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Abstract— Unmanned aerial vehicles (UAVs) and other robots
in smart farming applications offer the potential to monitor
farm land on a per-plant basis, which in turn can reduce the
amount of herbicides and pesticides that must be applied. A
central information for the farmer as well as for autonomous
agriculture robots is the knowledge about the type and distribu-
tion of the weeds in the field. In this regard, UAVs offer excellent
survey capabilities at low cost. In this paper, we address the
problem of detecting value crops such as sugar beets as well
as typical weeds using a camera installed on a light-weight
UAV. We propose a system that performs vegetation detection,
plant-tailored feature extraction, and classification to obtain an
estimate of the distribution of crops and weeds in the field.
We implemented and evaluated our system using UAVs on two
farms, one in Germany and one in Switzerland and demonstrate
that our approach allows for analyzing the field and classifying
individual plants.

I. INTRODUCTION

Herbicides can have several side-effects on the biotic and

abiotic environment and bear a risk to harm human health [7].

Therefore, a reduction of the amounts of herbicides used

in modern agriculture is a relevant step towards sustainable

agriculture. In conventional weed control, the whole field

is typically treated uniformly with a single herbicide dose,

spraying the soil, crops and weed in the same way. This

practice is simple for the user as neither the knowledge about

the spatial distribution nor about the type of the weeds is

required and thus is commonly used in conventional farming.

The availability of such knowledge, however, offers the

potential to reduce the amount of agro-chemical applied to

the fields. One way to achieve this is by selectively spraying

different weed species as they show variable sensitivities to

different herbicides. Another approach consists in the phys-

ical control of weeds from a moving platform by destroying

them mechanically or with lasers.

Thus, modern approaches as agriculture system manage-

ment and smart farming typically require detailed knowledge

about the current status on the fields. One popular way to

monitor farm land is the use of aerial vehicles such as UAVs.

Compared to ground vehicles, UAVs can cover large areas

in a comparably short amount of time and do not impact

the fields through soil compaction as ground vehicles do.

For successful on-field intervention, it is important to know

the type and spatial distribution of the weeds on the field at

an early state. The earlier mechanical or chemical weeding

actions are executed, the higher the chances for obtaining a
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Fig. 1: Low-cost UAV used for field monitoring (left) as well as an
example image analyzed by our approach (right).

high yield. A prerequisite to trigger weeding and intervention

task is a detailed knowledge about the spread of weeds.

Therefore, it is important to have an automatic perception

pipeline that monitors and analyzes the crops automatically

and provides report about the status on the field.

In this paper, we address the problem of analyzing UAV

imagery to inspect the status of a field in terms of weed

types and spatial crop and weed distribution. We focus on a

detection on a per-plant basis to estimate the amount of crops

as well as various weed species to provide this information

to the farmers. Thus, the main contribution of this paper is a

vision-based classification system for identifying crops and

weeds in both, RGB-only as well as RGB combined with

near infra-red (NIR) imagery of agricultural fields captured

by an UAV. Our perception pipeline is capable of detecting

plants in such images only based on their appearance.

Our approach is able to exploit the geometry of the plant

arrangement without requiring a known spatial distribution

to be specified explicitly. However, optionally it can also

utilize prior information regarding the crop arrangement. In

addition to that it can deal with vegetation, which is located

within the intra-row space.

We implemented and tested our approach using different

types of cameras and UAVs, see Figure 1 for an example,

on real sugar beet fields. Our experiments suggest that our

proposed system is able to perform a classification of sugar

beets and different weed types in RGB images captured by a

commercial low cost UAV system. We show that the classifi-

cation system achieves good performance in terms of overall

accuracy even in images where neither a row detection of the

crops nor a regular pattern of the plantation can be exploited

for geometry-based detection. Furthermore, we evaluate our

system using RGB+NIR images captured with a comparable

expensive camera system to those obtained using the standard

equipped RGB camera mounted on a consumer quad-copter

(DJI Phantom 4 and camera for around $1,500).



