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Abstract—Monitoring plants and fruits is important in modern
agriculture, with applications ranging from high-throughput
phenotyping to autonomous harvesting. Obtaining highly ac-
curate 3D measurements under real agricultural conditions is
a challenging task. In this paper, we address the problem of
estimating the 3D shape of fruits when only a partial view is
available. We propose a pipeline that exploits high-resolution 3D
data in the learning phase but only requires a single RGB-D
frame to predict the 3D shape of a complete fruit during
operation. To achieve this, we first learn a latent space of
potential fruit appearances that we can decode into an SDF
volume. With the pretrained, frozen decoder, we subsequently
learn an encoder that can produce meaningful latent vectors
from a single RGB-D frame. The experiments presented in this
paper suggest that our approach can predict the 3D shape
of whole fruits online, needing only 4 ms for inference. We
evaluate our approach in controlled environments and illustrate
its deployment in greenhouses without modifications.

Index Terms—Robotics and Automation in Agriculture and
Forestry, Deep Learning for Visual Perception, RGB-D Percep-
tion

I. INTRODUCTION

A challenge that agricultural production faces today is
meeting the rising demand for food, feed, fiber, and fuel

for an ever-growing world population. This situation is ag-
gravated by several factors including: climate change, lack of
workers, and decreasing biodiversity [14]. A promising solu-
tion to tackle this challenge is by means of autonomous robotic
systems. The use of robotic systems can benefit the agricultural
production sector across the whole plant growth period, from
sowing to harvesting, with the goal of increasing yield while
reducing human labor and agrochemical inputs [47].

In recent years, different studies showcased the range of
applications in the context of agricultural robotics. They differ
between arable fields and horticulture. In the first case, the use
of robotic systems, both ground and aerial, prove its benefit in
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Fig. 1: Being able to reconstruct 3D shapes of fruit in greenhouses
is important for applications ranging from yield estimation to har-
vesting. However, it is an extremely challenging task due to the
complexity of the environment. On the left, we show our robot
monitoring a sweet pepper greenhouse near Bonn, Germany. Given
an RGB-D frame (top right) our approach is able to complete and
reconstruct the 3D shape of fruits (bottom right).

the context of weed management from mapping [29], [41] to
intervention [33], but also for pest control [16] and phenotyp-
ing [48]. In horticulture, fruit detection [42] and counting [20]
are first applications of robots. Such techniques can be used as
a basis for fruit picking [46], phenotyping [40], harvesting [3],
[2], and for ripeness estimation [20]. A common, yet not
solved, problem for both arable field and horticulture is the
estimation of the 3D shape of crops or fruits in real worlds
conditions. Such conditions are particularly challenging due to
the complexity of the environment. As an example, a leaf in
the lower part of the canopy is often occluded by other leaves.
Making it difficult to estimate the 3D shape of the complete
plant. A similar scenario is often present in horticulture,
where a fruit can be hidden behind leaves or other fruits.
Nevertheless, the estimation of 3D models could have benefits
for several applications: detailed yield estimation by providing
crop information such as volume or autonomous harvesting
providing precise fruit size, position, and orientation.

This paper tackles the problem of estimating the 3D shape of
fruits using commonly used RGB-D cameras while exploiting
costly laser scanning systems only to learn a prior for the
shape of fruits. Obtaining complete point clouds of fruits in
real world scenarios is quite challenging and labor-intensive.
A robot working in such conditions often only views a small
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Fig. 2: Overview of our approach. (a) Generation of a triangular mesh
using our architecture exploiting a pre-trained encoder that produces a
latent vector (indicated as a point z in latent space Z) and locations
Ω on a regular grid to determine via a decoder D (blue) an SDF
value that can be used for generating a mesh using marching cubes.
(b) Training: we pre-train the shape decoder and optimize the latent
shape space such that different sweet peppers are separated. Next,
we freeze the shape decoder and train the encoder.

portion of a fruit. As can be seen in Fig. 1, the point clouds
obtained by a robot are noisy and incomplete making the
estimation of 3D shapes difficult. Our goal is to recover the
complete 3D shape of fruits using only partial views from
an RGB-D camera at inference time and exploiting a highly
accurate 3D laser scanner to learn a prior over the target fruit
species.

