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Abstract: 

To cope with an ever increasing demand for food and energy, we rely on a more effec-

tive and sustainable crop production in the future. To enable farmers and breeders to 

optimize their day-to-day crop management, they need to be provided with information 

about the actual status of their fields, e.g. the current status of the crop development or 

weed pressure. Unmanned aerial vehicles (UAVs) serve as an excellent monitoring plat-

form for observing large areas of farm land in a comparably small amount of time. In this 

paper, we present a machine learning based approach for UAV imagery of different 

crop fields to analyze the spatio-temporal distribution of crop plants and weeds. We 

treat the crop-weed classification as a semantic segmentation using Convolutional Neu-

ral Networks and associate the image data over time allowing us to infer growth param-

eters and crop traits moving from canopy level to the level of individual plants. 

Keywords: Crop Monitoring, Machine Learning, Precision Farming 

 

Zusammenfassung: 

Um dem ständig steigenden Bedarf an Nahrungsmitteln und Energie gerecht zu wer-

den, müssen wir zukünftig auf eine effektivere und nachhaltigere Pflanzenproduktion 

setzen. Damit Landwirte und Züchter die tägliche Bewirtschaftung optimieren können, 

müssen sie über den aktuellen Zustand ihrer Felder informiert werden, z.B. über den 

aktuellen Stand der Pflanzenentwicklung oder den Unkrautdruck. Unbemannte Luftfahr-

zeuge (UAVs) dienen als Überwachungsplattform, um große Flächen in vergleichsweise 

geringer Zeit zu beobachten. In diesem Beitrag behandeln wir die Analyse von UAV-

Bildern hinsichtlich der automatischen Erfassung der raumzeitlichen Verteilung von 

Nutzpflanzen und Unkräutern. Wir verwenden für die Klassifikation eigens für den Agr-

arbereich optimierte maschinelle Lernverfahren und verknüpfen die analysierten Bildda-

ten über mehrere Zeitpunkte, sodass wir auf Wachstumsparameter und Merkmale 

schließen können, welche sich auf den Bestand und auf einzelne Pflanzen beziehen. 

Deskriptoren: Agrarrobotik, maschinelles Lernen, Präzisionslandwirtschaft 
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1 Introduction 

The increasing demand for food and energy induced by an ever-growing world popula-

tion is a global challenge. A high and stable crop production is key to satisfy these 

needs, but arable land is limited and the environmental footprint of agricultural produc-

tion needs to be reduced. Agrochemicals are intensively used in conventional agricul-

ture for effective weed control and to attain high yields. Whole fields are typically treated 

uniformly with a single herbicide dose, spraying the soil, crop and weed in the same 

way. Agrochemicals, however, can have a negative impact on the environment and bio-

diversity, and consequently affect human health (HORRIGAN et al. 2002). For the devel-

opment of more effective crop cultivars and crop production strategies, we have to in-

crease our understanding about the crop and its interaction with the environment. 

Thus, an effective and future-oriented agriculture needs to focus on both high produc-

tivity and sustainability. One major goal of sustainable farming is to increase yield while 

reducing the reliance on agrochemicals. Precision farming techniques seek to address 

these conflicting targets by (i) monitoring fields for key indicators of crop health, spatial 

distribution of crop traits and weeds and (ii) providing targeted measures for selectively 

treating only those plants that actually need it. By monitoring the field status and auto-

matically inferring statistics about the development of the crops, we can gain a better 

understanding about the growth process and at the same time minimize the use of ap-

plied agrochemicals (WALTER et al. 2018). 

 

  
 

Fig. 1: Left: UAV system (DJI Inspire II). Right: Sugar beet field in early season analyzed with our ap-
proach. We estimate the spatial distribution of crop (green) and weed (purple) and the per-plant canopy 

cover. This information directly leads to concrete suggestions for the farmers. 

A popular way to monitor farmland is through the use of aerial vehicles such as UAVs. 

