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Abstract— Tracking changes in growing plants is important
for automating phenotyping and robots managing crops. In this
paper, we propose a system that uses a 3D model of plants along
crop rows to enable a robotic platform to localize itself even
in the presence of heavy changes and deforming the model
to adapt the scene description to the new measurements. In
particular, we focus on consumer RGB-D cameras due to their
cost-effectiveness and ease of deployment on real platforms. Our
approach exploits modern deep-learning-based feature descrip-
tors and geometric information to obtain matches between 3D
points corresponding to temporally distant sessions. We then use
the associations in a non-rigid registration pipeline to obtain
the final result, an updated representation of the 3D model
that reflects plant changes. Using a standard RGB-D sensor,
we validate our approach on a real-world dataset recorded in
a glasshouse. We obtain accurate 4D models of the plants and
track the plant traits’ evolution over time. We show, through
experiments, that our method is applicable to interpolate
plant organs’ evolution, a helpful result for phenotypic trait
measurement. We see our approach as a relevant step toward
4D reconstruction for robotic agriculture in the wild.

I. INTRODUCTION

Crop field management requires the analysis of phenotypic

traits, such as leaf shape and area, and involves their mea-

surement over time. Being able to automate this process is

of fundamental importance in speeding up production times

and in achieving a more sustainable crop production.

Several methods for automatic phenotypic traits estimation

have recently been proposed [5], [14], [19], [40]. However,

most of these methods assume to have an accurate 3D

representation of the crop field, which is typically unavail-

able. Moreover, some of these approaches require invasive

intervention to isolate plant parts. Such intervention is not

always possible because, in most cases, plants cannot be

removed from their place to be measured.

When operating in agricultural environments, robots typi-

cally build a new map every time they perform an inspection.

This is necessary because plants change shape over time.

Building a new representation implies no relationship with

the previous one, preventing the possibility of tracking the

evolution of plants’ organs. A possible solution is to re-use
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Fig. 1: We start with a reference 3D point cloud (top left). Given the
RGB-D stream (top right) from a session recorded at a later time,
we extract the depth cloud (in brown) and we compute associations
between it and the reference point cloud (coloured). We use the
matches (bottom right) to perform the non-rigid deformation of the
reference map. The final result (bottom left) is a deformed point
cloud which reflects the current observations.

the previous map, deforming it according to new measure-

ments through non-rigid registration.

Non-rigid registration has been discussed in the litera-

ture [6]. Despite that, most existing methods assume com-

plete and well-defined shapes, usually coming from computer

graphics setups. Working with robotics sensors means work-

ing with noise and incomplete shapes, introducing another

level of complexity. Some studies have tried to address these

issues [27], but none is specific for agriculture settings, where

we have new challenges like dealing with highly repetitive

scenes.

This paper proposes a mapping system that can reuse

previously built 3D point clouds of agricultural environments

and continue working with it through non-rigid registration.

For this reason, our pipeline allows farmers to keep track of

the evolution of plants’ organs. To enable this, we also need

to perform localization with respect to the previous model,

even in the presence of plant growth and deformations. Our

approach exploits visually stable features of plants to be

robust to drastic environmental changes. Fig. 1 shows an

example of the result achieved with our method.

The main contribution of this paper is a novel pipeline

for spatio-temporal mapping of plants in the wild, relying

only on an RGB-D camera stream. Our approach can (i)
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Fig. 2: Our pipeline for 4D reconstruction. First, we produce a 3D point cloud from the reference sequence. Then, we associate points
between the reference map and the cloud of the current depth stream. We finally use these associations to deform the map, accounting
for large deformations. A non-rigid ICP algorithm is applied to fine-tune the result, accounting for small deformations. The output is the
reference map deformed to reflect the changes.

reuse and update previously built maps, (ii) enable to track

the evolution of plants’ organs over time, and (iii) works

while being robust to sensor noise that characterizes con-

sumer cameras. These claims are backed up by the paper

and our experimental evaluation. Our approach is as an

essential step towards 4D reconstruction and shape prediction

for robotic agriculture. The open-source implementation of

our approach is available at: https://github.com/

PRBonn/spatio-temporal-mapping.

