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Fig. 1: Successful loop closure association between two local LiDAR submaps in a complex urban environment. The red and green points
represent keypoints from the query and reference maps, respectively. The left image shows the result of our approach, while the right
image shows the result of a RANSAC-based method.

Abstract— Reliable loop closure detection remains a critical
challenge in 3D LiDAR-based SLAM, especially under sensor
noise, environmental ambiguity, and viewpoint variation condi-
tions. RANSAC is often used in the context of loop closures for
geometric model fitting in the presence of outliers. However,
this approach may fail, leading to map inconsistency. We
introduce a novel deterministic algorithm, CliReg, for loop
closure validation that replaces RANSAC verification with a
maximal clique search over a compatibility graph of feature
correspondences. This formulation avoids random sampling and
increases robustness in the presence of noise and outliers. We
integrated our approach into a real-time pipeline employing
binary 3D descriptors and a Hamming distance embedding
binary search tree-based matching. We evaluated it on mul-
tiple real-world datasets featuring diverse LiDAR sensors. The
results demonstrate that our proposed technique consistently
achieves a lower pose error and more reliable loop closures
than RANSAC, especially in sparse or ambiguous conditions.
Additional experiments on 2D projection-based maps confirm
its generality across spatial domains, making our approach a
robust and efficient alternative for loop closure detection.

I. INTRODUCTION

Loop closure detection is an essential component of si-
multaneous localization and mapping (SLAM) systems [2],
[3], [8], allowing robots and autonomous vehicles to identify
locations they have previously visited and correct the global
drift in trajectory obtained from sequential odometry sources.
A globally consistent trajectory, in return, allows such robots
to maintain a consistent map representation of their environ-
ment, enabling downstream autonomy tasks such as global
re-localization and path planning.

Identifying loop closures can be difficult in large outdoor
3D spaces where LiDAR point clouds are sparse, noisy, and
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undergo spatio-temporal changes due to dynamic scenes. Re-
cent state-of-the-art methods for loop closure detection [5],
[10], [12], [14], [41] rely on computing local and/or global
feature descriptors from LiDAR point clouds, narrowing the
search space of loop closure candidates through a feature
matching process. Subsequently, they apply geometric ver-
ification of these candidate loop closures to find consis-
tent 3D pose constraints for the pose-graph optimization
in SLAM. Such geometric verification can be challenging
due to outlier correspondences, especially in purely feature-
based correspondence sets generated by typical loop closure
methods [5], [10], [18], leading to incorrect loop closures.
Already, a few wrong closures can substantially affect the
overall performance of the SLAM system.

Among the various strategies for geometric verification
of loop closure candidates, outlier rejection techniques like
RANSAC [6] are widely used, as they iteratively sample
minimal sets of correspondences to fit a transformation
model while handling outliers. However, this approach can be
sensitive to outlier correspondences and may fail to find the
correct loop closure in challenging environments. Moreover,
such a sampling-based approach can be computationally
expensive in the presence of a large number of outlier
correspondences.

The main contribution of this paper is a loop closure
validation based on a strong combinatorial optimization
backend. We propose replacing the RANSAC-based veri-
fication process with a maximal clique search algorithm
CliReg [16] to verify candidate loop closures. Our approach
aims to find the largest mutually consistent set of feature
correspondences with a graph-theoretic approach to achieve
geometric consistency without relying on random sampling.
Our method provides a principled alternative to traditional
consensus-based verification with improved robustness and



precision. As shown in Fig. 1, our approach produces a
consistent set of feature matches between local maps. The
resulting geometric transformation is directly usable as a loop
closure constraint in pose-graph optimization. We propose
a complete loop closure detection and validation pipeline
using binary 3D descriptors and an efficient binary search
tree-based database for appearance matching. We evaluate
the method on challenging 3D LiDAR datasets and show
that it achieves better pose accuracy than RANSAC-based
geometric verification while being computationally efficient
for real-time SLAM. We demonstrate that our approach
successfully validates loop closures even when RANSAC
fails to find consistent inlier correspondences. Our method
improves alignment accuracy and robustness without intro-
ducing runtime overheads that hinder real-time use. These
characteristics make it a compelling alternative for loop
closure validation in LiDAR-based SLAM systems.

