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Abstract—Automatic fruit growth monitoring plays a vital
role in advancing precision agriculture. Tracking the evolution
of fruits over time is essential to monitor their development
and optimize production. The ability to recognize fruits over
periods of time, even with drastic scene changes, is a required
capability of agricultural robots. This paper presents a system
that allows long-term fruit tracking in 3D data. It generates
instance-segmented 3D representations of plants at various
growth stages over time, utilizing only consumer-grade RGB-D
cameras installed on a mobile robot. Our approach first performs
instance segmentation on each image in a sequence. Then, by
exploiting geometric information and depth maps, we track
the same instances throughout the sequence. We produce a 3D
point cloud containing instances, exploiting odometry information
and 3D semantic mapping. Once our robot performs a new
recording at a different plant growth stage, it associates each
fruit with the previously built 3D cloud and update the model.
We validate the system in a real-world glasshouse environment
in Bonn, Germany. Experimental results demonstrate that our
system outperforms existing baselines even though it relies only
on annotated images and operates at frame-rate, allowing the
deployment on a real robot.

Index Terms—Robotics and Automation in Agriculture and
Forestry, Mapping

I. INTRODUCTION

THE world population is increasing, and we must increase

food production. We need greater efficiency of agri-

cultural production while reducing emissions. One approach

toward this is the development and realization of robotic

agriculture [20]. In this context, automatic phenotyping of

fruits is a relevant topic, and often needs to be performed

over time. This is only possible if we are able to recognize

fruits in multiple measurements from the same session and

among multiple data acquisitions, which is a challenging task.

Another important aspect is using sensors easy to adapt to

different situations and platforms and at low cost, to facilitate
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Fig. 1: Examples of 3D models generated with our method from
two different sequences, showing consistent recognition of the same
fruit despite variations in position, structure, and occlusion. The lines
connect the same fruits in the two representations.

the adoption of such technologies. An example is RGB-D

camera, which became popular with the Microsoft Kinect [8]

and showed promising results in different fields [18], [27].

In this work, we tackle the problem of consistent

spatio-temporal instance-segmented mapping of fruits in a

glasshouse. Generating a 3D representation of plants with

segmented instances poses a challenge when deriving the map

from a sequence of images. This process requires us to produce

for each frame instances that are consistent with the rest of

the sequence. Maintaining consistency over time becomes even

more challenging when generating a new representation from

a sequence captured days later, the segmentation must handle

both intra-sequence and inter-sequence information to ensure

that the same instance is consistently recognized across frames

and sequences.

The main contribution of this paper is a pipeline that gener-

ates spatially aligned 3D point clouds of plants from multiple

sequences with temporal consistent fruit instance annotations,
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Fig. 2: Example of the dataset used (RGB only), where the point
of view allows to visualize only the plants. Challenging lighting
conditions and the repetitive structure of the environment make
instance segmentation and temporal association difficult.

using consumer-grade RGB-D cameras installed on a mobile

robot, while running at sensor frame rate. Additionally, our

approach can (i) perform image instance segmentation of fruits

with predictions consistent among all images in a sequence,

i.e., tracking fruit instances within a sequence; (ii) recog-

nize the same instances between different image sequences

recorded at different times, even weeks apart, to produce a

temporal consistent prediction. Fig. 1 depicts an example of

the result. Our experimental evaluation back up these claims.

The open-source implementation is available at: https://github.

com/PRBonn/semantic-spatio-temporal-mapping

II. RELATED WORK

Approaches to technologies-driven agriculture aim to use

advanced technology to optimize resource use and productiv-

ity. In this context, automatic fruit monitoring plays a crucial

role, making it possible to process great amounts of data

in a short amount of time, with accurate results and greater

precision if compared to manual labor [3].

For automatic fruit monitoring, we need to equip robots with

methods to recognize individual fruit instances. In the scien-

tific literature, there is a great number of works on instance

segmentation and object detection using images, e.g. [11],

[22]. Different works explore the application in the agricultural

domain for fruits [7], [13] and plants detection [24], [29].

In this paper, we rely on Yolo [22] for localizing fruits in

the RGB image, because it is suitable for robot adoption,

given its ability to work at high frequencies and low memory

requirements.