While the use of RGB-D sensors is increasing in the
agricultural robotics context thanks to their flexibility and
affordability, the use of the depth channel has been limited
to supporting fruit detection [25], [34], [26]. We believe that
this sensor can also be exploited to recover complete 3D
geometries of fruits. Thus allowing robots to perform complex
tasks such as growth monitoring on a per-fruit basis in chal-
lenging environments and allowing more accurate intervention.
However, given the complexity of the task, such a detailed
growth analysis is still bound to controlled environment [31],
[10], [11] while, in field conditions, robots allow to monitor
growth at a field level [7], [9].

The main contribution of this paper is a novel method to
infer in real-time the 3D shape of fruits using a single RGB-D
frame. We exploit the prior knowledge about the appearance
of fruits, by encoding such prior information in the weights
of a neural network trained using high resolution point cloud
data. At inference time, our approach only requires a single
RGB-D frame to estimate the 3D shape of a complete fruit in
around 4 ms, thus making our approach suitable for robotics
applications. In sum, our approach can (i) estimate in real-

time the 3D shape of fruits using single RGB-D frames while
leveraging costly laser scanning systems to learn a prior about
the target fruit, (ii) be deployed in real greenhouses while
trained in controlled environment, and (iii) can be adapted to
species for which prior knowledge is not available.

II. RELATED WORK

In agricultural environments such as greenhouses, orchards,
and arable fields, observing crops and fruits entirely is chal-
lenging. This challenge is mainly due to the complexity of the
environment. For example, a sweet pepper can be occluded by
different fruits or can be hidden behind groups of leaves. How-
ever, having a complete observation of the target crop or fruit
is important for many applications, ranging from harvesting
to phenotyping. In recent years, a diverse number of studies
focused on sensor placement to obtain more informative views
of a target fruit. Lehnert et al. [27] exploit a camera array
to compute the next best view in order to maximize fruit
coverage. In a follow-up work, Zaenker et al. [49] combine
local and global viewpoint planning allowing larger fruit
coverage. Gibbs et al. [15] propose an active sensing algorithm
to obtain high quality 3D surface reconstruction of plants.
Such studies assume that a sensor can move more or less
freely around the target object. This may be the case when
paired with a robotic manipulator but will not be possible in all
settings. Instead, our approach, by inferring 3D shape from a
single frame, does not require any specific robot configuration.

Both, Blok et al. [5] and Kierdorf et al. [21] estimate the
occluded parts of fruit or crops in 2D images. In the first
case, the authors propose to directly learn a semantic mask
including non-visible parts. In the second case, the authors use
a GAN-based approach to generate images without occlusions.
In contrast to such works, our approach estimates a 3D shape
instead of a 2D representation of fruits without occlusion.
More importantly, while such works require paired data to
have a ground truth image without occlusion and an input
image to be used as input, our approach does not require an
input-ground truth pair.

In the context of image-based phenotyping, Kirk et al. [23]
estimates mass and volume of strawberries using RGB images
only, whereas Halstead et al. [20] proposes an object detector
algorithm as a basis to estimate quantity and ripeness of
fruits in real greenhouses. Halstead et al. [18] enhances this
technique by providing a crop agnostic monitoring approach,
which includes area estimation of the crop. However, they
require a different model for different crop types. Generally,
these approaches target a single task, instead, by estimating a
complete 3D model our approach can be a basis to evaluate
different traits without tailored methods.

In our previous work [30], [32], we exploit prior knowledge
about the appearance of a plant by deforming a template to
align with partial observations using gradient descent. Our
new approach is different in two ways. First, we learn prior
knowledge about our target fruit directly from real data instead
of relying on a pre-determined template. Second, instead of
solving an optimization problem, our approach only requires
a single forward pass of a neural network to obtain a com-
plete 3D model making it faster and thus suitable for online
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applications on real robotic platforms.
Similar to DeepSDF [38], we solve the task of completing

3D shapes from partial observations. However, we are pre-
dicting signed distance fields (SDF) with a single forward
pass instead of solving the problem by searching over a
latent space. Thus, making our approach suitable for online
robotics applications. Stutz et al. [45] propose a variational
autoencoder pretrained on ShapeNet [8] to infer complete
3D models on real data. Instead of being a variational auto-
encoder, our network take as input a RGB-D frame and output
a SDF volume. Additionally we use a contrastive loss [17]
to enforce different views of the same object to generate the
same complete shape. During training, we additionally exploit
camera poses to define a self-supervision signal by comparing
a local SDF with the predicted one.