II. RELATED WORK

The precision and robustness of loop closure detec-
tion within any SLAM pipeline directly influence mapping
quality and localization accuracy. Traditional loop closure
detection methods for LiDAR SLAM rely on geometric
feature-based algorithms and corresponding descriptors such
as SHOT [27], FPFH [25], NARF [35], as well as point
feature-based place recognition [34]. Although effective in
controlled environments, these techniques often suffer from
reduced recall under viewpoint changes, sensor noise, or
environmental variability. More recent pipelines leverage
global place recognition or voting schemes [4], [5], but
they typically depend on robust feature filtering for precise
loop closure validation. Efforts to improve robustness across
diverse sensor setups have also led to new benchmarks such
as HeLiPR [13] which support place recognition evaluation
in heterogeneous LiDAR configurations.

Robust loop closure detection plays a central role in
maintaining global map consistency and reducing drift in
SLAM systems, especially under large-scale 3D LiDAR-
based scenarios. The literature proposes a wide range of
approaches, from geometric descriptor matching to learned
place recognition, each with distinct robustness, efficiency,
and generalization trade-offs.

RANSAC-based techniques [6], [40] remain the most
widely used solution for outlier rejection within geometric
validation of candidate loop closures. Despite their pop-
ularity, they rely on random sampling and often fail un-
der high outlier ratios or sparse correspondence sets [23].
Alternative robust verification methods such as pairwise
consistent measurement have also been explored in multi-
robot SLAM [19]. This motivates the use of deterministic
alternatives. Earlier work on deterministic methods includes
branch-and-bound strategies for data association, such as the
joint compatibility branch and bound algorithm by Neira and
Tardós [20]. Olson et al. [21] proposed a real-time correlative
scan matching strategy, influencing early SLAM pipelines.

Clique-based methods have recently been introduced to
generate robust data associations for point cloud registration

as an alternative to sampling-based methods. In particular,
maximal clique search can extract mutually consistent cor-
respondences under rigid-body constraints. Recent research
has focused on combinatorial optimization and graph-based
methods [33], particularly maximal clique enumeration tech-
niques. While earlier works such as [28], [29], [30], [31]
studied the theoretical aspects of clique enumeration and
introduced graph pruning strategies for general-purpose ap-
plications, their focus was not on 3D registration. The CliReg
algorithm [16] applies maximal clique search specifically for
3D point cloud registration, demonstrating significant gains
in robustness and accuracy.

Efficient indexing and retrieval of binary descriptors are
also crucial to the clique-based correspondence graph gen-
eration methods. HBST [32] enables scalable feature lookup
using binary trees, and its use with binary descriptors like
ORB [24] and B-SHOT [22] has shown promise in place
recognition.

Learning-based solutions [36], [39] offer high retrieval
recall but suffer from training dependency and limited gen-
eralization. While these models can perform well on curated
datasets, their robustness in diverse and previously unseen
real-world conditions remains a challenge [17]. Earlier works
explored binary vocabularies [7] and nonlinear embedding
for nearest neighbor classification [26].

In summary, the state of the art reveals a gap between
robustness and efficiency. Our approach bridges this by
integrating binary 3D descriptors with deterministic clique-
based filtering. Unlike prior methods, our approach looks
for mutual consistency among feature matches, reducing
false positives and improving loop closure reliability without
sacrificing runtime performance.

