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Abstract— Inferring semantic information towards an un-
derstanding of the surrounding environment is crucial for
autonomous vehicles to drive safely. Deep learning-based seg-
mentation methods can infer semantic information directly
from laser range data, even in the absence of other sensor
modalities such as cameras. In this paper, we address improving
the generalization capabilities of such deep learning models to
range data that was captured using a different sensor and in
situations where no labeled data is available for the new sensor
setup. Our approach assists the domain transfer of a LiDAR-
only semantic segmentation model to a different sensor and
environment exploiting existing geometric mapping systems. To
this end, we fuse sequential scans in the source dataset into a
dense mesh and render semi-synthetic scans that match those
of the target sensor setup. Unlike simulation, this approach
provides a real-to-real transfer of geometric information and
delivers additionally more accurate remission information. We
implemented and thoroughly tested our approach by transfer-
ring semantic scans between two different real-world datasets
with different sensor setups. Our experiments show that we
can improve the segmentation performance substantially with
zero manual re-labeling. This approach solves the number one
feature request since we released our semantic segmentation
library LiDAR-bonnetal [18].

I. INTRODUCTION

In autonomous driving, a precise, reliable, and fast un-
derstanding of the scene is crucial for operation. Most self-
driving cars use onboard sensors to perceive the scene around
the vehicle and semantic segmentation is an important sub-
task of scene understanding. Semantic segmentation assigns
a class label to each data point, i.e., a pixel or a 3D point,
and allows autonomous vehicles to perform a wide variety of
tasks, such as obstacle avoidance, tracking other participants,
traversability analysis, and many more. To perform semantic
segmentation accurately and robustly in various scene condi-
tions, multiple sensors, like cameras, radars, and LiDARs, are
used to achieve the needed redundancy, as well as coverage
of the whole scene or recording conditions. While it is
typically advantageous to rely on multiple sensor modalities,
there are conditions in which a vehicle must rely solely on
active sensors like LiDAR, e.g., when driving at night. In
this work, we focus on the task of LiDAR-only semantic
segmentation and specifically on the domain adaption among
different sensor configurations.

Many LiDAR datasets [1], [3], [8], [9] are publicly avail-
able but only a few of them [1], [9] provide semantic segmen-
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Fig. 1: Proposed domain transfer method that readjusts a
semantic segmentation network model to the domain of a
different LiDAR sensor.
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Fig. 2: Sample scan in the projection-based representation
(bottom) and its semantic segmentation (top).

tation labels due to the required labor-intensive annotation
work. Most of the computationally efficient approaches to
semantic segmentation of LiDAR scans rely on a spherical
projection of point clouds, see Fig. 2 for an illustration.
These approaches exploit the sensor arrangement of most
3D LiDAR sensors, which often consists of a rotating array
of lasers. By transforming the scans into a 2D image rep-
resentation, we can resort to well-studied 2D convolutional
neural networks (CNN) for the segmentation task. In addition
to that, we can find neighbors in the point clouds requiring
less computational resources compared to approaches relying
on unordered point clouds. Both properties together allow
for building real-time capable segmentation approaches [18],
[35]. These approaches perform well in practice, but the
projection model uses the specific parameter of the employed
sensor, i.e., the position on the car, angular resolution, and
field of view (FOV). Applying such a model to LiDAR data
recorded in a different domain due to a change in any of
these parameters degrades its performance. Although this
problem is more severe with projection-based approaches,
such degradation also happens with approaches using raw
point clouds, since a change in the sensor location or beam
distribution changes the overall appearance of the clouds.
The main contribution of this paper is a sensor-oriented
transfer method that allows us to exploit existing labels



provided for a specific sensor setup and use it in a new
setup. One can see this approach as a calibration procedure
for a new sensor setup. It runs offline translating the labeled
data after the change in the platform configuration. Our
approach runs in a couple of hours due to our GPU-enabled
rendering pipeline and it generates a model that runs as fast
as the original one after our offline adaption. We achieve
this by aggregating sequential scans from a semantically
annotated dataset such as SemanticKITTI [1] into a dense
mesh and sampling realistic 3D LiDAR scans for the new
sensor configuration. This allows us to transfer a model
trained with the source scanner to a new target scanner. Fig. 1
depicts an example where the target sensor features a lower
resolution and a larger vertical FOV than the source sensor.