II. RELATED WORK

UAVs equipped with different sensors serve as an excellent

platform to obtain fast and detailed information of arable

field environments. Monitoring crop height, canopy cover,

leaf area, nitrogen levels or different vegetation indices over

time can help to automate data interpretation and thus to

improve crop management, see for example [9], [20], [22],

[3]. Geipel et al. [3] as well as Khanna et al. [9] focus in their

work on the estimation of crop height using UAV imagery.

Both these works apply a bundle adjustment procedure to

compute a terrain model and perform a vegetation segmenta-

tion in order to estimate the crop height based on the obtained

3D information. Tokekar and Hook [22] introduce a concept

for a collaboration of an unmanned ground vehicle (UGV)

and a UAV in order to measure nitrogen levels of the soil

across a farm. The basic idea is to use the UAV for the

measurements and the UGV for the transport of the UAV

due to its limited energy budget.

Several works have been conducted in the context of

vegetation detection by using RGB as well as multispectral

imagery of agricultural fields [5], [6], [23]. Hamuda et al. [6]

present a comprehensive study about plant segmentation in

field images by using threshold based methods and learning

based approaches. Torres Sanchez et al. [23] investigate an

automatic thresholding method based on the Normalized

Difference Vegetation Index (NDVI) and the Excess Green

Index (ExG) in order to separate the vegetation from the

background. They achieve an accuracy of 90−100% for the

vegetation detection based on their approach. In contrast,

Guo et al. [5] apply a learning approach based on decision

trees for vegetation detection. They use spectral features for

the classification exploiting different color spaces based on

RGB images. We use a threshold based approach based on

the ExG and NDVI in order to separate the vegetation from

the background, i.e. mostly soil.

The next level of data interpretation is the classification

of the detected vegetation by separating it into the classes

crop and weed. Several approaches have been proposed

in this context. Peña et al. [16] introduced a method for

the computation of weed maps in maize fields based on

multispectral imagery. They extract super-pixels based on

spatial and spectral characteristics, perform a segmentation of

the vegetation and detect crop rows in the images. Finally,

they use the information about the detected crop rows to

distinguish crops and weeds. In a following work by Peña et

al. [17], they evaluated a similar approach according to [16]

for different flight altitudes and achieve the best performance,

i.e. around 90% overall accuracy for crop/weed classification,

using images captured at an altitude around 40m with a

spatial resolution of 15mm
px

. Furthermore, they conclude that

using additional near infra-red (NIR) information leads to

better results for vegetation detection.

Also machine learning techniques have been applied to

classify crops and weeds, in UAV imagery of plantation [8],

[4], [18], [19]. Perez-Ortiz et al. [18] propose a weed detec-

tion system based on the classification of image patches into

the values crop, weed and soil. They use pixel intensities of

multispectral images and geometric information about crop

rows in order to build features for the classification. They

evaluate different machine learning algorithms and achieve

overall accuracies of 75− 87% for the classification. Perez-

Ortiz et al. [19] used a support vector machine classifier

for crop/weed detection in RGB images of sunflower and

maize fields. They present a method for both inter-row and

intra-row weed detection by exploiting statistics of pixel

intensities, textures, shape and geometrical information as

features. Guerrero et al. [4] propose a method for weed

detection in images of maize field, which allows to identify

the weeds after its visual appearance changed in image space

due to rainfall, dry spell or herbicide treatment. Garcia et

al. [8] conducted a study for separating sugar beets and

thistle based on multispectral images with a comparably large

number of narrow bands. They applied a partial least squares

discriminant analysis for the classification and achieved

a recall of 84% for beet and 93% for thistle by using

four narrow bands at 521, 570, 610 and 658 nm for the

feature extraction. Another noteworthy approach is the one

by Mortensen et al. [15]. They apply a deep convolutional

neural network for classifying different types of crops to

estimate individual biomass amounts. The use RGB images

of field plots captured at 3m above soil and report an overall

accuracy of 80% evaluated on a per-pixel basis.