3D scene completion, outside the agricultural domain, has
recently gained attention. Dai et al. [13] proposed a sparse
generative network for completing indoor scenes using RGB-
D. Similar to our approach, this network is able to complete the
scene beyond the sensor measurements. Rodriguez et al. [39]
exploits a latent space representation to transfer grasping skills.
The main difference to our approach is that we are not
densifying sensor data but complete and reconstruct a target
object.

III. OUR APPROACH
TO FRUIT COMPLETION AND RECONSTRUCTION

In this paper, we study the problem of estimating complete
3D shapes of fruit from a single RGB-D frame. For learning
shape priors, we exploit a high-resolution, but slow and costly
laser scanning system to learn a prior about the 3D shape
of fruits. During operation, our proposed architecture takes
as input a single RGB-D frame cropped to a single fruit,
which can be obtained with any object detection approach [1]
and outputs a complete 3D model of the fruit. To obtain
such results, we first pre-train a decoder-only fully connected
neural network (FCN) that learns to predict SDF values from a
complete point cloud. Secondly, we train an encoder that learns
to map an RGB-D frame to a complete 3D model using the
pre-trained decoder. At inference time, we only need a single
forward pass of a single RGB-D frame to obtain a complete
3D model, see Fig. 2.

A. Shape Decoder Pre-Training

With the pre-training of the decoder, we want to learn a
prior of the complete 3D shape of a typical target fruit. We
represent this prior with the weights of a decoder-only FCN via
a latent space representation [38]. At this stage, the training
data for the decoder network Dθ is a point cloud, P of a
complete fruit obtained with a high accuracy laser scanning
system paired with a latent vector, z, and the output is its
SDF representation SDF(x), where SDF(p) = 0 for p ∈ P .
Formally, we aim at learning a function that maps a point
x ∈ R3 to its SDF value s ∈ R:

Dθ(z,x) = SDF(x). (1)

To learn the weights of the decoder θ, we regress the value of
the SDF from complete 3D point clouds of fruits as follows.

We define a set of point clouds P with elements of the form
Pk = {(p0

k,n
0
k), . . . , (pNk ,n

N
k )}, where k identifies a fruit

instance and each element is given by the 3D location p ∈ R3

of the point and its normal vector n ∈ R3, ||n|| = 1, estimated
using principal component analysis. For each point p, we
generate the target SDF value by translating p along its normal
by a small random value s. Thus, our training set is given by
X = {(x, s) | x = p + s ·n, s ∼ U(−σ, σ)}, where σ can be
interpreted as the truncation value in standard TSDF pipelines.
In this way, s represents ground truth SDF value s = SDF(x)
at location x. We define a loss function to regress the SDF
value for each point x:

Lsdf(x, z, s) =
∣∣∣clamp(Dθ(z,x), τ)− clamp(s, τ)

∣∣∣, (2)

where clamp(x, τ) = max(−τ,min(x, τ)) is a clamping
function restricting the values to be between −τ and +τ .
Additionally, we use a L1 regularization term over the latent
vectors to force them to be unit-norm vectors:

Lreg(z) =
∣∣∣1− ||z||∣∣∣. (3)

The input of the decoder is then a point cloud of a fruit
with its respective latent vector, which is randomly initialized
and optimized during training together with the weights of
the network. Following Park et al. [38], the FCN architecture
consists of 8 fully connected layers. With the latent vector
that is passed to the first and fourth layer. For an in-depth
discussion, we refer to the DeepSDF publication [38]. In this
way, by inputting only point clouds of complete fruits, we will
bias the decoder to generate SDFs of complete shapes.

At test time, we can get a mesh of the object by calling the
network with a regular 3D grid of points and thus get a stan-
dard SDF volume. Running the marching cubes algorithm [28]
will then give us the predicted mesh.