UAVs can cover large areas in a comparably short amount of time without interacting 

with the environment as ground vehicles do. For an effective on-field intervention, it is 

important to know the spatial distribution of the weeds on the field already at an early 

state. The earlier mechanical or chemical weeding actions are executed, the higher the 

chances for obtaining a high yield. A prerequisite to trigger weeding and intervention 

task is a detailed knowledge about the spread of weeds. Additionally, UAVs can be em-

ployed over an entire crop season to monitor important traits for the crop plants. This 

provides a temporal dimension to monitoring of the field which is necessary for under-

standing how the field status is evolving and to trigger certain field management tasks. 

For breeders, the monitoring of genotype performance within field selection trials is a 
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crucial part for the development of better varieties. Presently, this analysis is mostly 

done manually, which is laborious. Therefore, it is important to have an automatic per-

ception pipeline that monitors and analyzes the crops automatically and provides a re-

port about the status of the field over time. 

 

2 Material und Methods 

In this work, we address the problem of analyzing RGB-only imagery captured by UAVs 

to inspect the status of a field in terms of the spatio-temporal crop and weed distribution.  

We treat the classification problem as one of semantic segmentation (BADRINARAYANAN 

et al. 2017) providing a pixel-wise classification of the entire image by using state-of-

the-art Fully Convolutional Neural Networks (FCNs). We focus on the detection on a 

per-plant basis to estimate the amount of crop plants as well as various weed species. 

We furthermore associate the data obtained by multiple UAV flight sessions over the 

crop season and can provide information of dynamic crop development over time direct-

ly to the farmers and breeders. The experiments show the performance of our plant 

classification system on several crop fields under different acquisition conditions. Our 

approach efficiently adapts to different crop and weed species with comparably small 

amount of training data. We demonstrate that we are able to exploit classifier output, 

i.e., the spatial and the semantic field information, (i) to associate the acquired data over 

multiple UAV flight sessions and (ii) to extract canopy cover over time. 

 

2.1 Vision-Based Plant Classification using FCNs 

The main goal of our vision-based plant classification system is to segment the plants 

and weeds in UAV images to estimate their spatial distribution in the field and to allow 

for their precise and individual mapping. Our classification further serves as a basis for 

inferring growth parameters and crop traits moving from canopy level to the level of in-

dividual plants. The classification system used in this work is based on our previously 

published FCN approach in LOTTES et al. (2018) with slight modifications such that it 

can deal with RGB-only input as well as work on images with a size of 1500x2000 pix-

els. Fig. 1 and Fig. 4 illustrate exemplary outputs of our classification system. 

SLAUGHTER et al. (2008) state that a major challenge for vision-based plant classification 

systems in agricultural fields is their adaptation to changing conditions such as different 

crop and weed types in new fields and rapidly changing environments. These changes 

lead to a different distribution of the data which may not be properly modeled by the 

classifier. This holds especially for UAV images as they are directly affected by natural 

illumination conditions (Fig. 4). To address these challenges, we apply supervised 

transfer learning, i.e., fine-tuning a pre-trained model, to adapt the classifier to new envi-

ronments. We achieve a good transferability by using a comparably small amount of 

labeled training data of the new field. 
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2.2 Semi-Supervised Rapid Labeling 

Labeling of images with pixel accuracy is a laborious task, which is not scalable from a 

practical application point of view. Therefore, we propose two strategies to rapidly ob-

tain labeled data for a new field in a semi-supervised way. For both strategies, we first 

segment the vegetation from the background, i.e. soil, by using a threshold based ap-

proach applied to the Excess-Green-Index (MEYER AND NETO 2008, KHANNA et al. 2015). 

The output from this step is a binary image representing vegetation and soil. 

 

Fig. 2: Left: Labeling strategy based on crop row detection. Right: Labeling strategy using Random For-

est. We only manually annotated the vegetation pixels within the red box. 

The first approach (Fig. 2) for semi-automated data labeling is to exploit the crop row 

structure. We employ a variant of the Hough transform on the binary vegetation image 

as proposed in (LOTTES et al. 2017b) providing us the crop rows in the image. We then 

automatically assign the label crop to all vegetation pixels within a certain threshold dis-

tance to the estimated crop row. Remaining vegetation pixels in the image are consid-

ered to be weeds. A limitation of this strategy is that weeds located along the crop row 

are wrongly labeled. Despite the rough labeling procedure, our FCN classifier is able to 

adapt to new field conditions. 