Our approach extracts visual features as well as geo-

metrical features of the detected vegetation and uses a

Random Forest [2] to further classify the vegetation into the

value crop and weed. Optionally, we perform a crop row

detection and extract an additional feature to integrate this

information into the classification system. In the past, we

have proposed a classification pipeline [10], [11] for ground

vehicles operating in farms. In this paper, we extend our

pipeline in terms of (i) geometric features for the use on

UAVs, (ii) the ability to deal without sunlight- shields and

100% artificial lighting as used in both previous papers, and

(iii) a way to handle RGB images without the requiring NIR

information.

III. PLANT/WEED CLASSIFICATION FOR UAVS

The primary objective of the proposed plant classification

is to identify sugar beet crops and weeds in UAV imagery

in order to provide a tool for an accurate monitoring of

the plantation on real fields. The target is to determine a

detailed map of the crops and weeds on a per-plant basis in

each image, also including weeds located in the intra-row

space. We furthermore target the detection of common weed

species on sugar beet fields in Northern Europe, which is

an important problem and a challenging task for precision

farming systems in Germany. The input of the system are

either 4-channel RGB+NIR images or regular RGB images,

depending on the sensor setup of the UAV. The optional

NIR information that is available on more advanced systems,

supports the vegetation analysis but is not essential.

The addressed task is strongly related to UGV-based plant

classification such as our previous approaches [10], [11]. Us-



Fig. 2: Example image captured by a DJI Phantom 4 at 3m altitude at different levels of progress within the classification pipeline.
From left to right: normalized RGB image, computed Excess Green Index (ExG) according to Eq. (2), vegetation mask V and multi-class
classification output of our plant/weed classification system

ing UAV data instead of data recorded with an UGV, is more

challenging as the imagery is naturally exposed to varying

lightning conditions and different scales. Furthermore, UGV-

based systems can exploit more assumptions about the data

and are capable for controlled illumination as the sun-light

is typically shielded and artificial light-sources are applied.

The approach presented in this paper builds upon [10], [11]

but extends the classification system, adds more relevant

features, can work with RGB-only imagery, and is tailored

to UAVs.

The key steps of our systems are the following: First,

we apply a pre- processing in order to normalize intensity

values on a global scale and detect the vegetation in each

image. Second, we extract features only for regions, which

correspond to vegetation, exploiting a combination of an

object- based [11] and a keypoint-based [10] approach.

Third, we apply a multi-class Random Forest classification

and obtain a probability distribution for the predicted class

labels. We adapt our previous perception pipeline for the

crop/weed classification from the ground vehicle to the UAV

and introduce the following innovations:

• multi-class detection for discrimination of different

weed species,

• classification on RGB+NIR or RGB only imagery, and

• geometric features for exploitation of plant arrangement

and for exploiting crop rows if available.

A. Vegetation Detection

The goal of vegetation detection is to remove the back-

ground, i.e. the soil or other objects given an image I by

compute the vegetation mask

V(i, j) =

{

1, if I(i, j) ∈ vegetation

0, otherwise
, (1)

for each pixel location (i, j). Depending on the input data

(RGB+NIR or RGB images), we apply different vegetation

indices to separate the vegetation parts from the background.

In case NIR information is available, we exploit spectral

characteristics of plants in the NIR and RED channel through

the normalized difference vegetation index (NDVI) according

to [21]. In case we only have RGB data available, we rely

on the Excess Green Index (ExG) given by

IExG = 2 IGREEN − IRED − IBLUE (2)

and compute the masking based on a threshold.

Feature

Extraction
Classification

Fig. 3: Pipeline of our Plant/Weed classification system and concept
for object-based (left) and keypoint-based (right) approach for the
feature extraction. Green refers to sugar beet keypoints and objects,
red refers to weed keypoints and objects and yellow refers to mixed
objects, which consists of both sugar beet and weed pixels

See Figure 2 for an illustration of the ExG and the obtained

vegetation mask by thresholding. Compared to the NDVI,

the ExG provides an appropriate index distribution for the

identification of the vegetation in RGB images, confirming

the results of [12], [14], [9]. However, this approach can

lead to wrong segmentations in case of green objects in the

image that do not correspond to vegetation. On agricultural

fields, however, there are usually only few green objects

except plants so that the ExG index is a good choice for

our application if no near infra-red channel is available.