B. Learning a Latent Representation from RGB-D Frames

Using a decoder-only architecture for shape completion
as done in DeepSDF entails learning a latent vector during
inference to predict complete 3D models. This leads to a
rather high inference time, which we would like to avoid.
Furthermore, learning from high-resolution fruit models be-
forehand is totally acceptable for our application and allows
us to incorporate background knowledge about the appearance
of fruits into our model. Therefore, we propose an encoder-
decoder architecture Fig. 2, where the encoder Eφ is respon-
sible for generating latent vectors that result in plausible 3D
shapes after decoding. Our pipeline takes as input a single
RGB-D frame I ∈ RH×W×4 and returns an SDF volume of
the fruit in the frame. During this training phase, we only
optimize the weights φ of the encoder Eφ and keep the
weights θ of the decoder Dθ frozen. Reducing the problem
to a mapping function between an image and a latent vector,
RH×W×4 7→ RM . Thus, the encoder is responsible to generate
latent vectors z ∈ RM given an input image I ∈ RH×W×4,
namely z = Eφ(I), where φ represents the weights of the
encoder. Substituting the encoder in Eq. (1):

Dθ(Eφ(I),x) = SDF(x). (4)
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At this stage, for each fruit k we have a set of image-pose
pairs Ik = {(I1k,T

1
k), . . . , (Iik,T

i
k), . . . , (INk ,T

N
k )}, where Iik is

an RGB-D frame and Tik ∈ R4×4 is its pose in homogeneous
coordinates. For each frame, we build a local SDF, denoted as
SDFik, using the poses Tik, which provides a local view and
supervision for learning a consistent latent vector zik = Eφ(Iik)
for each frame.

An immediate challenge for our proposed solution is to align
the latent vectors generated from the encoder to meaningful
latent vectors for the decoder without direct one-to-one corre-
spondences. Thus during training, we force the latent vectors
zik generated from the encoder Eφ to be unit-norm vectors
using Eq. (3).

Another challenge for our pipeline is to generate the same
latent vector zk for different views Iik of the same fruit k. To
enforce this relation, we define a contrastive loss that aims
at minimizing the difference between latent vectors generated
from different views zim of the same fruit m and to repel the
latent vectors zjn generated from different fruit j. Thus, we
define a loss function inspired by contrastive representation
learning pipelines [17] composed by a hinged repelling term
for latents of different fruit, m 6= n and a non-hinged attraction
term for latents of the same fruit:

Lc =

{
||zim − zjn|| , if m = n[

δ − ||zim − zjn||
]+

, otherwise,
(5)

where zim and zjn are latent vectors generated from different
RGB-D frames and [x]+ = max(0, x), which hinges the loss.
This is modulated by the parameter δ, which allows the latents
to move around improving training stability [6].

Additionally, we optimize our network with an L1 loss
between the predicted and the local SDF values, namely SDFik,
generated from a single RGB-D frame Iik. Here, we compare
the predicted SDF values with the estimated SDF values on
spatial locations Ω on a regular grid, here we use the bounding
box of the fruit B with dimensions wB, hB, and lB for width,
height, and length, respectively. Then, the grid locations Ω are
defined as follows:

Ω =

r
 ij
k

− 1

2

ee
e

∣∣∣∣∣∣
i ∈ {0, 1, . . . , D − 1}
j ∈ {0, 1, . . . , D − 1}
k ∈ {0, 1, . . . , D − 1}

 , (6)

where e = max(wB, hB, lB) is the extent of the grid and r =
eD−1 corresponds to the resolution with D grid positions.

In line with prior work on scan completion [13], [35], we
log-transform the predicted and target values before applying
the L1 loss. We mask out regions with high local SDF values
to account for non-observed voxels. The SDF loss Lv is, then,
defined as:

Lv(s, ŝ) = | log(s)− log(ŝ)|, (7)

where s = SDF (x)ik is the observed SDF value from the local
view and ŝ = Dθ(Eφ(Iki ),x) is the predicted SDF value at grid
positions x ∈ Ω. The loss function given in Eq. (7) guarantees
that the predicted volume closely represents the input fruit.
Without this loss, there is no one-to-one correspondence
between input and output. During training we minimize the

weighted sum of the defined losses:

L = wcLc + wregLreg + wvLv, (8)

where wc, wreg, wv are scalars balancing the different terms.
Our encoder architecture consists of 7 blocks consisting

of one convolutional layer and one pooling layer with leaky
ReLU activations and one final fully connected layer to match
the desired latent dimension. At each block, we halved the size
of the first 2 dimensions of the feature map while we double
the size of the last dimension.

Note that we need camera poses and multiple frames of the
same fruit while training, but our pipeline only needs a single
RGB-D frame without a pose at inference time.