II. RELATED WORK

Robots in agriculture is an active research field nowa-

days [21], [39]. Challenges imposed by population growth

and recent events, like the COVID-19 pandemic in the early

2020s, caused issues and affected the world food production.

Advanced robotics solutions have the potential to increase

production and ensure an agricultural economy robust to

pandemic emergencies [9], sustainably in the long run [1].

Obtaining 3D representations of plants is central in the

context of robotics for agriculture. Nevertheless, it is chal-

lenging due to the complex structure and the dynamic

nature of the environment. Furthermore, measurements are

performed mainly outdoors, where wind and other factors

can push the current state-of-the-art systems for mapping

and SLAM to their limits [31]. Recently, Islam et al. [16]

proposed a system for stereo visual SLAM that outper-

forms state-of-the-art methods on the agriculture ROSARIO

dataset [24]. They show how other visual SLAM methods fail

in agricultural environments. Then, they propose an image

enhancement technique for visual features recovering that

makes their system robust to low-light and hazy scenarios.

Ding et al. [8] offer a survey on recent developments in

localization and mapping in agriculture.

The 3D models of plants are only one part of the story

as methods for precision agriculture also require temporal

information [23]. These are needed to keep track of the

evolution of plants’ organs and for fruit growth analysis [22].

Many methods are analyzed both in the computer vision

and the robotics communities. Chebrolu et al. [3] address

the problem of spatio-temporal plant traits tracking. They

exploit the skeletal structure of plants to perform 3D point

registration. Demby’s et al. [5] propose a system for bundle

registration of 3D models of plants. They account for defor-

mations caused by growing or motion resulting from outdoor

forces. In particular, they propose an objective function to

optimize and align point clouds at different growing stages.

Heiwolt et al. [14] set out an approach for identifying and

tracking the individual plant components over time. A leaf-

shape compression pipeline allows encoding this information

and quickly comparing plant organs to recognize the same

one at different growing stages. Xiang et al. [40] suggest

a two-step approach for plant growth tracking. First, they

perform a spatio-temporal registration of plant point clods,

and then, they compute a cost correlation matrix for single

organ association.

All these approaches work under two constraints. First,

a precise, high-resolution point cloud captured with LiDAR

is available and second, a single plant instance is observed.

The Pheno4D dataset proposed by Schunck et al. [29] is

a prominent example for that. Unfortunately, in most real

settings, obtaining such measurements is challenging because

isolating single plants is only possible by changing the

environmental structure and submillimeter precise poses and

measurements are rarely available.

Non-rigid registration is a known problem in computer

graphics, computer vision, and robotics [6]. The goal is to

compute an alignment between a given object, represented as

a mesh or point cloud, and a target object whose difference

is in a non-rigid deformation. Most methods exploit the

same idea of rigid ICP and solve the problem with iterative

matching. An example is given by Amberg et al. [2]. Glira et

al. [11] propose the usage of piece-wise tricubic polynomials

to move a step further. This reflects in more flexibility

and higher efficiency. Recently, deep learning has also been

exploited for this purpose; examples are FlowNet3D [17]

and HPLFlowNet [12]. In [18], we have tackled the task

of estimating data associations across mapping sessions.

Registration, however, was not part of the work.

https://github.com/PRBonn/spatio-temporal-mapping
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With larger deformations, iterative methods with nearest

neighbours search tends to fail. Helpful are pre-computed

point-to-point associations exploiting geometric or visual

features. They allow for handling larger deformations. In the

literature, this problem is known as ”coarse registration”.

An example is the classic work by Sommer et al. [34].