III. CLIREG-BASED LOOP CLOSURES

We present a loop closure validation pipeline that replaces
RANSAC with a clique-based approach for geometric ver-
ification. As illustrated in Fig. 2, our pipeline comprises
three main stages: (1) feature extraction and encoding using
binary descriptors, (2) construction of a correspondence
graph based on descriptor matches, and (3) pose estimation
through maximal clique search and least-squares alignment.
Our approach identifies the largest subset of geometrically
consistent correspondences without relying on random sam-
pling.

A. Preliminaries

Let M and Q denote two local maps composed of 3D
point clouds or their 2D projections. From both maps, we
extract a set of feature keypoints along with their associated
descriptors. Based on descriptor matching, we then establish
a tentative set of point-to-point correspondences C = mi, qi,
where mi ∈ M and qi ∈ Q.

Assuming a rigid body transformation model, we expect
inlier correspondences to satisfy the following relation:

qi = Rmi + t+ ϵi, i ∈ {1, . . . , |C|}, (1)



Fig. 2: An overview of our loop closure detection and validation pipeline. It consists of three stages: (1) Feature Extraction and Encoding,
(2) Correspondence Graph generation, and (3) Pose Estimation via maximal clique search. This integration enables efficient and robust
loop closure detection across 2D and 3D feature representations.

where R ∈ SO(n) is a rotation matrix, t ∈ Rn is a translation
vector, ϵi ∈ Rn is an additive noise term, and n ∈ {2, 3}
denotes the spatial dimension (depending on whether 3D
point clouds or 2D image projections are used).

The validation of matches aims to find the largest sub-
set of correspondences consistent with a single rigid body
transformation.

B. Clique-Based Registration

We construct a correspondence graph where each node
represents a candidate correspondence, and edges connect
mutually consistent pairs (i.e., pairs satisfying the rigidity
constraint in Eq. (1) within some tolerance). We then employ
a branch-and-bound search to identify the maximum clique
of mutually consistent correspondences, denoted by C∗ ⊆ C.

Given the inlier set C∗, we estimate the optimal transfor-
mation parameters (R∗, t∗) by solving the following least-
squares problem:

R∗, t∗ = argmin
R, t

∑
(mi,qi)∈C∗

||qi − Rmi − t||2. (2)

Researchers have extensively documented a closed-form
solution for Eq. (2) in the literature [1], [11], [38]. If |C∗|
exceeds a predefined inlier threshold, we accept the estimated
transformation as a valid loop closure and directly integrate
it as a constraint in pose graph optimization.

Unlike sampling-based methods such as RANSAC, CliReg
provides a deterministic and globally optimal inlier set under
the rigid body transformation, making it particularly robust
in scenarios with high outlier rates.

C. Feature Extraction and Encoding

For each local map, we extract keypoints and compute
descriptors depending on the dimensionality. In 3D, we
detect keypoints using intrinsic shape signatures (ISS) al-
gorithm [42] directly on voxelized LiDAR point clouds. We
describe them using SHOT descriptors [27], and then apply a
median thresholding strategy to binarize them into compact
B-SHOT descriptors [22].

In the 2D setting, we follow Gupta et al. [10], first
projecting the 3D LiDAR point clouds into bird’s eye

Fig. 3: Example of a correspondence graph G with nodes repre-
senting feature matches and edges denoting geometric consistency.
The highlighted 5-clique forms the basis for SE(3) transformation.

view (BEV) density images and extracting ORB descrip-
tors [24], which provide binary descriptors suitable for fast
matching. Regardless of the representation, we organize all
binary descriptors using an HBST data structure [32] to
enable real-time insertion and nearest-neighbor lookup via
Hamming distance metric.

D. Descriptor Database and Correspondence Graph Con-
struction

From the set of tentative matches C = {mi, qi}, we
build a correspondence graph G = (V,E) where each
vertex represents a descriptor match between M and Q. An
edge connects two nodes if their associated correspondences
are mutually compatible, meaning the rigid transformation
preserves their pairwise distances. Formally, two correspon-
dences (mi, qi) and (mj , qj), we consider them consistent
if the following condition is met:∣∣∥mi −mj∥ − ∥qi − qj∥

∣∣ < ϵ. (3)

This constraint preserves pairwise distances under a rigid-
body model, enforcing geometric consistency. The thresh-
old ϵ is set relative to the voxel resolution. A clique thus
represents mutually consistent correspondences explainable
by a single transformation.