B. Objects-based vs. Keypoint-based Feature Extraction

Given the vegetation mask V , we extract features as the

input for our classification system. Here, we consider two

approaches. The first one computes a single feature vector

per segmented object from the vegetation mask V , whereas

the second approach computes the feature vector on a dense

grid of keypoints within areas of vegetation, similar to our

previous approach described in [11].
Initially, the object-based approach searches for objects,

i.e. connected vegetation pixels, in V . Then, we compute a

feature vector for each object O using all pixels that belong

to the segment. In contrast, the keypoint-based approach

makes no topological assumptions to the vegetation pixels. A

keypoint K is given by its position (i, j) and a certain neigh-

borhood N (K). We define the positions of the keypoints K
on a grid with a constant lattice distance over the whole

vegetation pixels in the image and extract a feature vector

for K taking its neighborhood N (K) into account. In our

current implementation, we use a lattice distance of 10 pixel

by 10 pixel for the keypoint and chose 20 pixel by 20 pixel



for the neighborhood N (K). Figure 3 depicts the concept

of both approaches visually. The object-based approach has

the advantage that features mostly describe whole plants

and comparably less objects are needed to represent the

vegetation. The keypoint-based approach has the advantage

to deal with under-segmented and overlapping plants. In [11],

we showed that combining both approaches in a cascade

benefits from the individual advantages respectively. In this

work, we use the cascade approach.

For the feature extraction, we start with the same set of

statistical and shape features as those described in [11] and

extract a set of features F for each object O as well as

each keypoint K. This set contains statistics regarding the

(i) intensity values of the captured images, (ii) their gradient

representations, (iii) different color space representations and

(iv) texture information.

C. Geometric Features

In addition to the features described in [11], we consider

additional geometric features, to exploit the field geometry

for the image analysis. Usually, UAV images of plantation

capture larger areas compared to UGVs. Thus, they observe a

sufficient amount of crops within an image to perform a row

detection and to measure spatial relationships among mul-

tiple individual plants. We investigate additional geometric

features to exploit the fact that crops mostly have a regular

spatial distribution without explicitly specifying it. Note that

weeds may also appear spatially in a systematic fashion, e.g.

in spots or frequently in border regions of the field. First, we

perform a line set detection to find parallel crop rows and use

distances from potential rows to O and K as a feature for the

Random Forest classifier. Second, we compute distributions

based distances and angles in the local neighborhood around

objects and keypoints and extract statistics from it to use

them as additional features.

In most agricultural field environments, the plants are

arranged in rows, which share a constant inter-row space

r, i.e. the distance between two neighboring crop rows. The

main goal the line feature

fl =
d

r
(3)

is to exploit the distance d of an object O or keypoint K
to a crop row. We normalize d by the inter-row space r and

use fl as an additional feature for the classifier. The values d

and r are measured in pixels and can be directly obtained in

image space. From a mathematical point of view, crop rows

can be represented as a finite set of parallel lines

L(θ,ρ) = {l1(θ, ρ1), . . . , lI(θ, ρI)}
I
i=1. (4)

where, θ refers to the orientation of the line set and ρ are the

distances from each line li to the origin of the image frame.

1) Line Feature for Crop Rows: Figure 4 depicts an

exemplary result of a detected line set and illustrates the

concept of our line-based feature. We introduce the constraint

that ρi are equidistant to exploit the fact that the inter-row

space of crop rows is constant. Note that we do not make

any assumptions about the size of r, i.e., the inter-row space.

To detect the set L(θ,ρ) of parallel lines, we employ the

Hough transform on the vegetation mask V . This Hough

space accumulates the number of votes vρ,θ, i.e. the number

of corresponding vegetation pixels for a given line with the

parameters θ and ρ. To compute L(θ,ρ), we analyze the

Hough space and perform the following three steps.

a) Step 1: Estimating the main direction of the crop

rows: We compute the main direction θL of the vegetation in

an image in order to estimate the direction of the crop rows.

