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Abstract— Modern service robots are designed to be deployed
by end-users and not to be monitored by experts during
operation. Most service robotics applications require reliable
navigation capabilities of the robot. The calibration parameters
of a mobile robot play a substantial role in navigation tasks.
Often these parameters are subject to variations that depend
either on environmental changes or on the wear of the devices.
In this paper, we propose an approach to simultaneously
estimate a map of the environment, the position of the on-
board sensors of the robot, and its kinematic parameters. Our
method requires no prior knowledge about the environment and
relies only on a rough initial guess of the platform parameters.
The proposed approach performs on-line estimation of the
parameters and it is able to adapt to non-stationary changes of
the configuration. Our approach has been implemented and is
used on the EUROPA robot, a service robot operating in urban
environments. In addition to that, we tested our approach in
simulated environments and on a wide range of real world data
using different types of robotic platforms.

I. INTRODUCTION

A key motivation for building robots is to develop systems
that can autonomously carry out different tasks and support
humans in their environments. There are several research
projects focusing on service robots that operate in domestic
environments [1], hospitals [2], or urban environments [3],
[4]. In all the these projects, robots are deployed in realistic
scenarios, which can change over time and show different
characteristics.

Whenever robots are deployed to operate without experts
installing or supervising them, appropriate calibration and
autonomous recalibration of the platform is important for
robust operation. First, the robot must calibrate its sensor
setup typically starting with the factory default settings.
Second, the robot must adapt its calibration parameters over
time for several reasons. For example, robots carrying loads
are likely to experience a change in their navigation behavior.
Health care robots guiding persons via a direct physical
interface, e.g. [2], need to adapt to the changes in the
environment at all time. The same holds for robots operating
in urban environments, where changing underground will
result in different navigation behaviors or odometry errors.

In most service robotics tasks, navigation and environment
mapping for localization and planning plays an important
role. Many navigation systems rely on the knowledge of the
specific robot parameters. These parameters typically include
the position of the sensor on the platform or the parameters
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Fig. 1. The robot used within the EUROPA project offers service tasks in
urban environments such as guided tours and delivery.

of the kinematic model that translates encoder ticks into a
relative movement of the mobile base. The influence of the
parameters on the accuracy of state estimation processes can
be substantial. For instance, an accurate calibration of the
odometry can seriously improve the expected accuracy of
the motion prediction by reducing the search space of the
algorithms that provide the motion estimates.

In this paper, we present an approach to estimate the
calibration parameters of a robot equipped with a laser
scanner and wheel encoders while it performs SLAM. The
system is used within the EUROPA project [3] for robots
offering service tasks in urban environments (see Figure 1).
We model the problem as a hyper-graph, where each node
represents either a robot position, the laser position on the
robot, or the kinematic parameters of the odometry. Our
approach allows to determine these state variables on the
fly (e.g., sensor positions and odometry calibration). To deal
with temporal changes, which occur for example if the
EUROPA robot carries goods or a bag for a human, or moves
on different surfaces, we re-estimate the parameters on the
most recent data. This approach allows a mobile robot to
estimate a different set of odometry parameters for different
regions of the environment and to better model the motion
of the robot in these areas. Our approach might additionally
be beneficial in a variety of contexts including, for instance,
terrain classification. We present evaluations of our approach
in simulated and real world experiments using several robot
platforms moving on different types of ground.



II. SIMULTANEOUS CALIBRATION, LOCALIZATION, AND
MAPPING

Our system relies on the graph-based formulation of
the SLAM problem to estimate the maximum-likelihood
configuration. In contrast to the traditional SLAM methods
we explicitly model that the measurements obtained by the
robot are given in different coordinate frames. For example,
the odometry of the robot is given by the velocity measure-
ments of its wheels. Applying the forward kinematics of the
platform allows to transform the velocities measured during
a time interval into a relative displacement of the platform
expressed in the odometry frame. Additionally, the robot is
usually equipped with a sensor that is able to observe the en-
vironment, e.g., a laser range finder. This sensor is mounted
on the robot and obtains measurements in its own coordinate
frame. Thus, a scan-matching algorithm which aligns two
range scans in a common coordinate frame has to project the
computed motion through the kinematic chain of the robot to
estimate the motion of the robot’s base. As it is not always
easy to measure the transformation between the base of the
robot and the sensor or to determine the parameters for the
forward kinematics, we suggest to integrate those into the
maximum likelihood estimation process.