In sum, we make three key claims: Our approach is able
to (i) generate real-to-real LIDAR sweep transfer, including
remission information, (ii) transfer the dense semantic anno-
tations to the new sensor setup, and (iii) reduce the domain
shift, when adapting to a different LiDAR sensor.

II. RELATED WORK

Point cloud semantic segmentation provides point-wise
labels for the whole scene. Approaches for semantic segmen-
tation can be mainly categorized in point-based approaches
operating directly on the (sub-sampled) three-dimensional
points [23], [24], [32], [15], [30], [11] and projection-based
approaches operating on a different representation, like two-
dimensional images [18], [35], [38] or three-dimensional
regular subdivisions [31], [28], [25].

SqueezeSegV?2 [35] performs semantic segmentation of
selected road-objects from 3D LiDAR point clouds. In addi-
tion to using a real LiDAR dataset for training, they refine
the model with synthetic range images generated from a
game engine. They use a CNN to predict the remissions not
simulated by the game engine. Furthermore, they use domain
adaption during training as well as a post-processing step
to improve their results. In contrast, we generate realistic-
looking scans from a real LiDAR dataset and also interpolate
the remissions from real data. We also use all classes
provided by SemanticKITTI [1] and are not restricted to
their subset of classes, i.e., car, pedestrian, and cyclist. We
use for our study RangeNet++ [18], which uses a similar
strategy as SqueezeSegV2, but uses a larger backbone and
introduced k-nearest neighbor search on the input point cloud
they can output fine-grain semantics without “shadowed”
artifacts from back-projecting into 3D space.

While aforementioned projection-based approaches [18],
[35] to spherical images particularly tend to suffer from a
change in the LiDAR sensor setup, like a change in the
mounting of the sensor affecting the field-of-view, all other
approaches are similarly affected when changing the LiDAR
sensor geometry completely, like reducing the number of
beams from 64 to 32, which affects the density and pattern
of the beam on the surfaces.

Semantic mapping aggregates semantic information into
a map representation, which then can be used for other
tasks. Approaches generating dense representations, such as

truncated signed distance function (TSDF) [34], [36], voxels
grids [7], or surfels [4], could be leveraged to simulate a
LiDAR scan in the target domain via ray casting. In contrast
to these approaches, we target the usage of annotated point
clouds instead of segmentation results from images [34], [36]
or LiDAR [4] and employ geodesic correlation alignment to
reduce the domain shift. We furthermore investigate how the
aggregation of point clouds compares to denser representa-
tions like a TSDFs for generation of synthetic point clouds.

Domain adaption is a subdomain of transfer learning that
assumes the same task but within a different domain. Deep
neural networks are tuned for a specific task and trained
with a distinct domain defined by the training data. When
applying a model to a dataset from a different domain the
performance usually drops [21] due to the domain shift.
Domain adaptation aims to bridge this gap between source
and target domain and to mitigate the degradation of the
performance of the network. Some approaches try to avoid
retraining by combining multiple sensing modalities [27],
[33]. In contrast to that, the aim of our paper is adapting the
weights of a deep neural network to another dataset without
utilizing human labeling for the target dataset.

Domain adaptation is often needed to improve real-world
model performance using simulated data. The simulated
scans and the pixel-wise ground truth are sometimes gen-
erated using game engines [14], [35] or dedicated simula-
tors [5]. To refine simulated images to look more realistic
Generative Adversarial Networks (GAN) are often used [10],
[26]. Fernando et al. [6], instead try to align the features
of CNN directly, rather than generating matching data or
augmenting the data to improve realism. To this end, they
align the subspace defined by a number of largest eigenvalues
through a Principal Component Analysis of both source and
target data. This way, a transformation matrix is learned that
maps features from the source to the target subspace.

Other approaches suggest introducing a loss that penalizes
domain differences during training [19], [29], [35]. These
methods can be added to already existing networks, which
learn the task with labels from the source domain, but keep
the distributions of the activations for both source and target
similar. Based on these types of approaches, we employ a do-
main loss to minimize domain shift by aligning second-order
statistics of activations. Unlike these approaches, where the
ground truth is rendered from simulated data, our approach
renders the scans and labels from meshes that were generated
from real data. In contrast, our method allows us to use real
remissions and the noise distribution of the source sensor.