This direction can be estimated by considering the votes for

parallel lines in Hough space. Here, we follow an approach

similar to the one proposed by Midtiby and Rasmussen [13].

To obtain θL, they compute the response

E(θ) =
∑

ρ

v2ρ,θ (5)

for each direction and select the maximum E(θ). The

term vρ,θ refers to the number of votes for a certain line

with the parameters θ, ρ. In contrast to [13], we do not

only select the maximum of E(θ) but consider the N best

values for E(θ) to evaluate the N best voted directions in

Hough space given the vegetation in the subsequent steps.

In our implementation, we use N = 15. We consider the 15

best main directions supported by the vegetation in order to

handle scenarios with large amounts of weed. Tests under

high weed pressure show that the maximum response is not

always the correct choice as many weed plants may lead to

more votes for a false detection of the rows.

b) Step 2: Estimating the crop rows as sets of parallel

lines: Given the N best voted orientations of possible line

sets from Step 1, we want estimate in which direction we

find the best set of parallel lines with equidistant spacing.

We search for an unknown but constant spacing r between

neighboring lines as well as the offset s of the first potential

crop row in image space, see Figure 4 for an illustration.

Thus, we search for the maximum response of

E(θ, r, s, Lr) = P +

R
∑

r=1

r
∑

s=0

Lr−1
∑

l=0

v(s+l r),θ, (6)

with the penalty term

P = −Lr v̄θ, (7)

Fig. 4: Left: Result of the line set detection. s (red) refers to
the distance of the first line in the set L(θ,ρ) to the origin of
the image frame. r (orange) refers to the inter-row space. Right:
visual illustration of the line model feature fl for the keypoint-based
approach. The different colors refer to different lines of the detected
line set. The value of fl is encoded by the radius of a keypoint.
Weeds located within the inter-row space get a higher value in fl .



by varying the size of r and s. The term Lr refers to

the number of lines that intersect with in the image for a

given r. The penalty term P is an additional cost term that

is introduced for each line of the set in order to penalize an

increasing number of lines. Here, v̄θ is the mean response

over the column corresponding to θL in the Hough space.

This leads to the effect that E, according to Eq. (6), increases

for lines, which have a better response vs+l r,θ > v̄θ and

vice versa decreases if the response is lower. The maximum

response according to Eq. (6) provides the best voted line

set, which has a constant inter-row space.

c) Step 3: Refitting the best line set to the data: Crops

are commonly sown out in fixed assemblages of a certain

number of rows, called plots. It can happen that the inter-

row space between plots slightly differs due to the limited

position accuracy of the sowing machine. To overcome this,

we finally fit each line of the best set obtained from step 2

to the data by using a robust estimator based on a Huber

kernel and obtain a robust estimate L(θ,ρ) for the crop rows.

2) Spatial Relationship Features: In order to describe

spatial relationships among individual plants, we first

compute the distances and azimuths from a query object Oq

or keypoint Kq to all other nearby objects or keypoints in

world coordinates (which requires to know the flying altitude

of the UAV). We compute the differences of the measured

distances between the query object and its neighbors to

obtain a distribution in form of a histogram. Similarly,

we obtain the distribution over angles from the observed

azimuths. From these distributions, we compute common

statistical qualities such as min, max, range, mean, standard

deviation, median, skewness, kurtosis and entropy and use

them as features for the classifier. In addition to that, we

count the number of vegetation objects O or keypoints K
in their neighborhood in object space.

Both the spatial relation features as well as the line

features allow for encoding additional geometric properties

and in this way to improve the random forest classifier used

to make the actual decision.

D. Random Forest Classification

We apply a rather standard random forest [2], which is

a comparably robust ensemble method, that is capable of

solving multi-class problems. The central idea is to construct

a large number of decision trees at training time by randomiz-

ing the use of features and elements from the training data. It

also allows for implicitly estimating confidences for the class

labels by considering the outputs of the individual decision

trees.