C. Adaptation to Different Species

As a next step, we want to avoid collecting a large amount
of training data for each species. Instead, we want to leverage
high resolution point cloud of one fruit (e.g. sweet peppers)
and adapt the decoder weights to predict the shapes of another
species (e.g. strawberries) from RGB-D images. To solve this
question in our pipeline we only need to update the weights
of the decoder during the second stage of the training, using
the same loss function as in Eq. (8).

D. Instance-Based Semantic Segmentation

To deploy our system in real conditions, a necessary first
step is to detect each fruit in a given image and identify the
pixels belonging to a fruit instance. To solve such a task,
we exploit the super- and sub-class network proposed for
objected detection by Halstead et al. [20] and extended for
instance segmentation [19]. This approach takes as input an
RGB frame and generates, for each fruit in the image, a binary
segmentation mask and estimates fruit ripeness. Note that any
instance segmentation approach can be used.

IV. DATA COLLECTION

We collect a fruit dataset to learn a shape prior but also to
evaluate our proposed solution. Such a dataset of fruits consists
of high accuracy point clouds and RGB-D frames. To obtain
the point clouds, we use a sub-millimeter accurate Perceptron
V5 laser scanner and a Romer Infinite measuring arm with a
scanning accuracy of 0.012mm. With the same hardware setup
as described by Schunck et al. [43] for more details on the used
hardware. To record the RGB-D images, we use a RealSense
D435. We show a few samples of our dataset in Fig. 3. In
total, we scan 82 strawberries and 84 sweet peppers, resulting
in 4000 and 5000 images.

To use the data from different sensors (laser scanner and
RGB-D images in our case) in the same pipeline we must
register the data to each other. We start by registering the
RGB-D images to each other with a standard TSDF fusion
pipeline [12], [37]. The results of this step are the camera poses
for each RGB-D frame in a local coordinate system and a mesh
of the object. To finally register the point cloud of the laser
scanner to the points of the mesh from the RGB-D sensor, we
apply an iterative closest point (ICP) [4] algorithm, see Fig. 3
for an example. This algorithm needs an approximate, initial
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Fig. 3: Exemplary overview of our dataset, reference 3D models
obtained with a high precision laser scanner (top left). RGB-D frames
obtained with a depth camera (bottom left). Registration between
ground a truth model and the aggregated RGB-D frames.

transformation between the two point clouds. To compute it,
we scan the fruits inside three perpendicular planes and exploit
this structure in the registration.

Given the result of the ICP with this approximation, we
compute the pose of every RGB-D frame in the coordinate
system of the laser model. Note that in this study such
transformations are used during training to define the SDF
loss in Eq. (7) but it is not needed at inference time.

Additionally, for each frame, we compute a semantic mask
employing the approach outlined in Section III-D by fine-
tuning a model trained from the BUP20 dataset [18]. The
model was trained for twenty epochs at a learning rate of
1e−3 using the stochastic gradient descent optimizer with a
momentum of 0.9 and weight decay of 5e−4.

To sum up, for each fruit in our dataset we have the
ground truth 3D model from the high-resolution LiDAR and
the measuring arm, a diverse number of RGB-D frames paired
with binary masks and registration parameters, both the frame-
to-frame and frame-to-model.

V. EXPERIMENTAL EVALUATION

We validate our approach for shape completion using a
mixture of data collected in a controlled environment and in a
real glasshouse and compare our results to both learning and
non-learning-based existing methods. From now on, we refer
to our approach with CoRe, an abbreviation for Completion
and Reconstruction. Specifically, we show experiments whose
results support our three claims: (i) estimate in real-time
the 3D shape of fruits using single RGB-D frames while
leveraging costly laser scanning systems to learn prior about
the target fruit, (ii) be deployed in real greenhouse while
trained in controlled environment, and (iii) can be adapted
to species for which a prior knowledge is not available.