Concurrently or after submission of our work, Jaritz et
al. [12] proposed a framework to perform cross-modal do-
main adaptation for 3d semantic segmentation using images,
Jiang et al. [13] propose to use GAN-based domain adaption
to transfer labels from a source to a target domain, and Yi
et al. [37] propose to first create a dense representation from
sparse point clouds via a scene completion approach to then
learn a classifier on this so-called canonical domain, which
can then be used on the canonical domain representation of
the target domain.
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Fig. 3: Directly using point clouds for semantic segmentation vs. employing a projection-based method and projecting the
semantics back into the point cloud. Point cloud and range image colored on the left by distance and on the right by class.
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Fig. 4: We achieve the domain transfer by retraining with a
semi-synthetic dataset and Correlation Alignment.

III. OUR APPROACH

The goal of our domain transfer approach is to adjust a se-
mantic segmentation network to perform well in the domain
of a different LIDAR sensor and/or LiDAR configuration. In
our example, we aim to transfer Velodyne HDL-64 scans to
match scans from a Velodyne HDL-32, a sensor with a lower
resolution and different FOV, as illustrated in Fig. 3.

The key steps of our approach are the following. First, we
use annotated scans and build a map of the environment using
a 3D LiDAR SLAM approach. From this annotated point
cloud, we render realistically looking, semi-synthetic scans.
These scan looks as if they would have been recorded from
a LiDAR with different sensor parameters. Fig. 4 illustrates
the simulation of the semi-synthetic scans.

The second step aims at adapting the segmentation CNN
for projected scans to the target domain. We use our gen-
erated semi-synthetic dataset to retrain the CNN model that
had been originally trained on the source dataset. We use an
unsupervised method to align the distributions of the semi-
synthetic and real dataset. During the retraining, we calculate
an additional loss that aligns the different distributions. Note
that our approach uses only raw point clouds from a target
sensor and does not require any new labels.

A. Semi-synthetic Scan Simulation

This section describes the generation of semi-synthetic
scans. They are built from the source domain data and thus
come with semantic annotations but are generated for the
target domain sensor configuration.

The first step of the fusion is to estimate the position of
each laser endpoint in a global reference frame using a 3D
SLAM pipeline, for which we use SuMa [2]. This allows us
to aggregate the point clouds using the SLAM output into a
3D model. This model can either be a large point cloud or
also a mesh. The generated 3D representation is then used
to simulate the semi-synthetic observations, which look as if
they have been obtained by the target sensor, including the
corresponding label for each point.

We aim at computing for each scan in the source dataset a
scan in the target domain separately. We refer to the primary
scan as a single 3D scan from the source dataset for which
the translation should be made. We take the pose of this
primary scan and render the target semi-synthetic scan for
that pose. As our scanner for the target domain might have a
higher resolution than in the source domain, a different FOV,
or other extrinsic parameters, we consider multiple scans
taken before and after the primary scan for the generation of
the semi-synthetic scan.

In addition to that, we remove the points that are classified
in the ground truth as “moving objects” from all scans but
the primary scan to ensure that we only add points from
static road objects in that case. Otherwise, multiple instances
of the moving objects at different locations would appear in
the target scan multiple times leading to wrong observations.

Closest Point (CP). The CP method selects the closest
points within the large source point cloud, merged from
multiple scans, to build a scan for the target domain. This is
achieved by selecting for every pixel of the range image
for the target scan the best fitting point from the cloud.
First, the merged cloud is projected into a range image to
create a simulated scan. This simulated scan with the desired
height H and width W by applying a spherical projection,
to each 3D point P = (z,y, 2):

1
(111) _ ( 3 [1 — arctan(y, z)7 1] W ) )
¢ [1 — (arcsin(z =) + fup) [~ H
where d = ||P||2 refers to the distance of P from the
origin and f = |fup| + | faown| refers to the vertical FOV of



(a) CP (closest point)

(b) Regular TSDF (truncated signed distance function)

(c) MESH-C (Class-aware TSDF)

Fig. 5: Comparison of generated range images by CP, regular
TSDF and MESH-C when integrating 10 scans.

the LiDAR scanner. Second, due to ambiguous assignments
of points to the same pixel (¢, ¢) in the range image,
we select the point with the smallest measured distance,
as is usually done in rendering pipelines employing a so-
called z-buffer [22]. Other methods like selecting the point
minimizing its projection error, i.e., the remainder of the
resulting x and y coordinates, would lead to errors due to
occlusions.

Mesh. We also use a volumetric method for fusing the
point clouds which is widely used in robotics, known as
the truncated signed distance function or TSDF [20]. Inte-
grating distances into the TSDF volume for fusion works
well for the distance information and the remissions, which
are manufacturer-defined reflectance values, serving as the
texture of the surface. However, the integration of class labels
is not straightforward.