IV. EXPERIMENTS

This evaluation is designed to illustrate the performance

of our UAV-based plant/weed classification system and to

support the main claims made in this paper. These claims

are: (i) Our classification system identifies sugar beets as

well as common weed species on sugar beet farms in RGB

Fig. 5: Zoomed view of images analyzed by our plant/weed classifi-
cation system (left column) and corresponding ground truth image
(right column). Top row: Multi-class results for the PHANTOM-
dataset. Center row: Result for the JAI-dataset. Bottom row: Result
for the MATRICE-dataset. Arrows point to weeds detected in intra-
row space. Sugar beet (green), chamomile (blue), saltbush (yellow)
and other weeds (red)

imagery captured by an UAV, even if the crop is not sowed in

rows and the line detection cannot support the classification,

(ii) we demonstrate that our plant classification system is

able to exploit an arrangement prior about crop rows using

our proposed line model and in addition to that benefits

from geometric features, which capture spatial relationships

in a local neighborhood, and (iii) our method provides good

results under challenging conditions such as overlapping

plants and is capable for weed detection in intra-row space.

Finally, we analyze the effect of exploiting additional NIR-

channel in terms of vegetation detection and classification

performance.

A. Evaluation Metric

We illustrate the performance of the classification results

by ROC curves and precision-recall (PR) plots. For these

plots, we varied the threshold for the class labeling con-

cerning the estimated confidences of the random forest. The

parameters influencing the performance of the crop/weed

classification are exclusively evaluated on the detected veg-

etation parts of the images in order to analyze the quality of

the classification output. We labeled all the plants manually

in the images and perform the evaluation on object-level, i.e.

predicted object vs. ground truth object, in order to obtain

a performance as close as possible to a per-plant basis. For

the keypoint-based classification we compute the class-wise

ratios of predicted keypoints concerning the ground truth

object to keep the evaluation metric on the object-level.

B. Datasets

We collected three different datasets, with different char-

acteristics and challenges, to thoroughly evaluate the per-
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Fig. 6: ROC curves (top) and PR plots (bottom) for each dataset based on a leave-one-out cross-validation scheme according to [1].
Left: Multi-class performance evaluated on the PHANTOM-dataset. Middle: Performance of our approach on the JAI-dataset. Right:
Performance of our approach on the MATRICE-dataset. The term label “SRF” refers to the additional use of the spatial relationship
features and “LM” to the line model feature.

TABLE I: Information about the datasets.

Parameter JAI MATRICE PHANTOM

# images 97 31 15
flight mode manual way-point-mission manual

weather conditions sunny sunny/cloudy overcast
≈ flight altitude 2-3m 15m 3m

≈ ground resolution 2 mm
px

5 mm
px

0.2 mm
px

formance of our plant/weed classification system. All the

recorded datasets represent real field conditions and contain

sugar beet crops and weeds.

The JAI-dataset is captured with a 4-channel JAI AD-

130 GE camera on a sugar beet farm in Eschikon, Switzer-

land. The dataset contains 97 RGB+NIR images of sugar

beets arranged in crop rows and weeds captured at a weekly

basis over 1.5 months in May 2016. The growth stage of the

sugar beet is from early 4-leaf up to late 6-leaf stadium. The

camera was pointing downwards to the field at a hight of

approximately 2− 3m above the soil. The image resolution

of 1296× 966 pixels in combination with Fujinon TF4DA 8

lens with 4mm focal length yields a ground resolution of

roughly 2 mm
px

. The MATRICE-dataset is captured by the

Zenmuse X3 camera of the DJI Matrice 100 UAV. The data

has been recorded on two days with one week temporal

difference in May 2016 on the same field as the JAI-

dataset. The dataset contains 31 RGB images where the

crop is in early 6-leaf growth stage. We flight with the UAV

roughly 15m above the soil. The achieved ground resolu-

tion is around 5 mm
px

. The JAI-dataset and the MATRICE-

dataset provide the basis to evaluate the line feature and

to analyze the performance for the crop/weed classification.

