellipsoid
Fitting [25] 68.75 37.50 54.55 88.89 55.56 62.50

Ours 84.38 62.50 74.07 96.30 81.48 84.62

TABLE II: Inference time needed for estimating the grasp pose.

Grasp Point
Detection [40]

Rotation
Estimation [49]

Ellipsoid
Fitting [25] Ours

Inference
Time [s] 0.03 0.06 0.05 0.13

fairly evaluate the different approaches, we applied our pose
selection strategy (Sec. III-C) to the baselines as well. Note
that we vary the starting pose of our manipulator to test the
different approaches with different camera viewpoints.

Strawberries experiment: We notice that our approach
outperforms the baselines in all reported metrics. Specifically,
we obtain a success ratio ρs of 62.5%, which is over 20
percentage points better than the closest baseline [49]. We
additionally outperform the baselines in terms of attempt
rate ρa even though by a smaller margin, 84.4% against
78.1% of the closest baseline [49]. The combination of such
metrics indicates that our approach is able to find good grasp
poses consistently. This is also reflected by the success over
attempt ratio ρs/ρa where our approach reaches 74.1%. With
the closest baseline slightly above 50%. Most of the failed
grasps when using our proposed pipeline are caused by errors
in the fruit pose estimation. While errors due to a wrong
shape estimation are considerably less frequent. Additionally,
we want to highlight that positioning the end-effector tool
by directly detecting the grasp point, the peduncle, in this
case, turns out to be extremely challenging due to two main
reasons. First, the strawberry peduncle is rather small and
thin, thus harder to detect for a deep neural network than
the strawberries themselves. Second, the peduncle is often
hidden behind leaves or other fruits demonstrating why a shape
completion approach is needed to be able to grasp those fruits.
We, additionally, show the different end-effector positioning
when using different approaches for estimating the grasp pose
in Fig. 6. It can be seen that, while our approach is able to
correctly place the end-effector behind a leaf Fig. 6(c), the
baselines fail because of wrong pose estimation Fig. 6(a) or
wrong shape estimation Fig. 6(b).

Tomatoes experiment: We obtain the highest success
rate ρs reaching 81.5% over 66.7% of the closest baseline [40].
Similarly, we obtain a success over attempt ratio ρs/ρa of
84.6% which is 18 percentage points higher than the closest
baseline [40]. Detecting the grasp point directly for tomatoes
means targeting the center of the segmented fruit explaining
the 100% attempt rate ρa. Our approach yields a lower attempt
rate, reaching 96.3% due to a wrong shape estimation. We

Fig. 8: Examples of good end-effector positioning in strawberry (top
row) and tomato plants (bottom row) using our proposed harvesting
pipeline. Where the end-effector often needs to be positioned behind
a leaf or between multiple fruits.

TABLE III: We compare the harvest success rate with and without
our pose selection strategy evaluating it on both fruit species. The
results show the benefits of using our proposed approach.

Grasp Pose Selection
Strawberry Tomato
ρh/ρa ρh/ρa
↑ [%] ↑ [%]

7 56.25 62.96
3 68.75 70.37

want to highlight that directly detecting the grasping point
is more effective for gripping the fruit instead of cutting the
peduncle. In contrast, fitting an ellipsoid to tomatoes is less
effective mostly due to an overestimation of the fruit shape.
Such an outcome underlines the challenges in developing a
general pipeline for robotic fruit harvesting. Additionally, we
note a general increase in the attempt rate with the lowest
score of 88.9% which is higher than the best approach in the
strawberries experiment. This outcome can be explained by
the different plant species. In the tomatoes experiment, fruits
are more hidden in the dense canopy compared to the straw-
berries experiment. Meaning that our instance segmentation
network is not able to detect unreachable tomatoes. In contrast,
our network segments more strawberries thanks to the plant
canopy being less dense. Afterward, our pose selection strategy
evaluates some strawberries to be unreachable.