The regular update rule for incrementally building a TSDF
from range images integrates the observations from different
scans and outputs a weighted sum of the individual obser-
vations. In the case of the class labels, this is not desired,
since they are represented by a discrete set. Another issue
is as the perspective shifts by the movement of the sensor,
where we aggregate points from views that are occluded in
the primary scan. This means that if a portion of a foreground
object is missing, such as the car in Fig. 5 (b), we are at risk
of rendering into our image views that are not feasible in
reality, such as seeing the grass in the background through
the missing roof of the car. To solve this, we propose the
following three methods to fuse observations into the TSDF
volume (also depicted in Fig. 6):

MESH-A (MA) uses an all-in method that merges the
point clouds first, by applying the pose transformation and
appending to a joint point cloud. This merged point cloud
is then used to generate a single range image, which is
integrated to the TSDF. During the projection into the range
image, a lot of the points are rejected as there can only be a
single link from a 3D point to its 2D counterpart, favoring
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Fig. 6: Scheme for integrating semantic information into the
TSDF with A: Ignoring semantic information, B: Integrating
observations of the same classes, C: Integrating observations
of the same classes with strong focus on first scan.

closer points. Therefore, it favors points closer to the sensor
and ignores the semantic information.

MESH-B (MB) uses a class-aware method to integrate the
range images. Each source scan is sequentially integrated to
the TSDF in the regular update fashion. In the integration,
the class-aware TSDF checks for each new observation if
the class matches the class of the existing observation.
If they match, the procedure is the same as the regular
update rule and the observations are integrated. But if the
classes do not match, we choose either the existing or the
new observation depending on the depth of the observation.
Similar to the aforementioned z-buffer method, we use the
closer observation to correctly represent occlusions.

MESH-C (MC) is also a class-aware fusion method that
“focusses” on the primary scan and uses the additional scans
only to fill missing data or integrate observations when
the classes match. As we integrate the primary scan first,
the TSDF treats any further frames as potential updates.
If the current voxel is not occupied by any observation
of the primary scan, we add the new observation to the
corresponding voxel. In contrast, if the voxel is already set
to a specific class by the primary scan, we let the new
observation update the voxel only when the classes match.

We use an enhanced version of the marching cubes algo-
rithm [16], to generate a smooth triangle mesh by ensuring
topologically correct results. The original algorithm [17]
often leads to cracks and ambiguities that are resolved by
adding more cases to the lookup table. Finally, we use ray
casting to sample a point cloud from the mesh. For this, we
define the virtual laser scanner by defining the FOV, resolu-
tion, and relative position in space. We construct the array of
rays by creating a grid spanning over the FOV — vertically
and horizontally — and resolution-depending spacing. To
speed up the ray casting, we use a modified implementation
of the bounding volume hierarchy (BVH) [22].

The main reason for the meshing approach is to get
surface representation instead of points to sample new scans
from. Fusing multiple scans will improve the density of that
sparse surface, e.g. between the individual LiDAR beam:s.
Compared to the regular TSDF the MA method preserves the
occlusions. However, the objects appear slightly larger due to
noise from multiple scans. When using MB, the majority vote
inside the TSDF cells leads to rougher boundaries between
objects. Because of the focus for the first scan, the MC does
not suffer from rough boundaries and also copes with the
noise from multiple scans.



Fig. 7: Structure of the used CNN architecture [18] and the
training with geodesic correlation alignment.

B. Geodesic Correlation Alignment (GCA)

The second step of the domain transfer is to retrain the
model to adapt it to the target domain. While doing this
and to prevent domain-shift between the semi-synthetic data
rendered from the model and the real data coming from
the new sensor configuration, we align the second-order
statistics between source and target domains [35]. We apply
this unsupervised domain adaptation during the training of
the CNN model (see Fig. 4), using the rendered scans and
labels. Let the labeled, semi-synthetic dataset generated by
our first step be the source, and the unlabeled, real dataset
the target. We extend our LiDAR-bonnetal framework [18]
to take two inputs and use two losses, and generate equal
sized batches from the source and the target dataset during
training. We sample scans randomly from both datasets
assuming the scenes will contain similar class content. We
can use this naive sampling strategy because the domains
are closely related and both scans show street scenes with a
similar environment (city and highway driving). We sketch
our training process in Fig. 7.