Fruit phenotyping requires us to generate detailed 3D

models of plants. Several approaches in the literature aim

to produce accurate 3D models of plants consistent in time.

Xiang et al. [30] present a two-step approach for plant growth

tracking. They focus on spatio-temporal registration of point

cloud coming from periodic scan of the same plants. Hei-

wolt et al. [10] propose a method to encode leaf-shape to

facilitate the recognition of the same plant organs at different

growing stages, which are helpfull for 4D mapping of plants.

Lobefaro et al. [15], Dong et al. [5], and Carlone et al. [2]

propose methods for spatial-temporal mapping of growing

plants, useful for phenotyping over time. Nevertheless, none

can represent instance information about fruits in the models.

To obtain an instance-segmented 3D model, we need to

predict consistent annotations between different images of the

same sequence, i.e., performing intra-sequence fruit tracking.

In this regard, Halstead et al. [7] propose a method to estimate

instances consistently through a sequence of images for field-

agnostic monitoring, with a focus on multi-tasking learning.

Smitt et al. [26] go a step further and propose a method to

produce a 3D consistent panoptic representation with consis-

tent instances of sweet peppers. They employ a NeRF-based

system to enable 3D panoptic scene understanding. Liu et

al. [14] and Meyer et al. [19] use semantic 3D models for

fruit counting using only monocular cameras, but they do not

target temporal consistency.

For long-term monitoring, we need to track the same fruit

across different time sequences [21]. This task presents several

challenges: plants constantly change their shape, evolving in

a non-predictable way. Across different explorations, fruits

might be harvested, fall down, or change color, and some

might even be emerged. These dynamic factors make the task

particularly difficult. Many studies explore the problem of

tracking plant evolution over time. Lobefaro et al. [16] ad-

dress the data association problem between plant point clouds

dealing with noise and dynamics. Magistri et al. [17] associate

plant features over time to automatize phenotypic trait track-

ing. None of these approaches take semantics into account,

and they are not able to operate in the wild, without intrusive

measurements. Riccardi et al. [23] present a descriptor for

temporal consistent fruit instance association, relying on point

clouds with pre-integrated semantics. Fusaro et al. [6] also

provide instance segmentation but still rely on pre-computed

high-resolution point clouds. To the best of our knowledge, no

studies provide a method for consistent segmentation between

different image sequences to produce consistent 3D models

with instance annotations.

In this paper, we propose a complete pipeline for fruit

instance segmentation that is consistent both within a single

sequence of images and across multiple sequences. We operate

”in the wild”, within a real glasshouse environment, without

altering the setting or relying on intrusive methods. In addition,

our approach can generate aligned 3D models with instance

annotations from two distinctive sequences. It is robust to non-

rigid plant evolution and significant changes in fruit structure

and position, making it suitable for long-term, real-world

monitoring applications.

III. OUR APPROACH

For our approach to fruit growth monitoring over time we

assume an RGB-D camera installed on a mobile robot. Starting

from an RGB-D data stream, our system first produces a

3D point cloud from a single recording session containing

annotations on the fruit instances. For each frame, we compute

the associated pose, a pixel-wise instance segmentation on

the image, and a point cloud given by the depth. We use

this information for online mapping. When the robot moves

through the same environment again some time later, with

plants at a different growing stage, we need a time-aware

instance segmentation to ensure that the predictions remain

https://github.com/PRBonn/semantic-spatio-temporal-mapping
https://github.com/PRBonn/semantic-spatio-temporal-mapping
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Fig. 3: On the top, the real center of the fruit (green circle) is initially
hidden, causing the predicted centroid (red circle) to be inaccurate.
As the fruit becomes more visible in frame 2, the predicted centroid
aligns better with the true center. In frame 3, with the fruit fully
visible, we can accurately predict its centroid. On the bottom, we
observe a fruit near the left border. In frame 4, the fruit is still fully
visible, but by frame 5, the predicted centroid no longer matches the
real one. We update the centroid anyway to facilitate its recognition
in frame 6, where its position is closer to the position in frame 5
than to the true center.

consistent with those from the earlier exploration. Addition-

ally, we compute poses aligned with the previous map to

facilitate associations and enable the creation of a 3D model

aligned with the previous one. In this way, we can produce an

updated version of the model containing instances associated

with the previous 3D model. To develop the pipeline, we

recorded data with a robotics platform designed for agriculture,

in which vertically mounted RGB-D cameras can capture side-

views of sweet pepper rows in a glasshouse. Fig. 2 shows an

example of the input frames.