In case a field has no strict crop row structure (Fig. 2), we follow strategy two employing 

a standard Random Forest (RF) classifier (BREIMAN 2001) that is capable of solving 

multi-class problems. Here, we exploit the fact that RF can be trained with a comparably 

small amount of data and use it to rapidly produce predictions. For the features, we are 

using the ones proposed in our earlier work (LOTTES et al. 2017a). To initialize this pro-

cedure, the user only has to provide a few labels for some of the vegetation pixels, 

which are then used to train the RF. Then, in the prediction step, the RF provides labels 

for the entire vegetation mask. 

 

2.3 Temporal Image Data Association  

Nowadays, commercial UAVs are typically equipped with low cost GPS sensors provid-

ing a global positioning accuracy of around 5-10m. However, the monitoring of growth 

parameters of individual plants requires a temporal data association at centimeter level 

accuracy. A common technique to obtain a more precise image registration is by match-

ing visual descriptors computed on the images. Such descriptors, however, are not suit-

ed to cope  
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Fig. 3: Data association between images with a temporal difference of one week. We only allow crops to 

match with crops (blue) and weeds with weeds (orange). Note, we only visualize a few correspondences. 

with the large differences in appearance such in agricultural environments over time, 

which leads to an unreliable registration. 

With the presented approach we are able to obtain a temporal correspondence between 

the image data by exploiting the distribution of crop and weed locations as well as the 

semantic information obtained from the FCN classification. The details of our approach 

are described in (CHEBROLU et al. 2018). It allows to register images with the accuracy 

required for a plant-wise data association (Fig. 3). We use the classification results to 

allow only correspondences between same class labels. Given the associations, we are 

able to register the two images in a common reference frame and compare different 

plant properties such as canopy cover or class labels. 

To illustrate the data association on plant level, we draw a box around a specific crop in 

Fig. 3 (right). Given that we registered the image data temporally, we can track the 

same plant across multiple sessions as visualized by the red boxes. By this we can 

monitor and compute growth parameters on a per-plant basis over the whole field. 

 

3 Experiments 

The experiments presented here, demonstrate the ability the approach to detect differ-

ent crop and weed types in aerial RGB imagery. Even, with limited training data, our 

FCN classifier is able to adapt to the new situations. Furthermore, we show two exem-

plary applications, where the temporal data association supported by the classifier out-

put enables us (i) to monitor the development of individual plants in the field over time 

and (ii) to analyze the effect of fertilization in crop fields. 

 

3.1 Crop-Weed Detection in Different Crop Fields 
 
For the evaluation of the crop-weed detection performance, we acquired image data 

from multiple crop fields using different UAV systems. Tab. 1 summarizes the datasets 

used in this paper. We use the software package METASHAPE (Agisoft) to register the 

single images captured during a UAV flight and compute the orthomosaics for each 

field. To obtain an appropriate image size for further analysis with the FCN classifier, we 

cut the orthomosaics into tiles (ortho-tiles) of size 1500x2000 pixels (Fig. 4). For each 
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dataset, we labeled five ortho-tiles using the labeling strategies described in Sec. 2.2 to 

obtain the training data. For all experiments, we fine-tuned the same pre-trained FCN, 

which was trained on independent data from different fields from our previous publica-

tion (LOTTES et al. 2017b).  

We evaluate and report the segmentation performance on a per pixel basis. To obtain 

the performance metrics, we thoroughly labeled 10 ortho-tiles for each dataset forming 

a high quality ground truth. The accumulated average precision (P) and recall (R) val-

ues are shown in Tab. 1. As average, we consider the respective means of the class-

wise P/R values, i.e., for crop, weed, soil, and toxic weed. Our evaluation suggests that 

we are able to obtain a recall of 87% and a precision of 84% over all datasets. For the 

peppermint dataset, we achieved class-specific recall of 95% for the toxic weeds. This 

is crucial for the farmers as they need to guarantee that the quantity of toxic weeds in 

the field is below a permissible limit. 