They propose to approach the deformation as an optimization

problem. In particular, first, they compute a deformation

graph that embeds the underlying object. Then, they launch

an optimization to find the optimal affine transformations

attached to each node of the graph, trying to preserve local

shapes. In this specific work, Sommer et al. [34] perform

3D point matching by hand. In other works, the matching

is obtained using orientation-invariant point descriptors. The

most relevant works on 3D feature descriptors for automatic

point matching are FPFH [26] and SHOT [28]. Examples

of 3D keypoint detection are NARF [33] and 3D-SIFT. The

latter is an adaptation of the SIFT algorithm for 2D keypoint

detection by the community of the Point Cloud Library [25].

Matching 3D descriptors with classic methods introduces

errors. For this reason, methods for matching pruning have

been explored by Tam et al. [35].

Although several non-rigid registration methods have been

proposed to work with noisy RGB-D sensors [15], [20], [42],

none explore the same setting in agriculture. Furthermore,

their approaches aim to produce a dynamic representation

of moving scenes, a goal that differs from the one proposed

in this paper. We assume each scene to be static in each

session, with deformations happening only between different

recordings. This is a realistic scenario when dealing with

plants that are recorded by a robotic platform.

We propose a pipeline for 4D mapping in agriculture

settings under growth and deformations of the crop map.

We only rely on consumer RGB-D data sensors as input,

allowing our system to be easily adopted on real robotic

platforms. We exploit previous knowledge of plant structures

to localize the current RGB-D stream on a previously built

map. Then, we compute point-to-point associations using

neural visual features. Finally, we start a coarse non-rigid

registration followed by a final refinement through non-rigid

ICP. Our experiments on a real robotic platform [32] show

that this approach can produce robust 4D reconstruction even

with incomplete and noisy shapes.

III. OUR APPROACH

We propose a pipeline that generates a spatio-temporal

consistent model of plants. In particular, our proposed sys-

tem, starting from a 3D point cloud of plants, can deform

the 3D scene according to new measurements performed

sometime later. This is possible by 3D point matching

between the cloud and the current RGB-D stream, using a

method to find data association across time similar to our

previous work [18]. For point matching to be possible, we

need to solve the visual odometry of the new frames on

the previous representation. Once we obtain the matches, we

can deform the 3D clouds. The result is a representation that

reflects the current state of the plants.

Fig. 3: Left: example of camera point of view of the dataset used.
Right: point cloud generated. In the square: the part of the plant
used as stable feature.

To develop the pipeline, we use data recorded with the

robotic platform introduced by Smitt et al. [32], in which

vertically mounted RGB-D cameras can capture side-views

of sweet peppers rows in a glasshouse.

A. 3D Mapping of Plant Rows

The first step of our pipeline is to produce a 3D point

clouds Mr representing rows of sweet peppers in the

glasshouse from a sequence of RGB-D images. This is useful

in the first session, when the goal is to produce the reference

map that is then updated in the next sessions. Let us define

the sequence of images as St = {I1
t , I

2
t , . . . , I

n
t }, where n

is the number of images recorded in the session at time t.
For each image, we first generate a coloured 3D point cloud

using the classic pinhole camera model [13], filtering out

all those points that are outside the relevant depth range as

suggested by Smitt et al. [32].

We assume that the first pose of the robot is at the origin

of our reference system. After that, for each incoming frame,

we use the constant velocity model [36] as an initial guess

for the next pose. It is a reasonable assumption in our

setting because the robot moves in the glasshouse roughly

at constant velocity with a relatively slow speed along the

rows. Then, we refine the pose using the plane-to-plane ICP

approach proposed by Segal et al. [30], which can compute a

precise pose even with relatively small plant motion, such as

leaf vibration due to wind. Following the insights of Vizzo et

al. [37], we use two downsampled versions of the point cloud

extracted from the RGB-D images: the first one, voxelized

with a voxel size of 0.01m is used for local registration, and

the second one, voxelized with a voxel size of 0.001m is

denser, and we use it to produce the final point cloud. Along

the same line as Vizzo et al. [37], we do not use the centre of

each voxel as a representative for it, as in most approaches

in the literature; instead, we select one point for each voxel

avoiding the introduction of discretization noise.