A. Pose Estimation

Consider the current sequence St = {I1
t , I

2
t , . . . , I

F
t },

where t indicates the time at which the sequence has been

recorded and F the number of RGB-D images in the sequence.

For each frame in St, we compute the associated pose relative

to the starting point. This information will serve as a basis

for the next steps of the pipeline and for mapping. We

rely only on the RGB-D images for motion estimation and

do not require wheel odometry, although it can be easily

integrated if available. In the absence of prior information as

initial guess from another sensor, we use the constant velocity

model, similarly to Vizzo et al. [28], as starting point of

our motion estimation. For typical robot motion along rows

in a glasshouse, this initial guess is sufficient, and thus we

use it in our setup. For more complex motions, integrating

wheel odometry or an IMU could provide a more accurate

initialization and can be incorporated without major changes to

the system. Starting from this initial guess, we refine the pose

using point-to-point ICP [1] between the current cloud and the

local map, computed processing RGB-D data. We generate the

current cloud using the classic pinhole camera model [9] and

the depth information. To create a point cloud focused only

on the plants in the current glasshouse’s row, we filter out all

the points outside the relevant depth range.

B. Spatially Consistent Instance Segmentation

In parallel to pose estimation, our pipeline simultaneously

computes instance information from the image data. We start

the process by performing instance segmentation on each

image using a Yolo [22] model trained specifically for sweet

pepper instance segmentation. This model generates a mask

for each image, with pixel-wise instance labels and a bounding

box for each fruit. However, these predictions lack consistency

across images because standard instance segmentation pro-

cesses each frame independently, without optimizing instance

IDs for tracking across frames. Thus, we refine the predictions,

ensuring that the instance annotations are consistent across the

sequence.

We start by computing the 3D position of each fruit’s

centroid for every detected instance. As previously mentioned,

we are only interested in fruits from the current row. We

want to address this since, from the camera stream, we get

observations of rows behind. For each instance prediction,

we obtain a segmentation mask and a bounding box. We

calculate the average depth of each pixel in the mask and

discard those instances with an average depth exceeding a

predefined threshold. This threshold is determined based on

prior knowledge of the depth range corresponding to the

current plants [25]. After filtering out far away instances,

we calculate the 3D position of the fruit’s centroid using the

pixel corresponding to the center of the bounding box and the

corresponding depth value, using the pinhole camera model

with the appropriate calibration parameters. This centroid

represents a viewpoint-specific reference rather than the fruit’s

geometric center, enabling frame-to-frame association under

minimal viewpoint changes. Errors, including occlusions, will

not affect the result as similar errors occur in consecutive

frames, ensuring correct associations.

Once we obtained the centroid for each instance, we can

use it to to associate the corresponding fruit with fruits

already seen along the sequence. We maintain a database

Cdb = {C1, C2, . . . , CM} of 3D coordinates of fruits’ centroids

seen so far. For each fruit centroid Cf
i in the current frame,

we search for the nearest one in Cdb. We use nearest-neighbor

search as it aligns well with the sequential nature of our data

and the fact that our pipeline relies on pose information. How-

ever, our implementation is modular and supports alternative

matching algorithms with the same output structure. In case

we have an association between Cf
i and one of the centroids

Cm ∈ Cdb, we override the label of the mask corresponding

to Cf
i with the label associated to Cm. Then, we override the

value of the centroid Cm with the one of Cf
i . This final step is

crucial, as illustrated in Fig. 3, when the detected fruit instance

in the current frame is near the image’s border. Due to the

limited field of view, we cannot avoid including the instances

on image’s borders in the analysis. These provide essential

information about the fruit’s shape, which would be difficult

to infer from the portion of the fruit visible when they are in

the image’s center. Our system deals with two edge cases as
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Fig. 4: Example of the instance segmented 3D model produced with
our system. From a sequence of images like the one on the left, we
can produce a voxel map as the one in the right. Points belonging to
fruit instances are in different colors.

follows. The first one is when the fruit instance is on the right

side (the fruit enters in the frame as the tobot moves forward)

and partially visible. The predicted 3D centroid will not match

the real center of a fruit. As we move to the next image, the

fruit becomes more visible, and after we update the centroid,

this will reflect its actual 3D position, because a larger area of

it will be visible. In the second case the fruit instance is on the

left side and partially visible (the fruit is leaving the frame as

the robot moves forward). The predicted 3D centroid is also

inaccurate. Since it will be less visible in the next frame, our

update will shift the predicted centroid slightly to the right.