Fig. 3 shows an example of such a correspondence graph,
where the blue subgraph represents a maximal clique selected
to estimate the rigid body transformation.



IV. EXPERIMENTAL EVALUATION

We evaluated the effectiveness of our CliReg-based loop
closure validation pipeline in the Bridge01, Bridge02 and
Roundabout01 sequences of the HeLiPR dataset [13], which
include realistic loop closures in urban semi-structured en-
vironments. We captured these sequences using three differ-
ent LiDAR sensors: Aeva (solid-state), Avia (MEMS), and
Ouster (mechanical), to represent a wide range of sensor
characteristics.

Our evaluation focusses on three key aspects: (i) loop clo-
sure validation quality (number of geometrically consistent
inliers), (ii) accuracy of pose estimation, and (iii) computa-
tional efficiency. We compare our CliReg-based verification
with a RANSAC-based baseline under identical conditions,
using 3D and 2D features.

A. Metrics and Experimental Setup

To ensure a fair comparison, we configure a standard set
of parameters across all experiments. In both the 2D and
3D pipelines, appearance-based descriptor matching uses a
Hamming distance threshold of 50 bits. A loop closure is
accepted only if a minimum number of mutually consistent
inliers is found: 10 in the 2D case and 5 in the 3D case.

To compute the absolute pose error (APE) with and
without loop closures (denoted APE w and APE w/o re-
spectively), we follow a consistent evaluation pipeline. We
begin by incorporating all detected loop closures into a pose
graph optimization using g2o [15], initializing the graph with
the trajectory estimated by the KISS-ICP algorithm [37], and
the loop closure constraints obtained from our loop closure
validation algorithm. After optimization, we compare the
corrected poses with the ground-truth trajectory available
for each sensor and scene. Finally, we compute the APE
using the evo Python toolbox [9], a widely adopted tool for
evaluating odometry and SLAM performance metrics.

B. 2D and 3D Pipeline Description

2D pipeline: We adopt a BEV density map representation
of the environment, with each local map discretised into a
grid using a resolution of 0.5 m. We discard low-density re-
gions by applying a threshold of 5 % relative to the maximum
cell occupancy. Local maps are formed incrementally until
the platform travels a fixed distance, of 100 m, which defines
the spatial extent of each local representation. This setup
favours compact, viewpoint-agnostic descriptors, enabling
efficient matching using HBST. A similar representation for
loop closure has been proposed by Gupta et al. [10].

3D pipeline: We employ voxelization with a 0.5 m resolu-
tion to downsample the point cloud, ensuring uniform spatial
coverage. Keypoints are extracted using ISS with scale-
adaptive parameters: a salient radius of 3 m, a nonmaximum
suppression radius of 2 m, and an eigenvalue threshold of
0.975. Around these keypoints, SHOT descriptors are com-
puted within a support radius of 2 m and binarized to obtain
B-SHOT signatures. Geometric consistency is enforced using
a pairwise distance between the aligned features with toler-
ance set to 1 m. This configuration balances descriptiveness

and computational efficiency, making it suitable for real-time
SLAM deployments.

RANSAC configuration: For the 3D experiments, we
employ RANSAC in which the number of iterations is
explicitly fixed to 10,000 (denoted as RANSAC-10K). This
decision is motivated by the observation that, when using the
number of iterations derived from the classical probabilistic
formulation (assuming an inlier ratio of 0.3 and a success
probability of 0.999), RANSAC may fail to detect any loop
closures across all evaluated scenes. The same result was
observed even when the number of iterations was fixed to
1,000. Therefore, we perform 10,000 RANSAC iterations
in all 3D experiments to ensure a meaningful baseline for
comparison.