A. Metrics
To measure the accuracy of our approach we use differ-

ent metrics: f-score, precision, recall, and Chamfer distance.
Defined over point clouds, the Chamfer distance DC is the
average symmetric squared distance d̄2 of each point to its
nearest neighbor in the other point cloud:

DC(G,R) = d̄2(G,R)
2 + d̄2(R,G)

2 , (9)

with d̄2(Pi,Pj) = 1
|Pi|

∑
xi∈Pi

minxj∈Pj
‖xi − xj‖22, where

G and R are respectively the ground truth point cloud and the

Fig. 4: While PF-SGD [32] obtains better results in terms of recon-
struction accuracy, our approach produces competitive 3D models
in a fraction of time. We show in yellow every point with an error
greater than 15mm to highlight where our approach fails.

point cloud obtained by sampling the reconstructed mesh. We
use the f-score metric as given by Knapitsch et al. [24]. To
compute the f-score, we first define precision p, and recall r,
given a threshold ρ:

p(ρ) =
100

|R|
∑
r∈R

s
min
g∈G
||r − g|| < ρ

{
,

r(ρ) =
100

|G|
∑
g∈G

s
min
r∈R
||g − r|| < ρ

{
,

(10)

where G and R are defined as in Eq. (9), g and r are points
from G and R and the operator J·K is the Iverson bracket, i.e.,
if the condition within the brackets is satisfied it evaluates
to 1, otherwise to 0. Intuitively, such metrics compute the
percentage of points in one set whose distance to the closest
point in the other set is smaller than a fixed threshold. As usual,
the f-score is the harmonic mean of precision and recall. In all
the experiments, we set the threshold ρ to 5 mm. Additionally,
we report the average inference time needed to obtain the
complete 3D shape. In our experiments, we used an NVIDIA
Quadro RTX 5000 GPU.

B. Fruit Reconstruction in Controlled Environments

We design the first experiment to show how our approach
can estimate the 3D shape of a target fruit only using a single
RGB-D frame. We first train the DeepSDF decoder network
using the hyperparameters suggested by Park et al. [38]. For
completeness, we report the results of this network when
the input is represented by highly accurate point clouds of
complete fruits. We refer to this as upper bound in Tab. II.

We train our encoder using a batch size of 16 RGB-D
frames (each frame is zero-padded to reach a dimension of
256×256×4) for 250 epochs using the Adam [22] optimizer
starting from a learning rate of 1e−5 with an exponential
decay modulated by γ = 0.97 and using the following values
to weight the different terms of the loss function Eq. (8):
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TABLE I: Strawberry - reconstruction results. Bold numbers indicate best performance in learning- and non-learning-based approaches.

Approach DC [mm] f-score [%] precision [%] recall [%] inference time [s] partial? learning?↓ avg (std) ↑ avg (std) ↑ avg (std) ↑ avg (std) ↓ avg

CPD [36] 5.13 (0.91) 57.93 (9.29) 94.09(7.94) 42.34 (8.59) 0.57 3 7
PF-SGD [32] 2.71(0.58) 86.08(8.73) 88.82 (7.01) 83.90(11.26) 8.1 3 7

DeepSDF [38] 3.61 (0.13) 74.01 (18.21) 83.76 (11.64) 68.32 (21.10) 36.84 3 3
CoRe (ours) 2.67(0.93) 86.01(13.53) 87.97(11.34) 84.85(16.32) 0.004 3 3

upper bound 1.21 (0.26) 98.28 (1.94) 97.50 (3.25) 99.12 (1.42) 37.23 7 3

TABLE II: Sweet pepper - reconstruction results. Bold numbers indicate best performance in learning- and non-learning-based approaches.

Approach DC [mm] f-score [%] precision [%] recall [%] inference time [s] partial? learning?↓ avg (std) ↑ avg (std) ↑ avg (std) ↑ avg (std) ↓ avg

CPD [36] 12.36 (1.29) 39.84 (9.34) 76.68(16.08) 27.07 (6.67) 15.62 3 7
PF-SGD [32] 3.97(0.97) 68.95(11.93) 71.20 (11.10) 66.94(12.73) 17.48 3 7

DeepSDF [38] 29.78 (28.66) 37.12 (17.63) 32.96 (19.44) 46.06 (14.65) 44.13 3 3
CoRe (ours) 7.83(1.76) 52.85(9.68) 47.38(9.61) 60.00(9.74) 0.004 3 3

upper bound 2.84 (4.10) 94.94 (4.97) 95.08 (6.39) 94.34 (3.96) 44.46 7 3

Fig. 5: We evaluate the consistency of our prediction as the poses
change by computing mean and standard deviation for the chamfer
distance by grouping frames representing the same fruit. We use
around 500 frames for the strawberry and around 900 for the sweet
pepper. We notice few outlier cases for both datasets, otherwise the
difference of our prediction are in the millimeter order.