This will facilitate the association in the next frame. Finally,

if there is no centroid in Cdb near enough to Cf
i , we consider

it as a new fruit, and we add a new element CM+1 to Cdb,

using the value of Cf
i .

C. Mapping

Once we compute the pose associated with the current frame

If
t and the pixel-wise instance annotations, we integrate the

point cloud extracted from the frame into the map.

As demonstrated in our previous work on consistent spatio-

temporal mapping [15], we use a voxel map representation

for our model. This improves performance while minimizing

memory consumption for storing the 3D map. Additionally, we

maintain a subsampled version of the voxel map that contains

only local information, which is particularly effective for fast

pose estimation (see Sec. III-A).

Using the unique ID computed for each pixel that represents

a fruit, we integrate it into our voxel map. We maintain

the associated label for each point and annotate each voxel

with the more frequent label among the points it contains.

Once we process the entire sequence St, we obtain our first

plants model, which we will call the reference model Mr.

Fig. 4 provides an example of a subsection of the voxel map

produced, with distinct colors representing each instance.

D. Temporally-Consistent Pose Estimation

At this point in our approach, we have a 3D reference model

Mr representing the fruits at a given point in time. Returning

to model the same plants sometime later, we want to locate the

same fruits, recognize them, and assign the same instance. This

task is challenging because instance predictions lack temporal

consistency, and both the plants and fruits undergo changes in

shape and position over time.

Given the new sequence St+1 = {I1
t+1, I

2
t+1, . . . , I

Q
t+1}

measuring the same row in the glasshouse recorded in St and

assuming it starts from the same origin of St, we want to

generate a second map that is aligned with the previous one.

Performing frame-to-map registration of each frame on an

outdated 3D representation is challenging. The plants changed

their appearance between the two sessions. For this reason,

following the idea developed in our previous work [16] we

use the stable features of the environment as the only valid

information for the odometry. In particular, we choose the

plants’ bases as reliable features, assuming that they remain

stationary across successive explorations. These are extracted

by applying a height threshold to the reference map, where

the threshold is determined based on the observed height at

which the plant stem is located. We then operate with the same

methodology explained in Sec. III-A.

E. Temporally-Consistent Instance Segmentation

At this point, we need to predict instances on the current

sequence consistent with the reference one. We exploit the

pose computed on the previous step, aligned with the reference

map Mr, which provide information about which plant we are

observing.

First, we apply the same instance filtering explained in

Sec. III-B. This is essential to consider only instances of

the current glasshouse’s row. After filtering, we compute

the 3D centroids of each fruit, that we use to match with

the fruit centroids in the previous map. We maintain two

databases: Ccurr = {Cc
1, C

c
2, . . . , C

c
N} that represent the

list of 3D centroids of fruits in the current sequence; and

Cdb = {C1, C2, . . . , CM} that, instead, maintains the list of the

3D centroids seen in the previous map, to perform matching

also with the previous sequence. Now, for each fruit’s centroid

Cf
i in the current frame, we first search for a match in Cdb,

using the same method presented in Sec. III-B, but this time

using a bigger threshold for the nearest neighbor search. This

is because we expect that fruits moved more between the

two recordings. If we have an association Cm ∈ Cdb in this

step, we update the value of Cm with the value of Cf
i . Since

consecutive frames share similar viewpoints, updating the

center with the current frame improves matching, especially

under leaf occlusion. An occluded fruit’s centroid often more

closely resembles that of the previous frame than an average

position computed over multiple past frames. Furthermore, it

will correct the behavior analyzed in Fig. 3. If we do not

have any fruit associated in Cdb it means that we do not have

the same fruit in the previous map. For this reason, we will

perform the association on Ccurr to obtain local consistency.