The semi-synthetic source batch is evaluated by the class
loss, a weighted cross-entropy loss, and the semantic target.
Besides, the training evaluates the target batch by using
the geodesic loss by Morerio et al. [19], [35]. To limit
the degradation in performance due to domain shift, they
propose a method to align both distributions by minimizing
the geodesic distance between the covariance matrices of
target and source data. This leads to a loss function that
can be used for domain adaptation in an end-to-end fashion
in a single training step. To calculate the geodesic loss, we
reorder and reshape the activations of the last feature layer
to be of dimension ¢ by n X h X w, with the number of
channels ¢, the height » and width w of the layer and the
batch size n.

Let Cgs and Cr be the covariance matrices of the d-
dimensional activations from a feature layer and ||H% the
squared Frobenius norm. To calculate the log of positive def-
inite matrices, like covariance matrices, a common approach
is to diagonalize it by a singular value decomposition and
then calculate the logarithm of the eigenvalues. Whitening
the covariances is encouraged to ensure full rank for the
decomposition. Dg and D7 being the diagonalized source
and target eigenvalues. The corresponding eigenvectors are

U (source) for and V (target). Finally, the loss function is
given by the geodesic Log-Euclidean distance between both
covariance matrices

1
ﬁ(CS7 CT) =

=7 [Ulog(Ds)UT — Vlog(Dr) V7[5

2
Let X g be the activations on the last layer and Z g the source
labels.
Finally, the training uses the minimal-entropy correlation
alignment for unsupervised domain adaptation minimizing
over the network weights 6

0* = argmin H(Xg,Zs) + aL(Cg,Cr), 3)
0

with the hyperparameter o > 0 that minimizes the cross-
entropy on the source domain H(Xg,Zg) and the geodesic
loss £L(Cg, Cr) of both domains. At the end of each training
step, we penalize by the combined loss Eq. 3, which adds
the domain loss weighted by « to the class loss.

IV. EXPERIMENTAL EVALUATION

In this work, we present a method to adapt deep neural
network models for semantic segmentation of LiDAR scans
to a different scanner, using a real-to-real transfer. Our
experiments are designed to show the capabilities of our
method and to support our key claims, which are to be able
to: (i) generate real-to-real LiDAR sweep transfer, including
remission information, (ii) transfer the dense semantic anno-
tations to the new sensor setup, and (iii) reduce the domain
shift, when adapting a different LiDAR sensor.

Source Dataset. For the evaluation of our approach, we
use the SemanticKITTI dataset [1] as our source dataset,
which provides dense semantic segmentation annotations
for the complete KITTI [8] odometry dataset. In total, the
dataset consists of over 43 000 scans with point-wise anno-
tations. Although only 23201 scans are publicly available
for training, and the remainder are used for evaluation on
an evaluation server. This dataset covers 28 classes and
distinguishes between moving and non-moving objects. The
classes include traffic participants, but also functional classes
for ground, like parking areas, sidewalks. The scans were
captured with a Velodyne HDL-64 LiDAR scanner with a
vertical FOV of —25° down and 3° up at a capture rate of
10Hz. We use 2048 x 64 px range images for the resulting
projected range images used by RangeNet++.

Training setting. Throughout all these experiments, Se-
manticKITTI is our source dataset and we base our retraining
on the RangeNet++ [18] model. For all approaches, we
generate the datasets in advance and perform then our
retraining with the generated scans. The overall data is
split as proposed by Milioto et al. [18]. Thus, we use
the 10 publicly available SemanticKITTI sequences, where
sequence 08 is our validation set and the other sequences
are used for training. The test data for the domain transfer
is a single sequence of the nuScenes [3] dataset, which we
manually labeled for this purpose with identical classes used
by SemanticKITTI using the provided point labeling tool.
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TABLE I: Pretrained baseline model on the synthetic datasets generated by CP and mesh approaches (MA, MB, MC with
0.05 m voxel size and three merged scans). K: SemanticKITTI, S: simulated dataset.

A. Baseline

The baseline for our quantitative results is the performance
of RangeNet++ pre-trained on the SemanticKITTI dataset
and evaluated on its validation data. RangeNet++ achieves
50.4 % mloU as shown in Tab. I when staying within its
domain. However, if we infer scans from a different domain
(e.g. nuScenes scans) the performance drops to 12.3 % mloU
as shown in Tab. II.

B. Simulating Training Data

This experiment is designed to analyze the performance
of different hyperparameters of our fusion approaches and
evaluate how similar the generated scans are in comparison
to the source scan when the source and target domain are
the same. Thus, we run a grid search by varying the voxel
size and the number of fused scans.