Additionally, we show the different end-effector positioning
when using different approaches for estimating the grasp
pose in Fig. 7. It can be seen that correctly estimating the
complete shape of the fruit is crucial for good end-effector
positioning. Our approach robustly estimates the shape of
a partially occluded tomato leading to a good end-effector
positioning, Fig. 7(c). In Fig. 7(b) a complete shape is not
estimated resulting in an end effector positioning slightly
off, in contrast fitting an ellipsoid yields an inaccurate shape
estimation, thus, wrong positioning Fig. 7(a). To better appre-
ciate the challenging environment and the precise positioning
needed to grasp fruits with our robot, we show qualitative
end-effector positioning using our shape completion approach
in Fig. 8. Finally, we report the inference time needed by each



MAGISTRI et al.: IMPROVING ROBOTIC FRUIT HARVESTING WITHIN CLUTTERED ENVIRONMENTS THROUGH 3D SHAPE COMPLETION 7

approach to estimate the grasp pose in Tab. II. As expected,
directly estimating the grasp point has the fastest inference
time of 0.03 s given that it only requires one forward pass. Our
proposed approach is the slowest given that we need multiple
forward passes. However, we only need 0.13 s to estimate the
grasp point which is sufficient as currently planning the path
and performing the manipulation are the main bottleneck for
grasping. We want to highlight that we did not optimize any
of the approaches, meaning that the reported runtimes can be
further improved. In our experiments, we used an NVIDIA
Quadro RTX A5000 given the application in a vertical farm.

C. Autonomous Harvesting

Finally, we analyze the impact of our grasp pose selection
strategy on robotic harvesting, showing that it increases the
robustness of the harvesting pipeline by evaluating different
grasp pose candidates. In Tab. III, we report harvesting success
metrics with and without our pose selection strategy. When
our pose selection strategy is not used, we select an approach
direction closest to the perpendicular to the plane given by
the vertical growing system. While harvesting strawberries,
the results suggest that our pose selection strategy increases
the harvesting success rate by 12 percentage points over the
naive approach. As a concrete example of such a difference,
consider a peduncle hidden by a leaf. Our pose selection
module would find an approach direction to move around the
leaf, while the naive approach would push the leaf toward the
growing system making the peduncle unreachable. Similarly,
for harvesting tomatoes, our proposed pose selection strategy
increases the harvesting success rate from 63% to 70.4%. As
for the strawberries experiment, when naively approaching a
fruit, without considering its surroundings, we notice that most
errors come from the robot pushing the target fruit away. Such
a situation is particularly challenging for dense canopies such
as tomatoes. Additionally, tomato branches are stiffer than
strawberry peduncles, meaning that an interaction between
robot and plant causes a much bigger plant movement. Inter-
estingly, in the tomatoes experiment, there is a clear regression
in the harvesting success rate compared to the positioning
success, mostly coming from the tomato slipping outside the
gripper when the arm retracts, suggesting that a more precise
positioning is needed and that an ad-hoc path needs to be
planned in such a scenario.

In summary, our evaluation suggests that our method pro-
vides better end-effector positioning than the baselines on
different fruit species requiring different tool designs. This
indicates that our proposed approach can be easily integrated
into the harvesting pipeline regardless of the end-effector
design. We additionally show that our pose selection strategy
increases the harvesting success rate by exploiting the almost
symmetrical fruit shape. Thus, we supported all our claims
with this experimental evaluation.

V. CONCLUSION

In this paper, we presented a novel approach for robotic
fruit harvesting exploiting shape completion techniques. Our
approach takes as input a single RGB-D image to obtain a
point cloud of individual fruits. Our method exploits recent

developments in differentiable rendering to jointly estimate a
fruit shape and its 6-DoF in challenging, cluttered agricultural
environments. This allows us to successfully estimate a grasp
pose even when the target fruit is occluded by leaves or other
fruits. Despite these encouraging results, there is further space
for improvement. The most common cause of failed grasps
is a wrong pose estimation for the strawberries and a wrong
shape estimation for the tomatoes. In both cases, considering
more than just one frame could benefit the estimations by
having a more informative input, especially when paired with
active vision pipelines. Finally, our pose selection strategy
can be further improved by additionally evaluating orientation
changes along an axis other than the fruit z-axis. While
being tested only on a vertical farm, our approach for robotic
fruit harvesting is rather general. Transferring our approach
to a mobile robot is straightforward and only requires an
odometry estimation [47] and a mapping system [46]. We
implemented and evaluated our approach on a robotic arm
operating in a real vertical farm system with different fruit
species and provided comparisons to other existing techniques,
and supported all claims made in this paper. The experiments
suggest that robustly estimating the shape and the 6-DoF pose
of each fruit is a key element in successfully harvesting fruit.
We show that our proposed approach can be easily integrated
into harvesting pipelines irrespective of the envisioned end-
effector. Additionally, we show that we can improve the
harvesting performances by evaluating different grasp pose
candidates exploiting the almost symmetrical shape of fruits.
Thus, demonstrating how robotic fruit harvesting benefits from
the integration of novel computer vision techniques.
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