If we do not have any association, we add the new centroid Cf
i

to Ccurr , treating it as a new fruit.

Once we have the associations, we update the labels on

the instance mask of the current frame, and we integrate the

corresponding point cloud in our voxel map, accumulating



LOBEFARO et al.: SPATIO-TEMPORAL CONSISTENT SEMANTIC MAPPING FOR ROBOTICS FRUIT GROWTH MONITORING 5

Reference Current Approach Acc F1

June20-row3 June22-row3
Riccardi [23] 66.67 60.00

Fusaro [6] - -
Ours 71.43 60.00

June20-row3 July07-row3
Riccardi [23] 33.33 40.0

Fusaro [6] 83.0 0.0
Ours 70.0 66.67

June20-row4 June22-row4
Riccardi [23] 37.04 10.53

Fusaro [6] - -
Ours 38.89 21.43

June22-row3 July07-row3
Riccardi [23] 25.0 0.0

Fusaro [6] 85.0 0.0
Ours 69.23 66.67

TABLE I: Accuracy and F1-Score for fruit matching on the 3D
models. Better results are in bold. A dash (-) indicates failure.

the information on the instances. This is essential to have the

correct labels during mapping.

F. Temporally-Consistent Mapping

For each frame If
t+1 in the new sequence, we have a pose

and pixel-wise instance annotations, together with the point

cloud given by the depth associated with the frame. Following

the same idea exposed in Sec. III-C, we integrate each frame

into a new map, which we will call the current map Mc.

Because we computed the pose on the reference map Mr, the

new map Mc is aligned with Mr, making it easy to make

measurements on the plants at the different growing stages.

The final result is a second point cloud with the fruit

instances annotated by point. These annotations are consistent

with those in the reference map, allowing us to recognize the

same fruit in the two explorations. Furthermore, the two clouds

are aligned, making it easy to measure the fruit. Fig. 1 shows

an example of the two clouds, with the same fruits connected

by lines and represented with the same color.

IV. EXPERIMENTAL EVALUATION

The main focus of this work is to propose a complete

pipeline that generates instance-segmented 3D point clouds of

plants at different growth stages, using only consumer-grade

RGB-D cameras. We present our experiments to show the

capabilities of our method. The results of our experiments

showcase our main contribution: our method can produce

spatially aligned 3D point clouds from different sequences

with temporal consistent instances annotations of fruits, all

while running at the sensor frame rate. Additionally, we

conduct ablation studies to show that our method can (i)

perform image instance segmentation of fruit with predictions

consistent among all images in a sequence, (ii) recognize the

same instances between different image sequences recorded

at different times, even weeks apart, to produce a temporal

consistent prediction.

A. Experimental Setup

We collected our data in a glasshouse, using the robotic

platform presented by Smitt et al. [25]. The robot moves with

a speed of approximately 0.2m/s between 34m-long rows of

growing sweet peppers. We used an Intel RealSense D435i

Sequence
CPU+GPU Only CPU

Hz ↑ ms ↓ Hz ↑ ms ↓

June20-row3 17 61 9 112
June20-row4 19 54 10 105
June22-row3 19 55 10 110
June22-row4 20 51 10 108
July07-row3 19 55 9 116

Average 19 55 10 110

TABLE II: Execution time for instance segmentation, odometry
and mapping on all the sequences, both for intra-sequence and
inter-sequence modeling. The left column shows the experiments
performed on the CPU with only Yolo running on the GPU while
the right column shows the execution time using only the CPU.

RGB-D sensor to record data of plants over the course of two

weeks. We show an example of the data captured in Fig. 2.

In total, we recorded five sequences across three different

days: June 20th, June 22nd, and July 7th, 2023, from two

different rows of the glasshouse. For the evaluation we created

a manually annotated dataset. For each sequence, we manually

annotated every sweet pepper instance in each frame, ensuring

consistent labeling of the same fruit across different images.