wc = 0.1, wreg = 1 and wv = 50. In our experiments we
define train, test and validation set based on the fruit ids. The
sets stay consistent for the different training stages. For both
datasets we use 70 % of the fruits as training, 20 % as testing
and 10 % as validation. We compare our solution with both
learning-based and non-learning methods and summarize the
quantitative analysis in Tab. I and Tab. II. From the results, it
is clear that our approach is more suitable for online robotics
applications given the low inference time. We need only 4 ms
to make an inference while DeepSDF needs more than 44 s on
average and the best non-learning-based methods need more
than 15 s. In terms of reconstruction accuracy, we can see that
our approach can infer more accurate shapes than DeepSDF
considering both DC and f-score. This is due to the fact, that to
learn complete shapes, DeepSDF has to be trained on the data
collected with the laser scanning system described in Sec. IV
and has no adaptation capability to infer on data collected
with a RGB-D sensor. In this sense, our training strategy
is beneficial to exploit both sensors. Considering the non-
learning-based approaches, on one side the approach proposed
by Marks et al. [32], PF-SGD, can estimate the 3D shape of the
target fruit more closely but needing a much higher inference
time. On the other side, the coherent point drift algorithms,

CPD, [36] tends to produced collapsed meshes to closely align
with the input point cloud, this can be seen by looking at the
huge gap between precision and recall. In figure Fig. 4, we
show a few qualitative examples of estimated 3D models.

C. Fruit Reconstruction in Greenhouses

In the second experiment, we illustrate that our approach
can be directly deployed in real world conditions. To this
end, we use the sweet pepper dataset BUP20 [44] collected
in a greenhouse near Bonn, Germany. From the raw RGB-D
images, we first predict the instance segmentation masks using
the network proposed by Halstead et al. [18]. Afterward,
for each segmented fruit we predict a 3D shape using our
architecture. We show an overview of a full pipeline in real
world conditions in Fig. 6. We do not have 3D reference
models for this dataset, thus we can only show that our
pipeline can be deployed in such conditions, providing visually
plausible results.

D. Ablation Study

We, additionally, performed a diverse number of ablation
studies to highlight the effects of our loss function design.
As a first ablation, we train our encoder model using the
setting described in Sec. V-B using all combinations of loss
terms, see Tab. III. From these experiments, it is clear that
the local SDF loss Lv, given in Eq. (7), is the term that is
mostly influential for the results, it is only with the addition
of this term that we reach performances around 8 mm for DC
and around 50 % for the f-score. This has to be expected
since this term is the only one, which establishes a direct
correspondence between input and prediction, while the other
terms only consider the latent vectors. This explains the worst
results when imposing loss terms only on the latent vectors.

Additionally, we train our encoder-decoder architecture
without the pretrain, frozen decoder using the same loss func-
tion described in Eq. (8). As expected, without exploiting the
complete point clouds in the decoder pre-train, our architecture
does not manage to precisely estimate the complete 3D shape
from the RGB-D frames. In the last ablation study, we compute
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Fig. 6: Qualitative results in greenhouse. After an instance segmentation network (left), our pipeline outputs a 3D model of the segmented
fruits (right). The point clouds (with the predictions of our network) are shown from a slighly different viewpoint, with respect to the images,
to better visualize the 3D models. Note that our network is only trained on data collected in a controlled environment.

Fig. 7: Qualitative examples showing the benefits of adapting the
network to a different species. We show in yellow points with an
error greater than 5mm to highlight predicted parts with high errors.

per-fruit mean and standard deviation to better evaluate the
consistency of the reconstructions as the poses change. We
show such results in Fig. 5 where we see small per-fruit
standard deviation with the exeption of few outliers.