The goal of this experiment is to reproduce the same
LiDAR scans and to compare them with the source scans.
To measure the semantic similarity, we use the mean
intersection-over-union (mloU). The prediction X and cor-
responding ground truth Y represent the class as an integer
value. For each class ¢, we extract the predictions X. and
the corresponding ground truth values Y., and compute the
per-class IoU, as

TP

“)

with T'P being the true positive, F'P the false positive and
F'N the false negative values of the matrix. The mloU is
given by the mean over the class-wise IoUs. To measure the
geometric similarity between the two point clouds, we use
the mean squared error (MSE)

MSE:l

- > (I - L),

i=1

(&)

with the synthetic range image I and ground truth range
image I. We compute both by comparing the individual label
and the range images of source and generated target for the
mloU and the MSE, respectively. Based on results shown in
Fig. 8, reducing the voxel size improves details in generated
range and label images. By adopting a class-wise TSDF, we
achieve consistent performance in mloU and improving MSE
over integrating multiple frames.

Additionally, we use the pre-trained baseline model to
evaluate the simulated scans. Therefore, we infer the dif-
ferent simulated datasets we created by the CP and MESH
approaches. Tab. I shows the segmentation scores of the indi-
vidual classes for the different approaches. The performance
is similar to the baseline, which is inferred on the real scans.

C. Domain Transfer

The second experiment is to support the claim that our
approach is able to transfer the original model to the target
domain of a different sensor setup. The nuScenes [3] dataset
is the target for our approach in Tab. II. In contrast to
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MB+GCA | 0.1 5 S/IN 326 848|637 58 48 153 889 452 79.0 312 383 29 12 337 14.1
MC+GCA | 0.1 5 S/N 354 859652 67 3.1 209 893 49.8 80.0 42.1 447 39 29 342 173

TABLE II: Semantic segmentation performance on nuScenes data by the baseline, CP, and mesh approaches (MA, MB, MC
uses voxel size of 0.07 m). K: SemanticKITTI, N: nuScenes, S: Simulated dataset.

the SemanticKITTI dataset, the LiDAR scanner features a
lower resolution of 32 beams and a wider vertical FOV of
—30° down and 11° up at a capture rate of 20 Hz. We
excluded several non-existing or very rare classes in this
data for this evaluation. For this experiment, the baseline
model is retrained with the simulated datasets generated by
our different approaches. The base model’s performance,
without any adaption, drops to 12.3 % mloU. With our CP
approach with a single frame, we achieve 31.3 % mloU and
28.8 % mloU with multiple frames, providing the biggest
jump in performance. We show that all mesh methods
perform similarly, although MESH-A achieves the lowest
mloU with multiple frames. By adding the unsupervised
domain adaptation we increase the mloU performance of
our CP+GCA approach with a single frame to 35.9 %
and observe similar results with the MESH-C+GCA with
multiple frames, providing a smaller, but a significant bump
in IoU. For selected classes, we can recover the drop caused
by the domain shift quite well.

D. Qualitative Results

In Fig. 9 we show the predictions of the best performing
models of our approach. Two different scans from the labeled
nuScenes sequence are colored by the predicted classes.

V. CONCLUSION

In this work, we presented a novel approach for the do-
main transfer of a semantic segmentation model for LiDAR
data. Our approach operates by simulating a dataset for
the transfer, but using real data, as opposed to the usually
exploited simulation environments. Our methods exploit the
fusion of multiple scans of the source dataset and meshing
for a denser map to sample virtual scans from this. Multiple
scans lead to noisier and more inconsistent maps, so this
limits the number of frames to fuse. Especially challenging
are semantics and remissions, which are not as consistent
from different viewing angles as the depth. We cannot see a
significant advantage of the different meshing methods. This
needs further investigation in future work. The experiments
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Fig. 9: Predictions of models from experiment C. From top to
bottom: Ground truth (GT), Baseline, CP 1 scan, CP+GCA 1
scan, CP+GCA 5 scans, and MC+GCA 5 scans. Best viewed
in color.



show that we successfully readjusted a model trained on the
source dataset to the target dataset, which features a different
LiDAR sensor with a different resolution, field of view, and
location on the platform. Recently, the A2D2 dataset [9]
made a large number of semantic annotations available,
which would provide data to investigate the adaption of low-
resolution to high-resolution LiDAR sensors in future work.
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