Tab. 1: Key parameters of the datasets and classification performance using recall (R) and precision (P) 

 UAV Images Tiles GSD Classes avg. R avg. P 
Sugar beet DJI Mavic 192 42 8mm Crop, weed, soil 83% 81% 

Pumpkin DJI Inspire II 219 80 5mm Crop, weed, soil 85% 81% 
Strawberry DJI Inspire II 75 59 3mm Crop, weed, soil 95% 85% 

Peppermint DJI Phantom 4 330 165 5mm Crop, weed, toxic weed, soil 88% 86% 

 
      Sugar beet                                                             Pumpkin 

     
       Strawberry                                                          Peppermint 

        
 

Fig. 4: Per Crop: RGB-tiles (left) of size 1500x2000 pixels cropped from the orthomosaic and analyzed 
images (right). Colors refer to different classes, i.e., sugar beet / pumpkin (green), strawberry (yellow), 

peppermint (bright blue), toxic weeds (blue), and general weed (red) 

 
3.2 Monitoring Early Crop Growth as Affected by Nitrogen Status 
 

The variation of canopy cover within a field reflects differences between growth factors 

which are often soil moisture and nutrient availability, among which nitrogen plays a vital 

role. Therefore, detection of growth differences in early stages enables site-specific 

management such as variable rate fertilization or precision spraying of pesticides. 
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Fig. 5: Top row: Orthomosaics of sugar beet field recorded on the 25th April (left) and the 18th May (right) 

in 2017. Bottom row: The same zoomed area. 

This experiment illustrates that we are able to analyze the effect of fertilizer on the 

growth of sugar beets at an early growth stage based on UAV images. The field trial 

consisted of 4 nitrogen fertilization regimes (0, 40, 80 and 120 kg N/ha) with 6 plot repli-

cates of 36m² each. A detailed description of the experimental field setup is also de-

scribed in Sa et al. 2018. We acquired images with a UAV on two dates, on 25th April 

(39 days after sowing, DAS) with a DJI Inspire II and on the 18th May (62 DAS) with a 

DJI Matrice 200, corresponding to an average growth stage of BBCH of 12 and 16, re-

spectively. Fig. 5 illustrates the two orthomosaics from the respective acquisition dates 

as well as the arrangement of the plots. After performing the classification of the sugar 

beets and weeds, we used our data association procedure as described in Sec 2.3 

aligning the two orthomosaics to automatically derive the growth parameters for the 

same area of interest. 

To analyze the growth, we monitor the canopy cover (Fig. 6) as a proxy and correlate it 

with the amount of fertilizer applied to the plots. Plants count per area and canopy cover 

are important parameters to evaluate crop performance, vitality and estimate potential 

yield. Both parameters are of particular interest during early growth stages. The number 

of plants is a result of the germination rate and the young plant survival. Canopy cover 

at a given time reflects growth of the crop integrating biomass, leaf area, number of 

leaves as developed until image acquisition. We compute the total canopy cover (TCC), 

which is the surface in a plot covered by classified sugar beets as well as the average 

canopy cover (ACC), which is TCC divided by the number of single plants in a plot. We 

observe increased growth up to 80 kg N/ha, whereas higher N fertilization did not result 

in further growth of the sugar beets. This trend is already visible in the TCC from at the 

25th April.  
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Fig. 6: Total and average canopy cover per plant as affected by Nitrogen fertilizer treatment. 

 

4 Discussion and Conclusion 

In this paper, we propose a UAV-based plant classification system for crop monitoring 

enabling precision agriculture applications by automatically inferring growth parameters 

and crop traits moving from the canopy level to the level of individual plants. We show 

the ability of the classifier to identify multiple crops and weed types under different envi-

ronment conditions. As an application, we study effects of fertilization by analyzing can-

opy cover data obtained by our classification system. The results indicate that these 

measurements might enable site specific fertilization in crops at an early growth stage 

and can be used when methods based on canopy reflectance or greenness are failing 

due to a low canopy coverage. Furthermore, such a system can potentially support soil 

sampling based fertilization strategies which are often limited in spatial representation 

due to a high labor and financial costs of the soil sampling and lab analysis. Such appli-

cations are done in sugar beets, but also in winter cereals. 
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