E. Transferring to Different Species

In this last experiment, we show that our approach can be
adapted to different species without the need to re-train the
decoder Dθ. Here, we use the same hyper-parameters defined
in Sec. V-B, the only change being that we also update the
weight of the decoder instead of keeping it frozen. We train
our network with and without adapting the decoder which
was pre-trained on another species. We report the quantitative
evaluation in Tab. IV for both datasets, the adaptation of the
decoder improves both the chamfer distance (from 8.26 mm to
4.75 mm for the Strawberry and from 5.94 mm to 5.79 mm for
the Sweet Pepper) and the f-score (from 32.93 % to 52.48 %
for the Strawberry and from 53.82 % to 56.18 % for the Sweet
Pepper) meaning that we are able to keep a strong prior
about general fruit shape while adapting it to a new species.
Interestingly, adapting the Strawberry decoder leads to better
reconstruction than learning the decoder directly on sweet
peppers. We believe this is the result of a larger diversity in
the strawberry dataset. We additionally show qualitative results
in Fig. 7, where it is evident that, without the adaptation, the
network outputs unreliable shapes.

TABLE III: Sweet pepper - ablation

Loss DC [mm] f-score [%]
↓ avg (std) ↑ avg (std)

Lreg + Lc 13.06 (3.16) 27.76 (10.07)
Lreg + Lv 8.12 (1.75) 51.18 (9.87)
Lc + Lv 7.86 (1.63) 51.39 (9.23)

Lreg + Lc + Lv 7.83(1.76) 52.85(9.68)

no prior, Lreg + Lc + Lv 16.41 (3.47) 24.60 (6.75)

TABLE IV: Adaptation to different species

Strawberry Sweet Pepper

DC [mm] f-score [%] DC [mm] f-score [%] adaptation↓ avg (std) ↑ avg (std) ↓ avg (std) ↑ avg (std)

8.26 (1.74) 32.93 (12.20) 5.94 (1.03) 53.82 (6.74) 7
4.75(1.34) 52.48(18.86) 5.79(1.06) 56.18(8.01) 3

VI. CONCLUSION

In this paper, we presented a novel approach to estimate the
3D shape of fruits from single RGB-D images fast enough for
online operation at sensor frame rate. Our method exploits a
prior knowledge learned from high quality point clouds during
training. This allows us to successfully estimate in real time
a 3D mesh of target fruits. We implemented and evaluated
our approach on different datasets obtained in controlled envi-
ronment and real world conditions. We provided comparisons
to other existing techniques both learning-based and non-
learning-based and supported all claims made in this paper.
The experiments suggest that we can achieve competitive
results in terms of reconstruction accuracy while running
orders of magnitude faster than the baselines, thus making
our approach suitable for robotics applications.

REFERENCES

[1] Y. Amit, P. Felzenszwalb, and R. Girshick. Object detection. Computer
Vision: A Reference Guide, 2020.

[2] B. Arad, J. Balendonck, R. Barth, O. Ben-Shahar, Y. Edan, T. Hellström,
J. Hemming, P. Kurtser, O. Ringdahl, T. Tielen, et al. Development
of a sweet pepper harvesting robot. Journal of Field Robotics (JFR),
37(6):1027–1039, 2020.

[3] R. Barth, J. Hemming, and E.J. van Henten. Design of an eye-in-hand
sensing and servo control framework for harvesting robotics in dense
vegetation. Biosystems Engineering, 146:71–84, 2016.

[4] P. Besl and N. McKay. A Method for Registration of 3D Shapes.
IEEE Trans. on Pattern Analalysis and Machine Intelligence (TPAMI),
14(2):239–256, 1992.

[5] P.M. Blok, E.J. van Henten, F.K. van Evert, and G. Kootstra. Image-
based size estimation of broccoli heads under varying degrees of
occlusion. Biosystems Engineering, 208:213–233, 2021.

[6] B.D. Brabandere, D. Neven, and L.V. Gool. Semantic instance seg-
mentation with a discriminative loss function. In Deep Learning for
Robotic Vision workshop, IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2017.



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2022.

[7] L. Carlone, J. Dong, S. Fenu, G. Rains, and F. Dellaert. Towards 4d
crop analysis in precision agriculture: Estimating plant height and crown
radius over time via expectation-maximization. In ICRA Workshop on
Robotics in Agriculture, 2015.

[8] A. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li,
S. Savarese, M. Savva, S. Song, H. Su, J. Xiao, L. Yi, and
F. Yu. ShapeNet: An Information-Rich 3D Model Repository. arXiv
preprint:1512.03012, 2015.
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[10] N. Chebrolu, T. Läbe, and C. Stachniss. Spatio-temporal non-rigid
registration of 3d point clouds of plants. In Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), 2020.
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