The dataset contains weeds that are located within both inter

and intra-row space. In these datasets the amount of weeds

is much smaller compared to the crop. The PHANTOM-

dataset is captured on a field in Bonn, Germany, where

the sugar beets are not sowed in crop rows. The dataset

provides images obtained by an unmodified consumer DJI

Phantom 4 UAV. The obtained ground resolution of 0.2 mm
px

is comparably high as the images were captured with a

resolution of 4000 × 3000 pixels at a flight altitude of

3m. Due to the resolution, we can visually identify typical

weeds on common sugar beet fields, i.e. saltbush (Atriplex)

as a common problem weed in terms of mass, chamomile

(Matricaria chamomilla), and other weeds.

C. Classification of Crops and Different Weed Types

This first experiment in our evaluation is designed to

demonstrate that our system is capable for classifying sugar

beets and weed species, which are common on sugar

beet farms. Therefore, we analyze the performance on the

PHANTOM-dataset for the classification of sugar beets,

saltbush, chamomile and other weeds. Figure 6 (left column)

depicts the ROC and PR plots computed in a one-vs-all mode

to illustrate the obtained performance.

The ROC curve shows that for all explicitly specified

classes a recall around 90%, for saltbush even 95%, can

be obtained depending on the selected threshold. The class

labeling based on the predicted maximum confidences of

the random forest leads to the following results. The sys-

tem achieves a recall of 95% for saltbush and 87% for

chamomile. Both species are predicted with a precision of

85%. For sugar beet a recall of 78% with a precision of 90%
is obtained. Generally, the precision suffers from the obtained

recall for other-weeds of 45%. This result is affected by (i)



having a small number of examples within the datasets and

(ii) probably by a higher intra-class variance since all other

weeds, which occur in this dataset, are represented by this

class. More datasets with different weed types are needed

to clarify that. In terms of overall accuracy, 86% of the

predicted objects and 93% of the area are classified correctly.

If we only focus on crop vs. weed classification, the overall

accuracy increases by 11% to 96% for the detection on

object-level. For sugar beets, the performance do not change

but the fusion of the weed species leads to a recall of 99%

with an obtained precision of 97%.

D. Impact of Geometric Features

We designed the second experiment in order to illustrate

the impact in performance when using geometric features.

Therefore, we evaluated all datasets with the usage of all ge-

ometric features, i.e. the line feature and the spatial relation-

ship features, and compare the results with the performance

neglecting them. Figure 6 illustrates the results for each

dataset by using all geometric features (“with SRF/LM”)

using only the spatial relationship features (“with SRF”)

without exploiting the line feature.

Our evaluation shows that the use of geometric features

supports the classification based on visual features as it

improves the overall accuracy and the precision, especially

for weeds, in all tested datasets. Even for the PHANTOM-

dataset, which not involves any regular pattern of the plants,

the performance benefits from the use of the spatial relation-

ship features. In numbers, the gain for saltbush is about 6%

for both precision and recall. For all other classes the recall

raises of around 3% on average for a given precision

For the JAI-dataset and MATRICE-dataset, we measured

the effect of the spatial relationship features and all ge-

ometric features, including the line model feature, by an

individual cross-validation on the whole dataset respectively.

The biggest gain in performance can be observed for the

MATRICE-dataset. Here, the detection based only on visual

appearance, i.e. features ignoring geometry, suffers from

the comparably low ground resolution. Thus, geometric

features become great supporters for the detection as they

are rather invariant to the image resolution. On average, the

spatial relationship features are responsible for an increase

in performance of around 10% and in combination with

the line feature of 13% in terms of overall accuracy. The

corresponding PR plot indicates that this amount is mainly

caused by better detection. This statement also holds for the

JAI-dataset. The PR plot illustrates a significant gain in recall

of around 5% for weeds even when the precision is greater

than 85%. In sum, the effect of the geometric features is

smaller as for the MATRICE-dataset and the PHANTOM-

dataset, i.e. 5%. That is because the classification based on

pure visual appearance performs better and is more stable

with respect to a varying threshold for the class labeling. We

conclude that using geometric features for the classification

task is an appropriate way to exploit spatial characteristics

of plantation in agricultural field environments.