B. Visual Odometry

At this point, we have a 3D point cloud representing

the plants as they were in the last mapping session. The



goal is to update it once we visit the same place sometime

later in a subsequent session, for example, a week later.

Between the two sessions, plants grew and changed shape.

The goal is to deform the first representation to match these

changes and update it with the new data. To do that, we

need, for each frame in the new sequence, to understand

which part of the field we are observing. Then, we can use

this information to keep track of changes. We approach this

problem with frame-to-frame visual odometry. This allows

us to compute each frame’s pose according to the reference

map. In particular, let us define the new sequence of images

as St+1 = {I1
t+1, I

2
t+1, . . . , I

n
t+1}. This sequence measures

the same row in the glasshouse recorded in St. To avoid

dependencies from a global localization module, we do a

valid assumption: the frame I1
t+1 has the same pose as

the frame I1
t , this because the robot starts the process of

each row from the same position, corresponding to the

beginning of the glasshouse’s row. Then, we will use the

pose associated with I1
t as an initial guess for the first frame

in our localization pipeline.

Performing visual odometry with new images on an

outdated 3D representation, such as one recorded a week

ago, is problematic. The plants, in the time between the

two sessions, have changed their appearance by growing

or missing parts such as fallen leaves or harvested fruits.

For this reason, it is not possible to use classical methods

without introducing errors. The way we considered the best

to approach the problem is to use the stable features of the

environment as the only valid information for the odometry.

In particular, we choose the plants’ stems, as shown in Fig. 3.

These, are extracted by applying a threshold on the z-axis

on the reference map.

The operations carried out are as follows. First, we isolate

the stable features. Then, we extract the 3D points for

each incoming frame using the camera model and the depth

information. We use the ICP algorithm to obtain the cor-

responding pose with respect to the map using the constant

velocity model on the previous frame [36] as an initial guess.

As proposed in KISS-ICP [37], we also utilize only a subset

of the map for the registration to speed up the procedure

and avoid memory issues. In this case, we also use two

map versions with different voxel sizes, as explained in the

previous section for mapping.

C. 3D Point Matching

Now that we have a pose associated with each frame Ii
t+1

of the current sequence St+1, we can extract helpful infor-

mation to update our reference map. We use each frame’s

pose to extract the corresponding point cloud Pi
t+1 employ-

ing the depth image. Then, we perform feature matching

between the map Mr and Pi
t+1 using visual and geometric

information. In particular, we follow the idea described by

Lobefaro et al. [18], which proved robust even with heavy

geometric changes and plant deformations. The computed

matches indicate how plants have evolved between the two

sessions.

In order to use such an approach, we need an image of

the first sequence St associated with the current frame Ii
t+1.

Unlike the original method, we eliminated the dependency

on the visual place recognition module. This is possible

thanks to the assumption made on the first pose (we always

start from the same position every new session) and the

sequential nature of our system. If starting from an arbitrary

pose, an initial place recognition is needed [38] as used in

out prior work [18] for initialization. To obtain the pairs of

images, we take the pose of the current frame and search,

among St, for the one with the closest pose. Then, we

exploit the coupled images Ii
t+1 and Ij

t to compute keypoints

associations between them. In particular, we use neural visual

local features extracted with SuperPoint [7], and we apply a

RANSAC schema [10] to filter outliers, using the information

coming from the corresponding homography.

At this point, we filter the associations using geometric in-

formation. In particular, for each keypoint match (pri
,pqj

),

respectively in Mr and Pi
t+1, we compute the corresponding

3D points using the pinhole camera model. Then, we search

for the nearest neighbour in both point clouds. If we find a

3D point under a threshold in both maps, we have a point

match in the cloud; otherwise, we discard this association. In

this way, we filter out all those associations corresponding

to part of the image not belonging to the plants.