C. Evaluation Results

We summarize the results for the 3D pipeline in Tab. I. Our
approach consistently yields geometrically more reliable loop
closures than RANSAC, particularly in challenging cases
where RANSAC fails to detect any closure. Although our
approach typically validates fewer matches, the identified
inliers exhibit higher mutual consistency and produce a lower
absolute pose error (APE).

In particular, RANSAC often fails entirely in sequences
such as Aeva-Bridge01 or Ouster-Bridge02, while our ap-
proach reliably detects loop closures with 50–130 inliers.
These results illustrate the robustness of our clique-based
method under viewpoint and structural changes.

We also evaluate the 2D pipeline on the Roundabout01
sequence to analyze CliReg’s performance in dynamic and
structurally complex environments. Tab. II presents the
results for the 2D projection-based pipeline. Here, both
RANSAC and our approach produce comparable F1 scores
and APE, but our approach achieves this with a run time
more than 10 times faster in all cases. This reinforces
CliReg’s suitability for real-time applications in scenarios
where descriptor dimensionality is reduced.

D. Runtime Performance and Variability

Across all 3D experiments, our approach operates within
2.8 ms to 6.3 ms per match, with a standard deviation below
1.3 ms. Although this is higher than 2D runtimes, it remains
practical for use in real-time SLAM systems, especially
considering the robustness gains.

E. Case Study: Detailed Failure and Success Example

In the Bridge01-Aeva sequence, RANSAC does not detect
a valid loop closure. In contrast, our approach identifies a set
of 61 inliers forming a mutually consistent clique, leading
to an accurate pose estimate with an APE of 27.40 m, down
from 94.67 m without loop closures. This demonstrates the
ability of our approach to validate challenging loop closures
that heuristic methods often miss.

F. Failure Modes in 2D Scenarios

In some 2D cases like Bridge01-Aeva, we observe an in-
crease in APE after loop closure insertion for both RANSAC



TABLE I: Loop closure performance using 3D pipeline across sensors and scenes with our method and RANSAC. Metrics include
number of inliers, runtime, and APE with and without loop closures.

Scene Sensor Algorithm Inliers Mean
Time (ms) APE w (m) APE w/o (m)

Bridge01

Aeva RANSAC-10K - - - 94.67Ours 61 6.25 27.40

Avia RANSAC-10K 6 324.17 79.05 167.83Ours 24 2.83 33.98

Ouster RANSAC-10K 6 317.05 50.67 157.37Ours 136 4.92 18.80

Bridge02

Aeva RANSAC-10K - - - 120.93Ours 57 4.11 108.94

Avia RANSAC-10K 21 291.31 16.48 76.09Ours 70 3.61 19.00

Ouster RANSAC-10K - - - 53.95Ours 71 4.52 68.25

TABLE II: Loop closure performance using 2D pipeline across sensors and scenes with our method and RANSAC. Metrics include
number of inliers, runtime, precision, recall, F1 score, and APE with and without loop closures.

Scene Sensor Algorithm Inliers Mean
Time (ms) Precision Recall F1 Score APE w (m) APE w/o (m)

Bridge01

Aeva RANSAC 2985 2.26 0.9908 0.0692 0.1292 331.00 94.67Ours 2927 0.20 0.9898 0.0693 0.1295 362.31

Avia RANSAC 1675 2.13 0.9877 0.0466 0.0890 408.30 167.83Ours 1624 0.13 0.9869 0.0463 0.0883 366.65

Ouster RANSAC 4128 2.24 0.9835 0.0737 0.1371 332.80 157.37Ours 4022 0.23 0.9843 0.0737 0.1372 380.01

Bridge02

Aeva RANSAC 2059 2.05 0.9891 0.0611 0.1151 277.00 120.93Ours 2011 0.20 0.9888 0.0612 0.1152 276.49