Additionally, when annotating different sequences, we main-

tained consistent labels for the same fruit at various growth

stages. Lastly, we used the annotated images to create a ground

truth voxel map, where we converted the image labels into

3D points using our mapping system. This ground truth map

serves as the basis for evaluating our instance segmentation

method and the associations within the 3D models. We do

not perform tests on pose estimation as odometry is not our

contribution and no ground truth is available on the collected

dataset. We use the consistency of the 3D model as an indicator

of the quality of the poses since the model is the output of

interest.

B. 3D Instance Association

In this section, we evaluate the quality of the associations

between two models at different growing stages directly on the

point clouds. This experiment showcase our main contribution.

We evaluate our system against two baselines. The first one,

proposed by Fusaro et al. [6], performs instance segmentation

of fruits directly on the point cloud. Then, it associates

the fruits among two maps, again working only with point

clouds. We trained the model on the pairs June20/June22,

row3 and June20/June22, row4. We tested the model on the

other two pairs of sequences. The second baseline, proposed

by Riccardi et al. [23], computes a descriptor for each in-

stance and then uses the Hungarian algorithm [12] to match

corresponding fruits. We use the parameter setting suggested

in the original implementation. Because this approach relies

on instance segmented point clouds to perform the matching,

we used as input the instance segmented map produced by our

system. Since we use standard approaches to build the point

cloud, we do not evaluate its quality for downstream tasks such

as 3D segmentation or mapping. Our work focuses primarily

on instance association.

The predicted instances do not correspond to the ground

truth instances, so the evaluation is carried out using a IoU
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Sequence Approach
Detection Association

Acc [%] ↑ Prec [%] ↑ Rec [%] ↑ F1 [%] ↑ Rec [%] ↑ F1 [%] ↑ TP ↑ FN ↓

June20-row3

Centers2d 48.17 93.44 49.85 65.02 87.85 93.53 282 39
IoU 46.76 93.26 48.40 63.72 87.78 93.49 273 38

Matches 46.34 93.20 47.96 63.33 74.67 85.50 230 78
Ours 48.37 94.21 49.85 65.20 96.57 98.26 310 11

June20-row4

Centers2d 45.73 92.58 47.47 62.76 83.31 90.90 774 155
IoU 45.43 92.79 47.09 62.47 84.80 91.77 781 140

Matches 44.25 92.35 45.93 61.35 74.47 85.37 668 229
Ours 44.70 92.94 46.27 61.78 92.92 96.33 840 64

June22-row3

Centers2d 47.03 89.35 49.83 63.98 84.31 91.49 344 64
IoU 47.08 89.90 49.71 64.02 83.78 91.18 341 66

Matches 46.43 89.41 49.13 63.41 65.67 79.28 264 138
Ours 46.29 90.48 48.66 63.29 99.50 99.75 396 2

June22-row4

Centers2d 48.06 90.85 50.50 64.92 83.65 91.10 1090 213
IoU 47.10 90.92 49.43 64.04 83.20 90.83 1060 214

Matches 45.47 90.63 47.72 62.52 75.26 85.89 925 304
Ours 48.11 91.39 50.39 64.96 94.54 97.20 1230 71

July07-row3

Centers2d 51.22 84.53 56.52 67.75 89.17 94.27 321 39
IoU 50.89 84.97 55.92 67.45 89.61 94.52 319 37

Matches 50.48 84.51 55.62 67.09 78.25 87.80 277 77
Ours 51.23 84.88 56.37 67.75 95.82 97.87 344 15

TABLE III: Ablation study for consistent fruit instance segmentation in a sequence of images. In the column Detection we show the quality
of the results of our pre-trained Yolo model. In the column Association we present the quality of the associations between consecutive
frames. For each sequence the row indicates the glasshouse row. Best results are outlined in bold.

threshold of 25% for associating the predicted instances ID

with the ground truth instances ID. We evaluate the systems

with two metrics: F1-score and Accuracy. In particular, to keep

into account also true negative matches (fruit correctly not

associated), we compute the accuracy value as:

Accuracymatch =
TP + TN

(TP + FP + FN)
(1)

Our approach does not operate directly on the point clouds

like the other two methods. Instead, it performs instance

segmentation on the images while simultaneously generating

the 3D model at the sensor’s frame rate. As a result, it relies

only on local information for its predictions and does not

exploit the data from the entire map. Moreover, it does not

require training on annotated 3D point clouds but instead

relies on the 2D instance segmentation module given by Yolo.