A. Description of the Hyper-Graph
Whenever the robot obtains a measurement we add a

node to the graph. This node represents the position of
the robot at which the measurement was obtained. Let
x = (x1, . . . ,xn)> be a vector of parameters, where xi =
(xi, yi, θi)

> describes the position of node i. Furthermore,
let l be the 2D pose of the sensor relative to the coordinate
frame of the robot and let zij and Ωz

ij be respectively the
mean and information matrix of an observation of node j
seen from node i. Finally, let k be the parameters of the
forward kinematics function and ui and Ωu

i be respectively
the motion command and the information matrix which
translates the robot from node i to i+ 1.

The error function el(xi,xj , l, zij) measures how well the
parameter blocks xi, xj , and l satisfy the constraint zij . If the
three parameters perfectly satisfy the error function, then its
value is 0. Here, we assume that the laser is mounted without
inclination which is the ideal condition. For simplicity of
notation, we will encode the involved quantities in the indices
of the error function:

el(xi,xj , l, zij)
def.
= el(xi,xj)

def.
= el

ij(x). (1)

The error function el
ij(x) has the following form:

el
ij(x) = ((xj ⊕ l)	 (xi ⊕ l))	 zij , (2)

where ⊕ is the usual motion composition operator [5] and
	 its inverse.

Additionally, the error function eu
i (xi,xi+1,k,ui) mea-

sures how well the parameter blocks xi, xj , and k satisfy the
constraint ui. Again, a value of 0 means that the constraint
is perfectly satisfied by the parameters. The error function
eu
i (x) is defined as

eu
i (x) = (xi+1 	 xi)	K(ui,k), (3)

where K(·) is the forward kinematics function converting
from wheel velocities to a relative displacement of the
vehicle. In Eq. (3) we applied the same simplifying notation
as in Eq. (1).

For a robot with a differential drive, which is one of the
most common types of robots, the odometry u = (vl, vr)>

consists of the velocities of the left and the right wheel. The
wheel velocities are computed by counting the encoder ticks
of the motors during the time step which are multiplied by
the respective radii rl and rr of the wheels. Furthermore,
the distance b between the two wheels has to be known to
compute the circular arc on which the robot moves. The
relative motion during the time interval ∆t is given by

K(u,k) =

(
R(∆tω) 0

0 1

)(
−ICC

0

)
+

(
ICC
∆tω

)
, (4)

where R(·) is the 2D rotation matrix of its argument, ICC =
(0, b2

rlvl+rrvr

rlvl−rrvr )>, and ω = rlvl−rrvr
b . Thus, the calibration

parameter k = (rr, rl, b)
> for the odometry is a three-

dimensional vector.
The goal of our maximum likelihood approach is to find

the configuration of [x∗, l∗,k∗] which minimizes the negative
log-likelihood F(x, l,k) given all the observations

F(x, l,k)

=
∑
〈i,j〉

el
ij(x)>Ωz

ije
l
ij(x) +

∑
i

eu
i (x)>Ω̃u

i eu
i (x), (5)

where Ω̃u
i is the projection of Ωu

i through the forward kine-
matics function K(·) via the unscented transformation [6].
Since the projection depends on the estimate of k, we update
the projection if k changes substantially.

Given this formulation we may easily integrate prior
knowledge, for example, the manually — thus non-precisely
— measured transformation of the laser. This is possible
as long as the prior information can be represented by a
Gaussian distribution. Furthermore, actuated sensors can be
easily incorporated by extending the the error function to
take into account the measured positions of the joints. This
is for instance the case of a laser mounted on a pan-tilt unit.