Another difference from the original method is that we use

an adaptive threshold to discard outlier matches. In particular,

once we determine all the associations, we compute the

threshold as:

δmatches = µ+ σ , (1)

where µ is the average distance of the matched points (with

the maps in a common reference frame), and σ is the

corresponding standard deviation. In this way, we discard

all the associations that are comparably far away from the

average distance for the current frame. This allows us to

ignore outliers from bad SuperPoint associations.

Finally, we have as output a set of matches between the

reference map Mr and the cloud of the current frame Pi
t+1.

Each association carries the information about how the point

should be located after the deformation that occured between

the two sessions.

D. Non-Rigid Deformation

The computed matches between the reference and the

new sequence St+1 are representative of how the plants

evolved between the sessions. The last step is to update

the reference map to reflect the evolution. We address this

problem by computing a deformation of the reference point

cloud, guiding it through the associations. We call this step of

our pipeline coarse deformation because its goal is to address

larger deformation. Finally, a non-rigid ICP algorithm is

applied to refine the result.

We follow the idea by Sumner et al. [34], who propose

to warp the reference map using associations as constraints.

This allows us to have a deformation that accounts even

for large changes. Afterwards, a non-rigid ICP algorithm



can be applied to fine-tune the resulting deformation. In the

following, we briefly explain how this method works and

provide the parameters used.

The first step is to compute the deformation graph of

the map [34]. Instead of computing the deformation on the

whole cloud, we voxel downsample the original cloud with

a voxel size of 0.025m to reduce complexity. We define the

deformation graph G = (N , E) as the set of nodes N and

edges E . We use the voxel center to define the nodes and

connect each of them to their n = 6 nearest neighbours with

an edge. After computing the deformation, we propagate the

information to all the points pi in the original point cloud.

We do this by taking the nearest node nk ∈ N of each

point pi, and compute the new position p̃i as a weighted

sum of the set of nodes Nk that shares an edge with nk (nk

included):

p̃i =
∑

nj∈Nk

w(nj ,pi)(Rj(pi − nj) + nj + tj) , (2)

where Rj and tj are the rotation and translation computed

on the node nj after the deformation. We precompute the

weights for each vertex according to:

w(nj ,pi) = (1− ∥pi − nj∥/dmax)
2 , (3)

where dmax is the distance to the (n+1)th nearest node of pi.

The deformation is solved as an optimization problem with

the following energy function:

E = wrotErot + wregEreg + wconEcon (4)

In particular, following the insights of Chen et al. [4],

the term Erot minimizes stretching by biasing the solution

towards isometry:

Erot =
∑

nk∈N

∥

∥R⊤
k Rk − I

∥

∥

2

F
, (5)

where ∥ · ∥F denotes the Frobenius norm. The regularization

error Ereg forces the local shape of the underlying structure

to be consistent. We achieve it by summing the squared

distances between each node’s transformation applied to its

neighbours and the actual transformed neighbour position:

Ereg =
∑

nk∈N

∑

nj∈Nk

∥

∥Rk(nj−nk)+nk+tk−(nj+tj)
∥

∥

2

2
,

(6)

We use the last term Econ to force the deformation. For

each match obtained with our pipeline, we set:

Econ =
∑

(

q
r
,q

q

)

∈M

∥

∥qr − qq

∥

∥

2

2
, (7)

where qr is the point of the match in the reference map, qq

is the corresponding match obtained from the new measure-

ment and M is the set of matches. With these residuals, we

can perform the deformation, preserving the local shape and

obtaining consistent warping. We use the following values

for the weights: wrot = 1.0, wreg = 10.0 and wcon = 10.0.