Despite this, as we show in Tab. I, our system outperforms the

baselines in almost all cases, particularly in F1-score, where,

the other methods sometimes fail due to lack of true positives.

This is especially true for Fusaro et al. [6], as insufficient

training data limited the ability to learn accurate matches,

a common constraint of deep learning methods. Riccardi et

al. [23], instead, relies only on the 3D point cloud, making it

highly dependent on its quality for extracting key features like

fruit center and size.

C. Execution Time

To provide evidence that our system can produce the 3D

model at frame frequency, Tab. II reports the execution time

of our pipeline. We evaluated our system on an Intel Core i9-

10980XE CPU with the Yolo model running on a Nvidia RTX

A4000 GPU. Additionally, in the same table, we include the

results of running also the Yolo instance segmentation model

on the CPU. We report the number resulting by averaging the

execution times on all the sequences. The results indicate that

our model can generate a 3D model with temporal-consistent

annotated instances at a rate of 19 Hz on the CPU with Yolo

running on the GPU and at 10 Hz when the entire process

runs on the CPU.

D. Ablation Study

In this section we conduct ablation studies to showcase the

additional contributions of our work.

Intra-Sequence Instance Segmentation Evaluation. The first

ablation study analyzes how our system can produce consistent

labels within a single sequence and real world glasshouse con-

ditions. Specifically, we tested three methods: (i) Centers2d:

this method associates two instances across consecutive frames

by finding the nearest centers within the 2D bounding boxes

provided by Yolo. (ii) IoU: this approach associates instances

by selecting those with the highest intersection over union

of their masks. (iii) Matches: this method uses SuperPoint

descriptors [4] to compute point-to-point matches in the im-

ages. Two instances are then associated based on the number

of matching points within the corresponding bounding boxes.

The method also influences the detection because it impacts

how we filter wrong instances. Then, we compute F1-score,

accuracy and recall. For the detection, we define the values as

follows: true positive indicates a correctly detected fruit, false

negative indicates a fruit in the ground truth but not detected,

and false positive indicates a detected fruit not present in the

ground truth. For associations between consecutive frames,

instead, we consider a match as true positive if the same label

is correctly assigned to the same fruit and false negative if

a different label is assigned to the same fruit between two

frames. False positive is always zero, as it would represent

a fruit detected but not in the ground truth, which is treated

as a detection error. We show, in Tab. III, that our method
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Reference Current Approach
Detection Association

Acc/Rec [%] ↑ F1 [%] ↑ Rec [%] ↑ F1 [%] ↑ TP ↑ FN ↓

June20-row3 June22-row3

Centers2d 53.90 70.05 44.91 61.99 181 222
IoU 53.20 69.45 51.88 68.32 207 192

Matches 52.27 68.65 41.43 58.59 162 229
Ours 53.32 69.55 86.57 92.80 348 54

June20-row3 July07-row3

Centers2d 63.57 77.78 17.20 29.35 59 284
IoU 62.37 76.82 33.53 50.22 113 224

Matches 63.42 77.62 12.90 22.86 44 297
Ours 56.82 72.57 69.67 82.12 209 91

June20-row4 June22-row4

Centers2d 54.10 70.21 3.32 6.43 41 1194
IoU 52.84 69.14 5.94 11.21 72 1141

Matches 52.73 69.05 4.68 8.94 56 1141
Ours 51.50 67.99 15.11 26.26 177 994

June22-row3 July07-row3

Centers2d 62.97 77.28 26.95 42.45 90 244
IoU 62.37 76.82 37.16 54.19 123 208

Matches 63.12 77.39 8.43 15.56 28 304
Ours 58.32 73.67 62.91 77.24 190 112

TABLE IV: Ablation study for consistent fruit instance segmentation among different sequences. In the column ”Detection” we show the
quality of the results of our pre-trained Yolo model on the current sequence. In the column ”Association” we present the quality of the
associations between the reference and the current sequence. Best results are in bold.

always outperforms the other methods in the ablation study

for the association task, even if it does not always achieve the

highest accuracy in detection.