If a good initial guess of the parameters is known, a
numerical solution of Eq. (5) can be obtained by using
the popular Gauss-Newton or Levenberg-Marquardt algo-
rithms [7, §15.5]. The idea is to approximate the error
function by its first order Taylor expansion around the current
estimate. The Taylor expansion leads to a linear system of
equations whose solution is used to update the current guess
resulting in a new estimate for the parameters. Iterating the
linearization, solving, and updating steps yields the solution
to Eq. (5).

We employ the g2o toolkit [8] which allows us to solve
one iteration of a calibration problem having 3,000 nodes in
less than 0.01 s using one core of an Intel i7@2.8 GHz.

III. EXPERIMENTS

The approach described above has been implemented and
evaluated on both simulated and real-world data acquired



(a) (b) (c)
Fig. 2. The robots used to acquire the real-world data sets: (a) EUROPA
platform (b) MobileRobots PowerBot (c) Pioneer.

Fig. 3. Robot driving up and down a corridor. Top: Applying the calibration
corresponding to the current configuration of the robot leads to a good
odometry estimate. Bottom: If the robot is carrying a load, the same
calibration parameters results in a severe drift in the odometry.

with a heterogeneous set of robots equipped with laser range
finders. Figure 2 visualizes the robots we used to collect the
real-world data used in this paper.

The SLAM front-end for processing the data is an own
implementation of the framework described by Olson [9]
which employs a correlative scan-matcher to estimate the
transformation of the laser along with the 3 × 3 covariance
matrix representing the uncertainty of the estimated transfor-
mation. The correlative scan-matcher performs an exhaustive
search to determine the best fitting alignment for two laser
scans within a given search radius.

A. Online odometry calibration

In real world scenarios the odometry is affected by differ-
ent factors. For example, if a service robot assists a person
with carrying bags, the additional weight compresses inflated
tires and results in reduced wheel radii. To this end, we
used the PowerBot platform (see Figure 2a) which has a
maximum payload of 100 kg to carry a load of approximately
40 kg. The wheels of the PowerBot are inflated tires whose
radii are affected by both the air-pressure of the tires and
the distribution of the load over the platform. In this set of
experiments, the load was intentionally placed on the left
hand side of the robot. In a first experiment we recorded
datasets in which the robot was either carrying the load
or it was operating in its normal configuration. We used
one data set for estimating the parameters and a different
one for evaluating the odometry calibration parameters.
Our approach estimated wheel radii of rr = 0.1251 m,
rl = 0.1226 m for the normal configuration of the robot and
rr = 0.1231 m, rl = 0.1223 m while carrying the load. The
difference seems to be small, however it has a substantial
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Fig. 4. Results of the online estimation of the wheel radii. The robot had
to carry a load twice which was placed on the left hand side of the platform
leading to a compression of the left wheel.

(a) (b) (c) (d)
Fig. 5. (a) Map obtained by the raw uncalibrated odometry of a robot
traveling along a corridor. The result of applying a scan-matching algorithm
with a large search space to account for the uncalibrated odometry leads
to the shortened map shown in (b). A restriction of the search space is not
able to fully correct the errors as visualized in (c). However, applying the
accurate calibration together with a small search space leads to an accurate
estimate depicted in (d).

effect. Figure 3 shows the outcome of applying the estimate
of the normal configuration to the robot carrying the load.
Applying the wrong calibration parameter has a crucial effect
on the trajectory as it is estimated by the odometry. Since
the weight of the load is mutable and can be placed in an
arbitrary position on the robot, the best performance can be
obtained by calibrating the odometry parameters while the
robot is operating.

By considering the 50 most recent measurements within
a sliding window around the current node we are able to
estimate the wheel radii online also when they are subject
to change due to external factors. Figure 4 visualizes the
estimated wheel radii during an experiment in which the
robot had to carry a load placed on the left hand side of the
platform. The robot was carrying the load during the intervals
[600, 1250] and [1865, 2530]. Using our approach we are able
to correctly estimate the wheel radii independent of the load
carried by the robot along with the maximum likelihood map
of the environment.