Avia RANSAC 1018 2.05 0.9667 0.0426 0.0816 263.74 76.09Ours 995 0.11 0.9667 0.0422 0.0809 255.88

Ouster RANSAC 2200 1.82 0.9954 0.0589 0.1113 257.90 53.95Ours 2120 0.22 0.9954 0.0589 0.1113 204.26

Roundabout01

Aeva RANSAC 539 2.00 0.9972 0.0376 0.0725 3.5217 21.7571Ours 518 0.13 0.9971 0.0376 0.0725 3.5208

Avia RANSAC 174 1.95 0.9468 0.0120 0.0233 2.2475 21.9412Ours 181 0.14 0.9469 0.0120 0.0233 2.2584

Ouster RANSAC 1130 1.97 0.8757 0.0245 0.0477 1.5481 11.7912Ours 1132 0.21 0.8753 0.0246 0.0479 1.5670

and our method, an effect not seen in 3D. We attribute this
to repetitive structures in bridge scenes which, when repre-
sented in BEV, may lead to globally inconsistent constraints
despite locally correct matches. This suggests a limitation of
the 2D representation due to spatial information loss, rather
than a flaw in the verification algorithm.

G. Summary

Our results confirm that: (i) our approach reliably validates
loop closures even where RANSAC fails, (ii) produces a
lower or comparable APE in both 2D and 3D, (iii) and
executes efficiently enough for practical deployment.

Future work will explore temporal and semantic consis-
tency, as well as faster clique search and hybrid descriptors,
to enhance robustness and efficiency.

V. CONCLUSION

In this work, we introduced a loop closure validation
algorithm that formulates geometric verification as a max-
imal clique search over feature correspondences. Our ap-
proach optimizes for mutual consistency among matches and
eliminates the reliance on random sampling. Using binary
descriptors, we integrated it into a full 3D LiDAR-based loop
closure pipeline and validated its performance on challenging
real-world datasets. Our results show improved robustness
and comparable or better accuracy than RANSAC, even
in sparse or noisy conditions. Despite solving an NP-hard
problem, determining loop closures via searching cliques in
a correspondence graph maintains real-time applicability in
typical mobile robotics setups. These characteristics make
our approach a reliable and practical alternative for loop



closure detection in SLAM.
Despite these encouraging results, there is still room for

improvement. Future work will focus on accelerating the
clique search step through parallel strategies or approximate
solutions, integrating learning-based descriptors to enhance
matching robustness, and extending it to exploit temporal
consistency across consecutive map segments.
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[8] G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard. A tutorial
on graph-based SLAM. IEEE Trans. on Intelligent Transportation
Systems Magazine, 2(4):31–43, 2010.

[9] M. Grupp. evo: Python package for the evaluation of odometry and
SLAM. https://github.com/MichaelGrupp/evo, 2017.

[10] S. Gupta, T. Guadagnino, B. Mersch, I. Vizzo, and C. Stachniss.
Effectively Detecting Loop Closures using Point Cloud Density Maps.
In Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA),
2024.

[11] B.K. Horn. Closed-form solution of absolute orientation using unit
quaternions. Journal of the Optical Society of America A, 4:629–642,
1987.

[12] B. Jiang and S. Shen. Contour Context Abstract Structural Distribution
for 3D LiDAR Loop Detection and Metric Pose Estimation. In Proc. of
the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2023.

[13] M. Jung, W. Yang, D. Lee, H. Gil, G. Kim, and A. Kim. HeLiPR:
Heterogeneous LiDAR Dataset for inter-LiDAR Place Recognition
under Spatiotemporal Variations. Intl. Journal of Robotics Research
(IJRR), 12(43):1867—-1883, 2024.

[14] G. Kim, S. Choi, and A. Kim. Scan Context++: Structural Place
Recognition Robust to Rotation and Lateral Variations in Urban
Environments. IEEE Trans. on Robotics (TRO), 38(2):21–27, 2021.
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