Inter-Sequence Instance Segmentation Evaluation. The

second ablation study evaluates the ability of our system to

produce instance labels consistent among different sequences

and the results support our second claim. We perform a similar

experiment of the previous section, to test how methods from

the most naive to the most complex one, improves the results

in temporal instance tracking.

Because the labels predicted by our approach in the ref-

erence and the current sequence do not correspond, we first

compute a map between each label and the corresponding

ground truth label. We associate each predicted fruit with

the most overlapping ground truth fruit on the map. Then,

we use these mappings both in the reference and current

frame to compute our metrics. In particular, we consider true

positive (TP) the associated instances with the same ground

truth label. We consider false negative (FN) all instances that

have not been matched but have the same ground truth label

associated with them. In Tab. IV, we report the recall and

the F1-score computed on all the methods. Our approach

always performs better in the association step. The sequence

on the 4th row of the glasshouse is challenging due to severe

occlusion, a higher number of fruits and, as shown in Tab. V,

higher distance between fruits across time. This reflects the

lower performances of all methods. Finally, we evaluate the

robustness of our pipeline to depth noise in Tab. VI. We add

Gaussian noise with increasing standard deviation to each pixel

and randomly invalidate depth pixels with growing probability.

The results show stable performance under moderate noise

(1 cm), while it degradates over 5 cm.

E. 3D Model Evaluation for Fruit Monitoring

In this section, we quantitatively evaluate the quality of the

3D model for the integration into a system for fruit monitoring.

Our system is not designed as a phenotyping framework, but

Reference Current Distance [cm]

June20-row3 June22-row3 2.95 ± 2.77
June20-row3 July07-row3 4.44 ± 2.15
June20-row4 June22-row4 17.64 ± 13.47
June22-row3 July07-row3 4.88 ± 3.19

TABLE V: Average distance between fruits in time for each sequence.

rather designed to enable algorithms that tackle such tasks,

producing results that are preliminary to methods such as

shape completion pipelines. We demonstrate its applicability

by integrating it with a shape completion module [18]. Specif-

ically, we extract each fruit instance from our 3D model and

apply the shape completion module presented by Magistri et

al. [18] to generate a corresponding mesh. Fig. 5 shows an

example of this pipeline applied to one instance from our

model. This demonstrates that the instances of our model can

be easily extracted to be integrated into pipelines for fruit

growth monitoring. The temporal consistency of our approach

enables tracking fruit growth over time.

V. CONCLUSION

In this paper, we presented a pipeline that generates

instance-segmented 3D point clouds of plants at various

growth stages, enabling fruit tracking over time with a mobile

robot. Our approach processes image sequences to obtain

consistent fruit instance segmentation simultaneously gen-

erating a 3D point cloud with instances. Using this as a

reference, we can generate an aligned 3D model from new

recordings at different growth stages, with consistent instance

recognition. We evaluated our method on a real-world dataset,

compared it with existing techniques, and supported our claims

through experiments. Our system, which requires no annotated

point clouds and runs at sensor frame rate, outperforms prior

methods. However, excessive fruit displacement over time can

reduce the accuracy. Future work could improve robustness

to positional shifts, evaluate performance on smaller, denser

fruits, and test robustness to higher speeds by replacing nearest

neighbor association with neural fruit descriptors.
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Ref. Curr. σ [cm] Inv. [%] Recall ↑ F1 ↑

June20
(row3)

June22
(row3)

1 5 87.10 93.11
5 10 32.41 48.95

10 30 25.77 40.98

June20
(row3)

July07

(row3)

1 5 55.25 71.18
5 10 33.00 49.62

10 30 11.79 21.09

June20
(row4)

June22
(row4)

1 5 15.83 27.34
5 10 7.80 14.48

10 30 5.10 9.70

June22
(row3)

July07

(row3)

1 5 63.70 77.82
5 10 24.25 39.04

10 30 19.63 32.81

TABLE VI: Effect of synthetic noise on association quality. Here, σ
denotes Gaussian noise standard deviation added to each depth pixel
(cm); Inv. is the probability of treating a pixel as invalid. Results are
averaged over 5 runs with different random noise samples. Noise-free
results are reported in the “Association” column of Tab. IV.

Fig. 5: Example on how our 3D model can be integrated with a shape
completion module [18].
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