Parameter Value

Mapping Voxel Size 1mm

Registration Voxel Size 1 cm

Depth Min Threshold 40 cm

Depth Max Threshold 1m

Stable Features Min Threshold 0.0m

Stable Features Max Threshold 1.2m

Deformation Graph Connectivity 6

Deformation Graph Resolution 25 cm

TABLE I: All parameters of our approach.

Once we perform the deformation using this method, we

also apply a non-rigid ICP approach. This is useful to fine-

tune the result. In particular, we use the warp field estimation

module proposed by Zampogiannis et al. [42], using the im-

plementation that they offer with their point cloud processing

library [41]. The result is an updated version of the reference

map that reflects the current state of the plants.

IV. EXPERIMENTAL EVALUATION

The main focus of this work is a novel pipeline for

spatio-temporal mapping of sweet pepper plants. Our work

allows to reuse and update a previously built map to match

new observations made some time later, relying only on

an RGB-D camera stream. The goal is to account for non-

rigid deformation that plants undergo over time. This allows

to track the evolution of plants’ organs between different

recording sessions.

We present our experiments to show the capability of our

system to perform spatio-temporal mapping of plants on a

real agricultural glasshouse dataset, with highly repetitive

scenes and non-rigid changes. In particular, we approach the

evaluation as a non-rigid registration problem. We evaluate

the result by determining the overlapping between the result

of our system and a ground truth representation. We compare

our system with the warp field estimation module proposed

by Zampogiannis et al. [42] and publicly available in the

point cloud processing library presented in [41]. In the

following, we explain how we collected the data on which

we performed the evaluation and extracted the ground truth.

A. Data Collection

To collect our data, we used the robotic platform described

by Smitt et al. [32]. It operates in a glasshouse in Bonn,

Germany, for growing sweet peppers. We used a Intel

RealSense D435i RGB-D camera to capture sweet pepper

plants in an intermediate growth stage in a span of one

month. For our purpose, we utilized only the middle camera

because it already allows us to see the whole plant at this

growth stage, as shown in Fig. 3. In particular, we collect

seven datasets from June 20th 2023 to July 14th 2023. We

perform the recording for each session on three different rows

of the glasshouse. The plants’ shape has changed drastically

between the sessions; fruits have been ripened and changed

colour, and some have been harvested. These conditions

make our dataset very challenging for 4D reconstruction,



Query

2. 3. 4. 5. 6. 7.
Ref B C C+F B C C+F B C C+F B C C+F B C C+F B C C+F

1.
r3 45.3 36.2 46.4 − − − 34.3 23.6 35.9 34.0 6.6 36.4 31.6 6.1 32.6 29.9 5.1 28.5
r4 54.4 45.0 55.4 46.3 31.6 48.4 46.7 35.2 48.5 40.8 23.9 42.9 39.6 20.6 33.8 − − −

r5 39.5 30.2 40.6 − − − 37.2 26.3 39.4 32.2 21.2 31.2 29.2 8.8 28.2 32.5 16.8 32.0

2.
r3 − − − − − − 39.2 27.0 40.0 37.0 20.9 39.6 33.4 13.7 32.8 28.9 3.3 27.4
r4 − − − 50.3 32.3 51.3 48.8 36.0 50.0 43.9 24.2 43.9 42.0 21.6 42.9 − − −