To further illustrate the importance of an accurate cali-
bration on the navigation performance of a service robot,
we recorded a dataset in which the EUROPA robot drives
along a straight corridor. As depicted in Figure 5, an accu-
rate calibration of the odometry can seriously improve the
expected accuracy of the motion prediction. Here, a scan-
matching algorithm based on the odometry prediction is
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Fig. 6. (a) Estimating the wheel radii online based on the most recent
observations. Here, the robot was carrying a load during the time interval
[120, 240]. (b) The evolution of the x and y coordinate of the laser
transformation as it is estimated by our approach. The true value of the
x and y coordinate is 0.3 m and 0.6 m respectively.
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Fig. 7. Left: In indoor environments a robot may encounter different floor
types. Right: The standard deviation of the error of the odometry edges for
the sliding window at each time step.

mapping the corridor. A scan-matching algorithm aligns two
point sets such that the sum of the squared distance between
corresponding points is minimized. Since the corridor is not
rich in features, the scan matcher yields solutions that are
highly ambiguous along the corridor’s axis. As a result, scan-
matching approaches tend to make corridors “shorter”. To
limit this effect one can restrict the search space of the scan-
matcher to a small region around the position predicted by
the odometry. This reduces the computational requirements
but requires a highly accurate calibration of the odometry to
achieve the correct alignment. As shown in Figure 5c and 5d
a precise calibration of the odometry parameters provides
an acceptable initial guess which allows the scan-matching
algorithm to accurately map the corridor.

B. Simulation Experiments

As it is hard to obtain ground truth data for real-world
data-sets, we simulated a robot which allows us to directly
judge the quality of the calibration results. Within a sim-
ulation experiment we modeled a robot carrying a weight
which we simulated having the effect of a reduction of the
wheel radius from 0.12 m to 0.11 m. The robot carries the
load during the time interval [120, 240]. Figure 6a depicts
the results of the online calibration based on the most
recent measurements. As we can see, the estimate is able to
represent the compressed wheels and corresponds well to the
ground truth given by the simulator. Furthermore, Figure 6b
shows that our approach is able to accurately estimate the
position of the laser mounted on the robot.

C. Influence of the ground surface

Within real world environments a robot may encounter
different floor types. For example, the negotiable ground

surfaces in outdoor environments are typically concrete
streets or paved paths. However, driving on cobble stone
pavements differs from driving on the smooth surface of a
street. Additionally, in indoor environments the service robot
may encounter an even larger variety of floor types, e.g.,
tiling, PVC flooring, wooden floor, or carpets are possible.
To test the influence of the floor type, we recorded data sets
in which the robot drives on a soft carpet and on concrete
tiling floor, see left image in Figure 7. In this experiment we
estimated the odometry parameters online. On both floors the
estimated wheel radii were the same. However, by analyzing
the standard deviation (see right part of Figure 7) in the error
of the odometry measurements eu

i for the sliding window
around the current node, we observe a higher noise in the
odometry due to slippage on the carpet. This information
can be stored in the map so that the robot can consider it
to adjust the motion model noise during a localization task.
Exploiting this information may improve the robustness of a
service robot while performing its navigation tasks.

IV. CONCLUSIONS

In this paper, we presented an approach to estimate the
calibration parameters of a service robot while performing
SLAM. Our approach extends the graph-based formulation of
the SLAM problem to handle the calibration parameters. The
overall approach is accurate and applying it online allows the
robot to handle changes in the parameters. For example, a
robot assisting a person with carrying bags is affected by the
influence of the additional load on its odometry parameters.
Additionally, in long-term operations the effects of the wear
of the robot may be substantial and our approach allows the
robot to adapt itself to correct these effects.

Compared to ad-hoc calibration methods our approach
solely relies on the on-board sensors of the robot and does
not require external information. Additionally, our approach
has the potential to provide useful information about the
ground surface which affects the uncertainty of the odometry
measurements. This information may in the future be be con-
sidered by localization algorithms which adjust the motion
model based on the stored information.
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