Fig. 7: PR plot obtained by a leave-one-out cross validation on the
JAI-dataset by using only RGB and RGB+NIR information.

Fig. 8: Left: Detailed view on RGB image containing sugar beets.
Right: Masking based on NDVI (white) and ExG (green). All
vegetation pixels detected by ExG based approach are also detected
by the NDVI based approach

E. Intra-Row Weed Detection

Most existing approaches that exploit the prior knowl-

edge about the crop rows perform the following two steps

sequentiality: (i) detect the rows and (ii) use geometry to

force vegetation corresponding to the rows to be weeds. In

contrast to that, our approach is suited for both exploiting the

geometry and identifying intra-row-weeds. The usage of fl as

feature in the random forest leads to the fact that vegetation

located within intra-row space still has the chance to get

detected as weed based on its visual features.

Figure 5 visually illustrates typical examples of the perfor-

mance of our approach. A visual comparison of example im-

ages from the JAI-dataset (middle row) and the MATRICE-

dataset (bottom row) against the corresponding ground truth

image shows that weed are correctly detected in intra-row

space. This results originates from the classification using

also the geometric features.

F. Effect of the Availability of NIR Information

In our last experiment, we evaluate the effect of using

additional NIR information for the vegetation detection as

well as for the crop/weed classification. We separate this

experiment into two parts. First, we evaluate the performance

for the vegetation detection given RGB+NIR and RGB only

images and compare it with the ground truth. Second, we

analyze the impact of additional NIR information for the

classification. For this part, we extract features based on

RGB and RGB+NIR images receptively by using the mask

obtained by the ExG in order avoid effects of the masking to

the considered shape features, see [11]. Finally, we neglect

the use of geometric features for this experiment in order to

rely only on visual information.



TABLE II: Recall for objects consisting of at least 50 pixels.

index NDVI ExG ExGR NGRDI CIVE
recall 92% 86% 83% 83% 81%

We tested several commonly applied vegetation indices as

basis for a threshold based vegetation segmentation, see [6],

[9], [23], on the JAI-dataset, where both RGB and NIR im-

ages are available. To evaluate the segmentation performance

on object-level, we compare the obtained vegetation masks

Vindex with the labeled data. We define an object as detected,

if 75% of its pixels are detected as vegetation pixel. Table II

gives an overview of the detection rate for vegetation objects

by using NDVI, ExG, Normalized GreenRed Difference

Index (NGRDI), Excess Green minus Excess Red Index

(ExGR) and Color Index of Vegetation Extraction (CIVE)..

Using the NIR information to exploit the NDVI for the

detection outperforms all RGB-based methods. Figure 8

depicts a typical result of V when some parts in the image

are shaded. Visually, the NDVI- based masking (white) gives

better results compared to the ExG-based (green) vegetation

detection. This is because the NIR-channel observes a com-

parably high reflectance for vegetation pixels, even in shaded

areas. Given only RGB data, we use the ExG as it is the best

choice given our data.

Figure 7 depicts the precision recall plots for the perfor-

mance of the classification using the additional NIR infor-

mation (RGB+NIR) as well as only relying on RGB. Using

the NIR-channel for the features increases the performance

around 3% in terms of overall accuracy. To conclude, using

the additional NIR leads to better classification results and

provides more robustness in terms of vegetation segmen-

tation in shaded image regions but our approach is also

operational if the NIR information is missing.

V. CONCLUSION

UAVs used in precision farming applications must be able

to distinguish crops from weeds on the field to estimate the

type and distribution of weeds. In this work, we focus on

sugar beet plants and typical weeds observed on fields in

Germany and Switzerland using a regular RGB camera as

well as a RGB+NIR camera. We described a system for

vegetation detection, feature extraction, and classification for

aerial images relying on object-features and keypoints in

combination with a random forest. Our system can exploit

the spatial arrangement of crops through geometric features.

We implemented our approach and thoroughly evaluated it

on UAV derived data captured on two farms and illustrate

that our approach allows for identifying the crops and weeds

in the field, which is an important information for several

precision farming applications.
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