r5 − − − − − − 38.7 29.4 41.0 34.5 25.4 36.7 31.6 20.0 32.4 34.8 22.0 36.8

3.
r3 − − − − − − − − − − − − − − − − − −

r4 − − − − − − 51.4 39.4 53.0 46.0 28.5 47.5 43.7 27.4 45.8 − − −

r5 − − − − − − − − − − − − − − − − − −

4.
r3 − − − − − − − − − 39.0 26.1 40.4 36.7 24.2 37.7 35.3 20.8 37.8

r4 − − − − − − − − − 47.7 32.0 48.8 43.8 27.2 46.2 − − −

r5 − − − − − − − − − 37.1 27.9 39.1 32.5 24.0 35.4 35.5 22.2 37.8

5.
r3 − − − − − − − − − − − − 42.7 30.6 44.4 39.4 23.0 41.5

r4 − − − − − − − − − − − − 48.8 35.2 50.9 − − −

r5 − − − − − − − − − − − − 39.7 29.3 40.8 40.4 31.3 42.7

6.
r3 − − − − − − − − − − − − − − − 41.3 28.5 43.7

r4 − − − − − − − − − − − − − − − − − −

r5 − − − − − − − − − − − − − − − 42.7 33.4 43.7

TABLE II: Evaluation results. The values represent the fitness (higher is better) beetween the reference map (left column) and the current
one (first row) that we indicate as ”query”, computed as an average of 5 runs. All the results are expressed in % and the best results are
outlined in bold. The numbers from 1 to 7 correspond to different sequences recorded on different dates. In particular: 1 is June 20th,
2 is June 22nd, 3 is June 27th, 4 is June 30th, 5 is July 07th, 6 is July 11th and 7 is July 14th. For each date different rows of the
glasshouse have been recorded. These are indicated in the second column. In particular, r3 correspond to row 3, r4 to row 4 and r5 to row
5. The columns corresponding to B represent the results of the baseline, C of the coarse registration only, C+F of the coarse registration
+ non-rigid ICP (see Sec. IV-C). Our approach combining coarse deformation and fine-tuning works better in almost all cases, especially
when the temporal distance between reference and query is around one week. With higher distances the baseline has better fitness values,
because it relies only on nearest neighbors. This results in higher fitness but worst organs association (see Sec. IV-D).

allowing the possibility to test the proposed pipeline in a

real-world setting.

B. Ground Truth Data Generation

We evaluate our system as a non-rigid registration prob-

lem. For this reason, we need a ground truth that represents

the real map after the deformation. Furthermore, we want

it to be aligned with the reference map so that each plant

has the same global position in both representations. To

generate such a ground truth, we operated as follows. First,

we generate our reference map Mr from the RGB-D stream

of the reference session. Then, we use the RGB-D stream

of the new session to compute a map Mq that is aligned

with the previous one. In particular, we perform frame-

to-map odometry, obtaining a pose for each image in the

new sequence that is aligned with the reference map. With

these poses, we use the approach presented in Sec. III-A

to generate the map Mq . The result is aligned with the

reference map thanks to the odometry and represents the

environment as it is in the new session. In Fig. 4, we show

an example of ground truth maps (in brown) together with

reference maps (coloured). It is easy to see that each plant’s

base is aligned with the same instance in the reference map.

C. Quantitative Evaluation

To evaluate the quality of our system, we treat the problem

as a classic non-rigid registration problem. Given the refer-

ence map Mr and the map obtained from the new session

Mq (as explained in the previous section), our pipeline will

deform Mr in such a way as to reflect the changes that

occurred between the two sessions. The result will be a

new map M̃r obtained by deforming Mr. The evaluation is

carried out by computing the fitness between M̃r and Mq:

fitness =
# inlier correspondences

# points in Mq

· 100 , (8)

where the inlier correspondences are computed with the

nearest neighbour search inside a sphere of 0.004m between

points in M̃r and Mq .

In Tab. II, we show the values for the proposed metric.

Each row of the table represents a reference map recorded in

different sessions. Each column represents the sequence used

to deform the reference, which we indicate here as ”query.”

For example, the cell in the first row and column 2 indicates

the fitness value obtained deforming the map recorded in

June 20th using the RGB-D stream of June 22nd. The

three different values indicate the result obtained with the

baseline (B), the one obtained using only the coarse defor-

mation (C), and lastly, using our complete approach (C+F).

Our complete pipeline (columns C+F in the table) gives

better results in almost all cases, especially with one week of

difference between reference and query map. The baseline

performs better with larger time distances. Applying the

coarse deformation alone does not give good results. We will

explain this behavior in the following paragraphs.

The baseline is a non-rigid ICP approach. It brings each

point in the reference closer to the nearest one in the query,

while maintaining local consistency. This results in higher
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Fig. 4: The brown cloud represents the ground truth, the green
cloud represents the deformed reference map. In the red squares
we outline the visual differences between the results. We drew
the contours of the leaves on the clouds to help visualization. In
particular, with our approach, the leaves are in the correct position
after the deformation, while the baseline deforms them to match as
much as possible to the neighbours, without considering any other
information.

fitness values even if the nearest points do not belong to the

same plants’ organs in both maps. With the coarse approach,

we aim to bring each plant’s organ nearest to its new position

in the query map, for example, translating, rotating, and

resizing a leaf in its new position. This is still not enough

for a complete overlap between the two maps, as fitness

values show. To obtain that we need to refine the result using

non-rigid ICP. In this case, we can ensure that the nearest

points computed with ICP belong to the same plants’ organs

in the two maps because now they are closer thanks to the

previous coarse registration. We present a qualitative result

in the next section to better show this. We also outline that

the baseline requires a complete map of the current session

to deform the reference, while the coarse approach requires

only the RGB-D images. This can be exploited in a real-time

pipeline for deformation.

D. Qualitative Evaluation

In the context of non-rigid registration, looking only at the

numbers can give us only a partial judgment of the quality

of the results. Furthermore, the metric used does not give

us information about the validity of the final shapes. Since

the ultimate goal of the work is to produce a representation

consistent with what is observed, a qualitative assessment of

the point clouds is also essential. For this reason, in Fig. 4,

we show a visual representation of the results obtained,

comparing them with the baseline output. We outline the

leaves’ contours to improve visualization. While the baseline

tends to shrink the reference leaf (green in the picture) to

the nearest points in the ground truth cloud (brown in the

FPFH

Our Approach

Fig. 5: Top: associations using FPFH 3D descriptors [26]. Bottom:
associations obtained with our approach.

picture), our approach first moves the leaf to the correct

position, stretching it to match the new dimensions. Then,

a final refinement using nearest neighbors allows us to align

the two clouds.

To support the claim that our data association mechanism

is robust to noise and heavy changes, in Fig. 5 we show how

3D descriptors fail to find associations with our data. They

are not able to capture geometric information in this chal-

lenging scenario. Our data association approach, instead, can

correctly associate points between the two representations.

V. CONCLUSION

This paper presents a pipeline for 4D mapping of sweet

pepper plants in a glasshouse undergoing growth and de-

formations. We rely only on consumer RGB-D streams to

facilitate the adoption of such methods on real platforms. For

this reason, our focus is on the ability to process noisy data

and incomplete scenes. Furthermore, because plants undergo

changes in shape during time, we propose a method that is

also robust to large deformations. Our focus is opposed to

other methods in the literature based on high-resolution point

clouds with complete plant shapes. Our proposed pipeline

allows us to re-use a representation of the environment and

update it based on new observations. For this reason, it

allows tracking the evolution of plants’ organs over time.

First, we solve odometry using RGB-D images with a frame-

to-map algorithm. To be robust to heavy shape changes,

we exploit stable plant features. Then, we perform keypoint

matching on image pairs between the current stream and

the one used to produce the first representation. After that,

we translate image matches into 3D point matching. Finally,

we exploit those matches to apply a non-rigid deformation



algorithm and update the previous map. A non-rigid ICP

method is then applied to refine the result. The evaluation

of our system suggests that our pipeline can interpolate

plants’ organs over time, even in the presence of substantial

changes and sensor noise. This can simplify phenotypic

trait measurements and the maintenance of plants’ digital

twins. We see our approach as an essential step towards 4D

reconstruction for real agricultural robots.
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